# TMS320C28x Floating Point Unit and Instruction Set

## **Reference Guide**



Literature Number: SPRUEO2A June 2007–Revised August 2008



## Contents

| Prefa | ice                                                      |  |  |  |  |  |
|-------|----------------------------------------------------------|--|--|--|--|--|
| 1     | Introduction7                                            |  |  |  |  |  |
| 1.1   | Introduction to the Central Processing Unit (CPU)        |  |  |  |  |  |
| 1.2   | Compatibility with the C28x Fixed-Point CPU              |  |  |  |  |  |
|       | 1.2.1 Floating-Point Code Development                    |  |  |  |  |  |
| 1.3   | Components of the C28x plus Floating-Point CPU           |  |  |  |  |  |
|       | 1.3.1 Emulation Logic 10                                 |  |  |  |  |  |
|       | 1.3.2 Memory Map 10                                      |  |  |  |  |  |
|       | 1.3.3 On-Chip Program and Data 10                        |  |  |  |  |  |
|       | 1.3.4 CPU Interrupt Vectors 10                           |  |  |  |  |  |
| 1.4   | Memory Interface 10                                      |  |  |  |  |  |
|       | 1.4.1 Address and Data Buses 11                          |  |  |  |  |  |
|       | 1.4.2 Alignment of 32-Bit Accesses to Even Addresses 11  |  |  |  |  |  |
| 2     | CPU Register Set 13                                      |  |  |  |  |  |
| 2.1   | CPU Registers 14                                         |  |  |  |  |  |
|       | 2.1.1 Floating-Point Status Register (STF) 16            |  |  |  |  |  |
|       | 2.1.2 Repeat Block Register (RB) 18                      |  |  |  |  |  |
| 3     | Pipeline                                                 |  |  |  |  |  |
| 3.1   | Pipeline Overview                                        |  |  |  |  |  |
| 3.2   | General Guidelines for Floating-Point Pipeline Alignment |  |  |  |  |  |
| 3.3   | Moves from FPU Registers to C28x Registers               |  |  |  |  |  |
| 3.4   | Moves from C28x Registers to FPU Registers               |  |  |  |  |  |
| 3.5   | Parallel Instructions                                    |  |  |  |  |  |
| 3.6   | Invalid Delay Instructions                               |  |  |  |  |  |
| 3.7   | Optimizing the Pipeline 27                               |  |  |  |  |  |
| 4     | Instruction Set                                          |  |  |  |  |  |
| 4.1   | Instruction Descriptions                                 |  |  |  |  |  |
| 4.2   | Instructions 32                                          |  |  |  |  |  |
| Α     | Revision History 137                                     |  |  |  |  |  |
| A.1   | Changes 137                                              |  |  |  |  |  |



#### List of Figures

| 1-1 | FPU Functional Block Diagram              | 8  |
|-----|-------------------------------------------|----|
|     | C28x With Floating-Point Registers        |    |
|     | Floating-point Unit Status Register (STF) |    |
| 2-3 | Repeat Block Register (RB)                | 18 |
| 3-1 | FPU Pipeline                              | 22 |

#### List of Tables

| 2-1 | 28x Plus Floating-Point CPU Register Summary                 | 15  |
|-----|--------------------------------------------------------------|-----|
|     | Floating-point Unit Status (STF) Register Field Descriptions |     |
| 2-3 | Repeat Block (RB) Register Field Descriptions                | 18  |
| 4-1 | Operand Nomenclature                                         | 30  |
| 4-2 | Summary of Instructions                                      | 32  |
| A-1 | Technical Changes Made in This Revision                      | 137 |



Preface SPRUE02A–June 2007–Revised August 2008

This document describes the CPU architecture, pipeline, instruction set, and interrupts of the C28x floating-point DSP.

#### About This Manual

The TMS320C2000<sup>™</sup> digital signal processor (DSP) platform is part of the TMS320<sup>™</sup> DSP family.

#### **Notational Conventions**

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following number is 40 hexadecimal (decimal 64): 40h or 0x40.
- Registers in this document are shown in figures and described in tables.
  - Each register figure shows a rectangle divided into fields that represent the fields of the register.
     Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
  - Reserved bits in a register figure designate a bit that is used for future device expansion.

#### **Related Documentation**

The following books describe the TMS320x28x and related support tools that are available on the TI website:

#### Data Manual and Errata—

SPRS439— <u>TMS320F28335</u>, <u>TMS320F28334</u>, <u>TMS320F28332</u>, <u>TMS320F28235</u>, <u>TMS320F28235</u>, <u>TMS320F28232</u>, <u>TMS320F28232</u> <u>Digital Signal Controllers (DSCs) Data Manual</u> contains the pinout, signal descriptions, as well as electrical and timing specifications for the F2833x/2823x devices.

SPRZ272— TMS320F28335, F28334, F28332, TMS320F28235, F28234, F28232 Digital Signal Controllers (DSCs) Silicon Errata describes the advisories and usage notes for different versions of silicon.

#### CPU User's Guides—

- **SPRU430** <u>TMS320C28x DSP CPU and Instruction Set Reference Guide</u> describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.
- **SPRUEO2** <u>TMS320C28x Floating Point Unit and Instruction Set Reference Guide</u> describes the floating-point unit and includes the instructions for the FPU.

#### Peripheral Guides—

- **SPRU566** <u>TMS320x28xx, 28xxx Peripheral Reference Guide</u> describes the peripheral reference guides of the 28x digital signal processors (DSPs).
- **SPRUFB0** <u>TMS320x2833x</u>, <u>2823x</u> <u>System Control and Interrupts Reference Guide</u> describes the various interrupts and system control features of the 2833x digital signal controllers (DSCs).</u>
- **SPRU812** <u>TMS320x2833x</u>, <u>2823x</u> <u>Analog-to-Digital Converter (ADC)</u> <u>Reference Guide</u> describes how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.</u>



Related Documentation

www.ti.com

- **SPRU949** <u>TMS320x2833x, 2823x External Interface (XINTF) User's Guide</u> describes the XINTF, which is a nonmultiplexed asynchronous bus, as it is used on the 2833x devices.
- SPRU963— <u>TMS320x2833x</u>, <u>TMS320x2823x</u> Boot ROM User's Guide describes the purpose and features of the bootloader (factory-programmed boot-loading software) and provides examples of code. It also describes other contents of the device on-chip boot ROM and identifies where all of the information is located within that memory.
- SPRUFB7— <u>TMS320x2833x, 2823x Multichannel Buffered Serial Port (McBSP) User's Guide</u> describes the McBSP available on the F2833x devices. The McBSPs allow direct interface between a DSP and other devices in a system.
- **SPRUFB8** <u>TMS320x2833x, 2823x Direct Memory Access (DMA) Reference Guide</u> describes the DMA on the 2833x devices.
- SPRUG04— <u>TMS320x2833x</u>, 2823x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide describes the main areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power conversion.
- **SPRUG02** <u>TMS320x2833x</u>, <u>2823x High-Resolution Pulse Width Modulator (HRPWM)</u> describes the operation of the high-resolution extension to the pulse width modulator (HRPWM).
- **SPRUFG4** <u>TMS320x2833x</u>, <u>2823x</u> <u>Enhanced Capture (eCAP) Module Reference Guide</u> describes the enhanced capture module. It includes the module description and registers.</u>
- **SPRUG05** <u>TMS320x2833x</u>, <u>2823x</u> Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide describes the eQEP module, which is used for interfacing with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine in high performance motion and position control systems. It includes the module description and registers.
- SPRUEU1— <u>TMS320x2833x</u>, <u>2823x</u> Enhanced Controller Area Network (eCAN) Reference Guide describes the eCAN that uses established protocol to communicate serially with other controllers in electrically noisy environments.
- SPRUFZ5— <u>TMS320F2833x, 2823x Serial Communication Interface (SCI) Reference Guide</u> describes the SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format.
- SPRUEU3— TMS320x2833x, 2823x Serial Peripheral Interface (SPI) Reference Guide describes the SPI a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed bit-transfer rate.
- **SPRUG03** <u>TMS320x2833x, 2823x Inter-Integrated Circuit (I2C) Reference Guide</u> describes the features and operation of the inter-integrated circuit (I2C) module.

#### Tools Guides—

- SPRU513— <u>TMS320C28x Assembly Language Tools User's Guide</u> describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device.
- SPRU514— <u>TMS320C28x Optimizing C Compiler User's Guide</u> describes the TMS320C28x<sup>™</sup> C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device.
- SPRU608— The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x<sup>™</sup> core.
- **SPRU625** <u>TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide</u> describes development using DSP/BIOS.



## Introduction

The TMS320C2000<sup>™</sup> DSP family consists of fixed-point and floating-point digital signal controllers (DSCs). TMS320C2000<sup>™</sup> Digital Signal Controllers combine control peripheral integration and ease of use of a microcontroller (MCU) with the processing power and C efficiency of TI's leading DSP technology. This chapter provides an overview of the architectural structure and components of the C28x plus floating-point unit CPU.

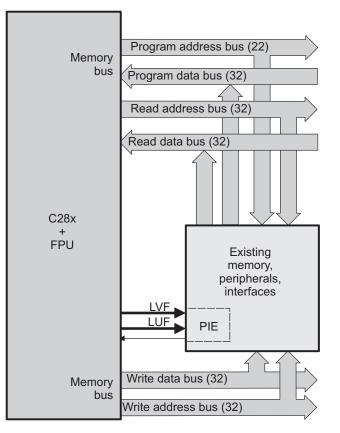
| Торіс |                                                   | Page |
|-------|---------------------------------------------------|------|
| 1.1   | Introduction to the Central Processing Unit (CPU) | Q    |
| 1.2   | Compatibility with the C28x Fixed-Point CPU       |      |
| 1.3   | Components of the C28x plus Floating-Point CPU    |      |
| 1.4   | Memory Interface                                  |      |
|       | •                                                 |      |

7



#### 1.1 Introduction to the Central Processing Unit (CPU)

The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating point operations. This device draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets. The DSC features include a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture (usable in Von Neumann mode). The microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.


Throughout this document the following notations are used:

- C28x refers to the C28x fixed-point CPU.
- C28x plus Floating-Point and C28x+FPU both refer to the C28x CPU with enhancements to support IEEE single-precision floating-point operations.

#### 1.2 Compatibility with the C28x Fixed-Point CPU

No changes have been made to the C28x base set of instructions, pipeline, or memory bus architecture. Therefore, programs written for the C28x CPU are completely compatible with the C28x+FPU and all of the features of the C28x documented in *TMS320C28x DSP CPU and Instruction Set Reference Guide* (literature number <u>SPRU430</u>) apply to the C28x+FPU.

Figure 1-1 shows basic functions of the FPU.



#### Figure 1-1. FPU Functional Block Diagram



#### 1.2.1 Floating-Point Code Development

When developing C28x floating-point code use Code Composer Studio 3.3, or later, with at least service release 8. The C28x compiler V5.0, or later, is also required to generate C28x native floating-point opcodes. This compiler is available via Code Composer Studio update advisor as a seperate download. V5.0 can generate both fixed-point as well as floating-point code. To build floating-point code use the compiler switches:-v28 and - -float\_support = fpu32. In Code Composer Studio 3.3 the float\_support option is in the build options under compiler-> advanced: floating point support. Without the float\_support flag, or with float\_support = none, the compiler will generate fixed-point code.

When building for C28x floating-point make sure all associated libraries have also been built for floating-point. The standard run-time support (RTS) libaries built for floating-point included with the compiler have fpu32 in their name. For example rts2800\_fpu32.lib and rts2800\_fpu\_eh.lib have been built for the floating-point unit. The "eh" version has exception handling for C++ code. Using the fixed-point RTS libraries in a floating-point project will result in the linker issuing an error for incompatible object files.

To improve performance of native floating-point projects, consider using the *C28x FPU Fast RTS Library* (<u>SPRC664</u>). This library contains hand-coded optimized math routines such as division, square root, atan2, sin and cos. This library can be linked into your project before the standard runtime support library to give your application a performance boost. As an example, the standard RTS library uses a polynomial expansion to calculate the sin function. The Fast RTS library, however, uses a math look-up table in the boot ROM of the device. Using this look-up table method results in approximately a 20 cycle savings over the standard RTS calculation.

#### 1.3 Components of the C28x plus Floating-Point CPU

The C28x+FPU contains:

- A central processing unit for generating data and program-memory addresses; decoding and executing instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among CPU registers, data memory, and program memory
- A floating-point unit for IEEE single-precision floating point operations.
- Emulation logic for monitoring and controlling various parts and functions of the device and for testing device operation. This logic is identical to that on the C28x fixed-point CPU.
- Signals for interfacing with memory and peripherals, clocking and controlling the CPU and the emulation logic, showing the status of the CPU and the emulation logic, and using interrupts. This logic is identical to the C28x fixed-point CPU.

Some features of the C28x+FPU central processing unit are:

- Fixed-Point instructions are pipeline protected. This pipeline for fixed-point instructions is identical to that on the C28x fixed-point CPU. The CPU implements an 8-phase pipeline that prevents a write to and a read from the same location from occurring out of order. See Figure 3-1
- Some floating-point instructions require pipeline alignment. This alignment is done through software to allow the user to improve performance by taking advantage of required delay slots.
- Independent register space. These registers function as system-control registers, math registers, and data pointers. The system-control registers are accessed by special instructions.
- Arithmetic logic unit (ALU). The 32-bit ALU performs 2s-complement arithmetic and Boolean logic operations.
- Floating point unit (FPU). The 32-bit FPU performs IEEE single-precision floating-point operations.
- Address register arithmetic unit (ARAU). The ARAU generates data memory addresses and increments or decrements pointers in parallel with ALU operations.
- Barrel shifter. This shifter performs all left and right shifts of fixed-point data. It can shift data to the left by up to 16 bits and to the right by up to 16 bits.
- Fixed-Point Multiplier. The multiplier performs 32-bit × 32-bit 2s-complement multiplication with a 64-bit result. The multiplication can be performed with two signed numbers, two unsigned numbers, or one signed number and one unsigned number.



#### 1.3.1 Emulation Logic

The emulation logic is identical to that on the C28x fixed-point CPU. This logic includes the following features. For more details about these features, refer to the *TMS320C28x DSP CPU and Instruction Set Reference Guide* (literature number SPRU430:

- Debug-and-test direct memory access (DT-DMA). A debug host can gain direct access to the content
  of registers and memory by taking control of the memory interface during unused cycles of the
  instruction pipeline.
- A counter for performance benchmarking.
- Multiple debug events. Any of the following debug events can cause a break in program execution:
  - A breakpoint initiated by the ESTOP0 or ESTOP1 instruction.
  - An access to a specified program-space or data-space location.
     When a debug event causes the C28x to enter the debug-halt state, the event is called a break event.
- Real-time mode of operation.

#### 1.3.2 Memory Map

Like the C28x, the C28x+FPU uses 32-bit data addresses and 22-bit program addresses. This allows for a total address reach of 4G words (1 word = 16 bits) in data space and 4M words in program space. Memory blocks on all C28x+FPU designs are uniformly mapped to both program and data space. For specific details about each of the map segments, see the data sheet for your device.

#### 1.3.3 On-Chip Program and Data

All C28x+FPU based devices contain at least two blocks of single access on-chip memory referred to as M0 and M1. Each of these blocks is 1K words in size. M0 is mapped at addresses 0x0000 – 0x03FF and M1 is mapped at addresses 0x0400 – 0x07FF. Like all other memory blocks on the C28x+FPU devices, M0 and M1 are mapped to both program and data space. Therefore, you can use M0 and M1 to execute code or for data variables. At reset, the stack pointer is set to the top of block M1. Depending on the device, it may also have additional random-access memory (RAM), read-only memory (ROM), external interface zones, or flash memory.

#### 1.3.4 CPU Interrupt Vectors

The C28x+FPU interrupt vectors are identical to those on the C28x CPU. Sixty-four addresses in program space are set aside for a table of 32 CPU interrupt vectors. The CPU vectors can be mapped to the top or bottom of program space by way of the VMAP bit. For more information about the CPU vectors, see *TMS320C28x DSP CPU and Instruction Set Reference Guide* (literature number <u>SPRU430</u>). For devices with a peripheral interrupt expansion (PIE) block, the interrupt vectors will reside in the PIE vector table and this memory can be used as program memory.

#### 1.4 Memory Interface

The C28x+FPU memory interface is identical to that on the C28x. The C28x+FPU memory map is accessible outside the CPU by the memory interface, which connects the CPU logic to memories, peripherals, or other interfaces. The memory interface includes separate buses for program space and data space. This means an instruction can be fetched from program memory while data memory is being accessed. The interface also includes signals that indicate the type of read or write being requested by the CPU. These signals can select a specified memory block or peripheral for a given bus transaction. In addition to 16-bit and 32-bit accesses, the C28x+FPU supports special byte-access instructions that can access the least significant byte (LSByte) or most significant byte (MSByte) of an addressed word. Strobe signals indicate when such an access is occurring on a data bus.



#### 1.4.1 Address and Data Buses

Like the C28x, the memory interface has three address buses:

- **PAB: Program address bus** The PAB carries addresses for reads and writes from program space. PAB is a 22-bit bus.
- DRAB: Data-read address bus
   The 32-bit DRAB carries addresses for reads from data space.
- **DWAB: Data-write address bus** The 32-bit DWAB carries addresses for writes to data space.

The memory interface also has three data buses:

- **PRDB: Program-read data bus** The PRDB carries instructions during reads from program space. PRDB is a 32-bit bus.
- DRDB: Data-read data bus The DRDB carries data during reads from data space. DRDB is a 32-bit bus.
- DWDB: Data-/Program-write data bus

The 32-bit DWDB carries data during writes to data space or program space.

A program-space read and a program-space write cannot happen simultaneously because both use the PAB. Similarly, a program-space write and a data-space write cannot happen simultaneously because both use the DWDB. Transactions that use different buses can happen simultaneously. For example, the CPU can read from program space (using PAB and PRDB), read from data space (using DRAB and DRDB), and write to data space (using DWAB and DWDB) at the same time. This behavior is identical to the C28x CPU.

#### 1.4.2 Alignment of 32-Bit Accesses to Even Addresses

The C28x+FPU CPU expects memory wrappers or peripheral-interface logic to align any 32-bit read or write to an even address. If the address-generation logic generates an odd address, the CPU will begin reading or writing at the previous even address. This alignment does not affect the address values generated by the address-generation logic.

Most instruction fetches from program space are performed as 32-bit read operations and are aligned accordingly. However, alignment of instruction fetches are effectively invisible to a programmer. When instructions are stored to program space, they do not have to be aligned to even addresses. Instruction boundaries are decoded within the CPU.

You need to be concerned with alignment when using instructions that perform 32-bit reads from or writes to data space.



Chapter 2 SPRUE02A–June 2007–Revised August 2008

## **CPU Register Set**

The C28x+FPU architecture is the same as the C28x CPU with an extended register and instruction set to support IEEE single-precision floating point operations. This section describes the extensions to the C28x architecture.

| Торіс |               | Page |
|-------|---------------|------|
| 2.1   | CPU Registers | 14   |



#### 2.1 CPU Registers

Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following:

- Eight floating-point result registers, RnH (where n = 0 7)
- Floating-point Status Register (STF)
- Repeat Block Register (RB)

All of the floating-point registers except the repeat block register are shadowed. This shadowing can be used in high priority interrupts for fast context save and restore of the floating-point registers.

Figure 2-1 shows a diagram of both register sets and Table 2-1 shows a register summary. For information on the standard C28x register set, see the *TMS320C28x DSP CPU and Instruction Set Reference Guide* (literature number <u>SPRU430</u>).

| Standard C28x Register Set | Additional 32-bit FPU Registers                   |
|----------------------------|---------------------------------------------------|
| ACC (32-bit)               | R0H (32-bit)                                      |
| P (32-bit)                 |                                                   |
| XT (32-bit)                | R1H (32-bit)                                      |
| XAR0 (32-bit)              | R2H (32-bit)                                      |
| XAR1 (32-bit)              | R3H (32-bit)                                      |
| XAR2 (32-bit)              |                                                   |
| XAR3 (32-bit)              | R4H (32-bit)                                      |
| XAR4 (32-bit)              | R5H (32-bit)                                      |
| XAR5 (32-bit)              |                                                   |
| XAR6 (32-bit)              | R6H (32-bit)                                      |
| XAR7 (32-bit)              | R7H (32-bit)                                      |
| PC (22-bit)                |                                                   |
| RPC (22-bit)               | FPU Status Register (STF)                         |
| DP (16-bit)                | Repeat Block Register (RB)                        |
| SP (16-bit)                | FPU registers R0H - R7H and STF                   |
| ST0 (16 hit)               | are shadowed for fast context<br>save and restore |
| ST0 (16-bit)               |                                                   |
| ST1 (16-bit)               |                                                   |
| IER (16-bit)               |                                                   |
| IFR (16-bit)               |                                                   |
| DBGIER (16-bit)            |                                                   |

#### Figure 2-1. C28x With Floating-Point Registers



| Table 2-1. 28x Plus Floating-Point CPU Register Summar       | v |
|--------------------------------------------------------------|---|
| Tuble E 1. Eox 1 lus 1 louding 1 onit of o Register Ourinnar | y |

| Register | C28x<br>CPU | C28x+FPU | Size    | Description                      | Value After Reset     |
|----------|-------------|----------|---------|----------------------------------|-----------------------|
| ACC      | Yes         | Yes      | 32 bits | Accumulator                      | 0x0000000             |
| AH       | Yes         | Yes      | 16 bits | High half of ACC                 | 0x0000                |
| AL       | Yes         | Yes      | 16 bits | Low half of ACC                  | 0x0000                |
| XAR0     | Yes         | Yes      | 16 bits | Auxiliary register 0             | 0x0000000             |
| XAR1     | Yes         | Yes      | 32 bits | Auxiliary register 1             | 0x0000000             |
| XAR2     | Yes         | Yes      | 32 bits | Auxiliary register 2             | 0x0000000             |
| XAR3     | Yes         | Yes      | 32 bits | Auxiliary register 3             | 0x0000000             |
| XAR4     | Yes         | Yes      | 32 bits | Auxiliary register 4             | 0x0000000             |
| XAR5     | Yes         | Yes      | 32 bits | Auxiliary register 5             | 0x0000000             |
| XAR6     | Yes         | Yes      | 32 bits | Auxiliary register 6             | 0x0000000             |
| XAR7     | Yes         | Yes      | 32 bits | Auxiliary register 7             | 0x0000000             |
| AR0      | Yes         | Yes      | 16 bits | Low half of XAR0                 | 0x0000                |
| AR1      | Yes         | Yes      | 16 bits | Low half of XAR1                 | 0x0000                |
| AR2      | Yes         | Yes      | 16 bits | Low half of XAR2                 | 0x0000                |
| AR3      | Yes         | Yes      | 16 bits | Low half of XAR3                 | 0x0000                |
| AR4      | Yes         | Yes      | 16 bits | Low half of XAR4                 | 0x0000                |
| AR5      | Yes         | Yes      | 16 bits | Low half of XAR5                 | 0x0000                |
| AR6      | Yes         | Yes      | 16 bits | Low half of XAR6                 | 0x0000                |
| AR7      | Yes         | Yes      | 16 bits | Low half of XAR7                 | 0x0000                |
| DP       | Yes         | Yes      | 16 bits | Data-page pointer                | 0x0000                |
| IFR      | Yes         | Yes      | 16 bits | Interrupt flag register          | 0x0000                |
| IER      | Yes         | Yes      | 16 bits | Interrupt enable register        | 0x0000                |
| DBGIER   | Yes         | Yes      | 16 bits | Debug interrupt enable register  | 0x0000                |
| P        | Yes         | Yes      | 32 bits | Product register                 | 0x0000000             |
| PH       | Yes         | Yes      | 16 bits | High half of P                   | 0x0000                |
| PL       | Yes         | Yes      | 16 bits | Low half of P                    | 0x0000                |
| PC       | Yes         | Yes      | 22 bits | Program counter                  | 0x3FFFC0              |
| RPC      | Yes         | Yes      | 22 bits | Return program counter           | 0x0000000             |
| SP       | Yes         | Yes      | 16 bits | Stack pointer                    | 0x0400                |
| ST0      | Yes         | Yes      | 16 bits | Status register 0                | 0x0000                |
| ST1      | Yes         | Yes      | 16 bits | Status register 1                | 0x080B <sup>(1)</sup> |
| хт       | Yes         | Yes      | 32 bits | Multiplicand register            | 0x0000000             |
| т        | Yes         | Yes      | 16 bits | High half of XT                  | 0x0000                |
| TL       | Yes         | Yes      | 16 bits | Low half of XT                   | 0x0000                |
| ROH      | No          | Yes      | 32 bits | Floating-point result register 0 | 0.0                   |
| R1H      | No          | Yes      | 32 bits | Floating-point result register 1 | 0.0                   |
| R2H      | No          | Yes      | 32 bits | Floating-point result register 2 | 0.0                   |
| R3H      | No          | Yes      | 32 bits | Floating-point result register 3 | 0.0                   |
| R4H      | No          | Yes      | 32 bits | Floating-point result register 4 | 0.0                   |
| R5H      | No          | Yes      | 32 bits | Floating-point result register 5 | 0.0                   |
| R6H      | No          | Yes      | 32 bits | Floating-point result register 6 | 0.0                   |
| R7H      | No          | Yes      | 32 bits | Floating-point result register 7 | 0.0                   |
| STF      | No          | Yes      | 32 bits | Floating-point status register   | 0x0000000             |
| RB       | No          | Yes      | 32 bits | Repeat block register            | 0x0000000             |

<sup>(1)</sup> Reset value shown is for devices without the VMAP signal and MOM1MAP signal pinned out. On these devices both of these signals are tied high internal to the device.



#### 2.1.1 Floating-Point Status Register (STF)

The floating-point status register (STF) reflects the results of floating-point operations. There are three basic rules for floating point operation flags:

- 1. Zero and negative flags are set based on moves to registers.
- 2. Zero and negative flags are set based on the result of compare, minimum, maximum, negative and absolute value operations.
- 3. Overflow and underflow flags are set by math instructions such as multiply, add, subtract and 1/x. These flags may also be connected to the peripheral interrupt expansion (PIE) block on your device. This can be useful for debugging underflow and overflow conditions within an application.

As on the C28x, program flow is controlled by C28x instructions that read status flags in the status register 0 (ST0). If a decision needs to be made based on a floating-point operation, the information in the STF register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that the appropriate branch conditional instruction can be executed. The MOVST0 FLAG instruction is used to load the current value of specified STF flags into the respective bits of ST0. When this instruction executes, it will also clear the latched overflow and underflow flags if those flags are specified.

#### Example 2-1. Moving STF Flags to the ST0 Register

```
Loop:

MOV32 R0H,*XAR4++

MOV32 R1H,*XAR3++

CMPF32 R1H, R0H

MOVST0 ZF, NF ; Move ZF and NF to ST0

BF Loop, GT ; Loop if (R1H > R0H)
```

#### 31 30 16 SHDWS Reserved R/W-0 R-0 15 10 9 8 7 6 5 4 3 2 0 1 Reserved RND32 Reserved TF ΖI NI 7F NF LUF LVF R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

#### Figure 2-2. Floating-point Unit Status Register (STF)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

#### Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions

| Bits    | Field    | Value | Description                                                                                           |
|---------|----------|-------|-------------------------------------------------------------------------------------------------------|
| 31      | SHDWS    |       | Shadow Mode Status Bit                                                                                |
|         |          | 0     | This bit is forced to 0 by the RESTORE instruction.                                                   |
|         |          | 1     | This bit is set to 1 by the SAVE instruction.                                                         |
|         |          |       | This bit is not affected by loading the status register either from memory or from the shadow values. |
| 30 - 10 | Reserved | 0     | Reserved for future use                                                                               |
| 9       | RND32    |       | Round 32-bit Floating-Point Mode                                                                      |
|         |          | 0     | If this bit is zero, the MPYF32, ADDF32 and SUBF32 instructions will round to zero (truncate).        |
|         |          | 1     | If this bit is one, the MPYF32, ADDF32 and SUBF32 instructions will round to the nearest even value.  |
| 8 - 7   | Reserved | 0     | Reserved for future use                                                                               |



#### Table 2-2. Floating-point Unit Status (STF) Register Field Descriptions (continued)

| Bits | Field | Value | Description                                                                                                                                                                                                                                                                                                                                 |
|------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6    | TF    |       | Test Flag                                                                                                                                                                                                                                                                                                                                   |
|      |       |       | The TESTTF instruction can modify this flag based on the condition tested. The SETFLG and SAVE instructions can also be used to modify this flag.                                                                                                                                                                                           |
|      |       | 0     | The condition tested with the TESTTF instruction is false.                                                                                                                                                                                                                                                                                  |
|      |       | 1     | The condition tested with the TESTTF instruction is true.                                                                                                                                                                                                                                                                                   |
| 5    | ZI    |       | Zero Integer Flag                                                                                                                                                                                                                                                                                                                           |
|      |       |       | The following instructions modify this flag based on the integer value stored in the destination register:<br>MOV32, MOVD32, MOVDD32<br>The SETFLG and SAVE instructions can also be used to modify this flag.                                                                                                                              |
|      |       | 0     | The integer value is not zero.                                                                                                                                                                                                                                                                                                              |
|      |       | 1     | The integer value is zero.                                                                                                                                                                                                                                                                                                                  |
| 4    | NI    |       | Negative Integer Flag                                                                                                                                                                                                                                                                                                                       |
|      |       |       | The following instructions modify this flag based on the integer value stored in the destination register:<br>MOV32, MOVD32, MOVDD32<br>The SETFLG and SAVE instructions can also be used to modify this flag.                                                                                                                              |
|      |       | 0     | The integer value is not negative.                                                                                                                                                                                                                                                                                                          |
|      |       | 1     | The integer value is negative.                                                                                                                                                                                                                                                                                                              |
| 3    | ZF    |       | Zero Floating-Point Flag <sup>(1)(2)</sup>                                                                                                                                                                                                                                                                                                  |
| -    |       |       | The following instructions modify this flag based on the floating-point value stored in the destination                                                                                                                                                                                                                                     |
|      |       |       | register:<br>MOV32, MOVD32, MOVDD32, ABSF32, NEGF32<br>The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.<br>The SETFLG and SAVE instructions can also be used to modify this flag                                                                                                          |
|      |       | 0     | The floating-point value is not zero.                                                                                                                                                                                                                                                                                                       |
|      |       | 1     | The floating-point value is zero.                                                                                                                                                                                                                                                                                                           |
| 2    | NF    |       | Negative Floating-Point Flag <sup>(1)(2)</sup>                                                                                                                                                                                                                                                                                              |
|      |       |       | The following instructions modify this flag based on the floating-point value stored in the destination register:<br>MOV32, MOVD32, MOVDD32, ABSF32, NEGF32<br>The CMPF32, MAXF32, and MINF32 instructions modify this flag based on the result of the operation.<br>The SETFLG and SAVE instructions can also be used to modify this flag. |
|      |       | 0     | The floating-point value is not negative.                                                                                                                                                                                                                                                                                                   |
|      |       | 1     | The floating-point value is negative.                                                                                                                                                                                                                                                                                                       |
| 1    | LUF   |       | Latched Underflow Floating-Point Flag                                                                                                                                                                                                                                                                                                       |
|      |       |       | The following instructions will set this flag to 1 if an underflow occurs:<br>MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32                                                                                                                                                                                                            |
|      |       | 0     | An underflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0 then LUF will be cleared.                                                                                                                                                                                                            |
|      |       | 1     | An underflow condition has been latched.                                                                                                                                                                                                                                                                                                    |
| 0    | LVF   |       | Latched Overflow Floating-Point Flag                                                                                                                                                                                                                                                                                                        |
|      |       |       | The following instructions will set this flag to 1 if an overflow occurs:<br>MPYF32, ADDF32, SUBF32, MACF32, EINVF32, EISQRTF32                                                                                                                                                                                                             |
|      |       | 0     | An overflow condition has not been latched. If the MOVST0 instruction is used to copy this bit to ST0, then LVF will be cleared.                                                                                                                                                                                                            |
|      |       | 1     | An overflow condition has been latched.                                                                                                                                                                                                                                                                                                     |

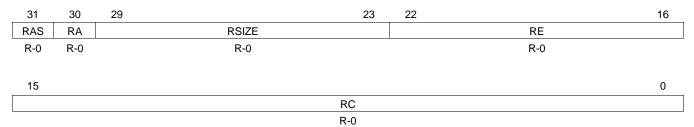
A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags. A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags. (1)

(2)



CPU Registers

#### 2.1.2 Repeat Block Register (RB)


The repeat block instruction (RPTB) is a new instruction for C28x+FPU. This instruction allows you to repeat a block of code as shown in Example 2-2.

#### Example 2-2. The Repeat Block (RPTB) Instruction uses the RB Register

| ; find the largest element and p<br>MOV32 R0H, *XAR0++; | out its address in XAR6                                   |
|---------------------------------------------------------|-----------------------------------------------------------|
| .align 2                                                | ; Aligns the next instruction to an even address          |
| NOP                                                     | ; Makes RPTB odd aligned - required for a block size of 8 |
| RPTB VECTOR_MAX_END, AR7                                | ; RA is set to 1                                          |
| MOVL ACC, XAR0                                          |                                                           |
| MOV32 R1H,*XAR0++                                       | ; RSIZE reflects the size of the RPTB block               |
| MAXF32 R0H,R1H                                          | ; in this case the block size is 8                        |
| MOVSTO NF, ZF                                           |                                                           |
| MOVL XAR6, ACC, LT                                      |                                                           |
| VECTOR_MAX_END:                                         | ; RE indicates the end address. RA is cleared             |

The C28x\_FPU hardware automatically populates the RB register based on the execution of a RPTB instruction. This register is not normally read by the application and does not accept debugger writes.

#### Figure 2-3. Repeat Block Register (RB)



LEGEND: R = Read only; -n = value after reset

#### Table 2-3. Repeat Block (RB) Register Field Descriptions

| Bits  | Field | Value    | Description                                                                                                                                                                                                                                                                        |
|-------|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31    | RAS   |          | Repeat Block Active Shadow Bit                                                                                                                                                                                                                                                     |
|       |       |          | When an interrupt occurs the repeat active, RA, bit is copied to the RAS bit and the RA bit is cleared. When an interrupt return instruction occurs, the RAS bit is copied to the RA bit and RAS is cleared.                                                                       |
|       |       | 0        | A repeat block was not active when the interrupt was taken.                                                                                                                                                                                                                        |
|       |       | 1        | A repeat block was active when the interrupt was taken.                                                                                                                                                                                                                            |
| 30    | RA    |          | Repeat Block Active Bit                                                                                                                                                                                                                                                            |
|       |       | 0        | This bit is cleared when the repeat counter, RC, reaches zero.                                                                                                                                                                                                                     |
|       |       |          | When an interrupt occurs the RA bit is copied to the repeat active shadow, RAS, bit and RA is cleared. When an interrupt return, IRET, instruction is executed, the RAS bit is copied to the RA bit and RAS is cleared.                                                            |
|       |       | 1        | This bit is set when the RPTB instruction is executed to indicate that a RPTB is currently active.                                                                                                                                                                                 |
| 29-23 | RSIZE |          | Repeat Block Size                                                                                                                                                                                                                                                                  |
|       |       |          | This 7-bit value specifies the number of 16-bit words within the repeat block. This field is initialized when the RPTB instruction is executed. The value is calculated by the assembler and inserted into the RPTB instruction's RSIZE opcode field.                              |
|       |       | 0-7      | Illegal block size.                                                                                                                                                                                                                                                                |
|       |       | 8/9-0x7F | A RPTB block that starts at an even address must include at least 9 16-bit words and a block that starts at an odd address must include at least 8 16-bit words. The maximum block size is 127 16-bit words. The codegen assembler will check for proper block size and alignment. |



| Table 2-3 | . Repeat Block | (RB) Register Fi | ield Descriptions | (continued) |
|-----------|----------------|------------------|-------------------|-------------|
|           |                | (                |                   | (           |

| Bits  | Field | Value        | Description                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-16 | RE    |              | Repeat Block End Address                                                                                                                                                                                                                                                                                                                                                          |
|       |       |              | This 7-bit value specifies the end address location of the repeat block. The RE value is calculated by hardware based on the RSIZE field and the PC value when the RPTB instruction is executed.                                                                                                                                                                                  |
|       |       |              | RE = lower 7 bits of (PC + 1 + RSIZE)                                                                                                                                                                                                                                                                                                                                             |
| 15-0  | RC    |              | Repeat Count                                                                                                                                                                                                                                                                                                                                                                      |
|       |       | 0            | The block will not be repeated; it will be executed only once. In this case the repeat active, RA, bit will not be set.                                                                                                                                                                                                                                                           |
|       |       | 1-<br>0xFFFF | This 16-bit value determines how many times the block will repeat. The counter is initialized when the RPTB instruction is executed and is decremented when the PC reaches the end of the block. When the counter reaches zero, the repeat active bit is cleared and the block will be executed one more time. Therefore the total number of times the block is executed is RC+1. |



## Pipeline

The pipeline flow for C28x instructions is identical to that of the C28x CPU described in *TMS320C28x DSP CPU and Instruction Set Reference Guide* (SPRU430). Some floating-point instructions, however, use additional execution phases and thus require a delay to allow the operation to complete. This pipeline alignment is achieved by inserting NOPs or non-conflicting instructions when required. Software control of delay slots allows you to improve performance of an application by taking advantage of the delay slots and filling them with non-conflicting instructions. This section describes the key characteristics of the pipeline with regards to floating-point instructions. The rules for avoiding pipeline conflicts are small in number and simple to follow and the C28x+FPU assembler will help you by issuing errors for conflicts.

| Горіс |                                                          |    |  |  |
|-------|----------------------------------------------------------|----|--|--|
|       |                                                          |    |  |  |
| 3.1   | Pipeline Overview                                        | 22 |  |  |
| 3.2   | General Guidelines for Floating-Point Pipeline Alignment | 22 |  |  |
| 3.3   | Moves from FPU Registers to C28x Registers               | 23 |  |  |
| 3.4   | Moves from C28x Registers to FPU Registers               | 23 |  |  |
| 3.5   | Parallel Instructions                                    | 24 |  |  |
| 3.6   | Invalid Delay Instructions                               | 24 |  |  |
| 3.7   | Optimizing the Pipeline                                  | 27 |  |  |



#### 3.1 Pipeline Overview

The C28x FPU pipeline is identical to the C28x pipeline for all standard C28x instructions. In the decode2 stage (D2), it is determined if an instruction is a C28x instruction or a floating-point unit instruction. The pipeline flow is shown in Figure 3-1. Notice that stalls due to normal C28x pipeline stalls (D2) and memory waitstates (R2 and W) will also stall any C28x FPU instruction. Most C28x FPU instructions are single cycle and will complete in the FPU E1 or W stage which aligns to the C28x pipeline. Some instructions will take an additional execute cycle (E2). For these instructions you must wait a cycle for the result from the instruction to be available. The rest of this section will describe when delay cycles are required. Keep in mind that the assembly tools for the C28x+FPU will issue an error if a delay slot has not been handled correctly.

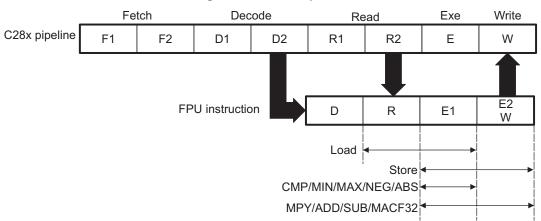



Figure 3-1. FPU Pipeline

#### 3.2 General Guidelines for Floating-Point Pipeline Alignment

While the C28x+FPU assembler will issue errors for pipeline conflicts, you may still find it useful to understand when software delays are required. This section describes three guidelines you can follow when writing C28x+FPU assembly code.

Floating-point instructions that require delay slots have a 'p' after their cycle count. For example '2p' stands for 2 pipelined cycles. This means that an instruction can be started every cycle, but the result of the instruction will only be valid one instruction later.

There are three general guidelines to determine if an instruction needs a delay slot:

- 1. Floating-point math operations (multiply, addition, subtraction, 1/x and MAC) require 1 delay slot.
- 2. Conversion instructions between integer and floating-point formats require 1 delay slot.
- 3. Everything else does not require a delay slot. This includes minimum, maximum, compare, load, store, negative and absolute value instructions.

There are two exceptions to these rules. First, moves between the CPU and FPU registers require special pipeline alignment that is described later in this section. These operations are typically infrequent. Second, the MACF32 R7H, R3H, mem32, \*XAR7 instruction has special requirements that make it easier to use. Refer to the MACF32 instruction description for details.

An example of the 32-bit ADDF32 instruction is shown in Example 3-1. ADDF32 is a 2p instruction and therefore requires one delay slot. The destination register for the operation, R0H, will be updated one cycle after the instruction for a total of 2 cycles. Therefore, a NOP or instruction that does not use R0H must follow this instruction.

Any memory stall or pipeline stall will also stall the floating-point unit. This keeps the floating-point unit aligned with the C28x pipeline and there is no need to change the code based on the waitstates of a memory block.



#### Example 3-1. 2p Instruction Pipeline Alignment

| ADDF32 R0H, #1.5, R1H | ; 2 pipeline cycles (2p)                       |
|-----------------------|------------------------------------------------|
| NOP                   | ; 1 cycle delay or non-conflicting instruction |
|                       | ; < ADDF32 completes, ROH updated              |
| NOP                   | ; Any instruction                              |

#### 3.3 Moves from FPU Registers to C28x Registers

When transferring from the floating-point unit registers to the C28x CPU registers, additional pipeline alignment is required as shown in Example 3-2 and Example 3-3.

Example 3-2. Floating-Point to C28x Register Software Pipeline Alignment

| ;<br>; |              |      | 51    | point minimum: single-cycle operation<br>quired before copying ROH to ACC |
|--------|--------------|------|-------|---------------------------------------------------------------------------|
|        | MINF32       | ROH, | R1H   | ; Single-cycle instruction<br>; < ROH is valid                            |
|        | NOP<br>MOV32 | @ACC | , R0H | ; Alignment cycle<br>; Copy ROH to ACC                                    |

For 1-cycle FPU instructions, one delay slot is required between a write to the floating-point register and the transfer instruction as shown in Example 3-2. For 2p FPU instructions, two delay slots are required between a write to the floating-point register and the transfer instruction as shown in Example 3-3.

#### Example 3-3. Floating-Point to C28x Register Software Pipeline Alignment

| ;; | ADDF32: 32-bit floating-point addition: 2p operation<br>An alignment cycle is required before copying ROH to ACC |       |              |     |                                              |
|----|------------------------------------------------------------------------------------------------------------------|-------|--------------|-----|----------------------------------------------|
|    | ADDF32                                                                                                           | ROH,  | л<br>R1H, #2 | - ; | ROH = R1H + 2, 2 pipeline cycle instruction  |
|    | NOP                                                                                                              |       |              | ;   | 1 delay cycle or non-conflicting instruction |
|    |                                                                                                                  |       |              | ;   | < ROH is valid                               |
|    | NOP                                                                                                              |       |              | ;   | Alignment cycle                              |
|    | MOV32                                                                                                            | @ACC, | ROH          | ;   | Copy ROH to ACC                              |
|    |                                                                                                                  |       |              |     |                                              |

#### 3.4 Moves from C28x Registers to FPU Registers

Transfers from the standard C28x CPU registers to the floating-point registers require four alignment cycles. In this case the four alignment cycles can be filled with NOPs or any non-conflicting instruction except for FRACF32, UI16TOF32, I16TOF32, F32TOUI32, and F32TOI32. These instructions cannot replace any of the four alignment NOPs.

#### Example 3-4. C28x Register to Floating-Point Register Software Pipeline Alignment

```
; Four alignment cycles are required after copying a standard 28x CPU
; register to a floating-point register.
;
MOV32 R0H,@ACC ; Copy ACC to R0H
NOP
NOP
NOP
NOP
NOP
NOP
; Wait 4 cycles
ADDF32 R2H,R1H,R0H ; R0H is valid
```



#### 3.5 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. This can be a math operation in parallel with a move operation, or two math operations in parallel. Math operations with a parallel move are referred to as 2p/1 instructions. The math portion of the operation takes 2 pipelined cycles while the move portion of the operation is single cycle. This means that NOPs or other non conflicting instructions must be inserted to align the math portion of the operation. An example of an add with parallel move instruction is shown in Example 3-5.

#### Example 3-5. 2p/1 Parallel Instruction Software Pipeline Alignment

```
ADDF32 || MOV32 instruction: 32-bit floating-point add with parallel move
;
  ADDF32 is a 2p operation
;
;
  MOV32 is a 1 cycle operation
;
  ADDF32 R0H, R1H, #2
                             ; ROH = R1H + 2, 2 pipeline cycle operation
|| MOV32 R1H, @Val
                            ; R1H gets the contents of Val, single cycle operation
                            ; <-- MOV32 completes here (R1H is valid)
  NOP
                             ; 1 cycle delay or non-conflicting instruction
                             ; <-- ADDF32 completes here (ROH is valid)
  NOP
                             ; Any instruction
```

Parallel math instructions are referred to as 2p/2p instructions. Both math operations take 2 cycles to complete. This means that NOPs or other non conflicting instructions must be inserted to align the both math operations. An example of a multiply with parallel add instruction is shown in Example 3-5

#### Example 3-6. 2p/2p Parallel Instruction Software Pipeline Alignment

```
; MPYF32 || ADDF32 instruction: 32-bit floating-point multiply with parallel add
; MPYF32 is a 2p operation
; ADDF32 is a 2p cycle operation
;
MPYF32 ROH, R1H, R3H ; R0H = R1H * R3H, 2 pipeline cycle operation
|| ADDF32 R1H, R2H, R4H ; R1H = R2H + R4H, 2 pipeline cycle operation
NOP ; 1 cycle delay or non-conflicting instruction
; <--- MPYF32 and ADDF32 complete here (R0H and R1H are valid)
NOP ; Any instruction
```

#### 3.6 Invalid Delay Instructions

Most instructions can be used in delay slots as long as source and destination register conflicts are avoided. The C28x+FPU assembler will issue an error anytime you use an conflicting instruction within a delay slot. The following guidelines can be used to avoid these conflicts.

**Note:** Destination register conflicts in delay slots:

Any operation used for pipeline alignment delay must not use the same destination register as the instruction requiring the delay. See Example 3-7.

In Example 3-7 the MPYF32 instruction uses R2H as its destination register. The next instruction should not use R2H as its destination. Since the MOV32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict can be resolved by using a register other than R2H for the MOV32 instruction as shown in Example 3-8.



#### Example 3-7. Destination Register Conflict

```
; Invalid delay instruction. Both instructions use the same destination register
MPYF32 R2H, R1H, R0H ; 2p instruction
MOV32 R2H, mem32 ; Invalid delay instruction
```

#### Example 3-8. Destination Register Conflict Resolved

```
; Valid delay instruction
MPYF32 R2H, R1H, R0H ; 2p instruction
MOV32 R1H, mem32 ; Valid delay
; <-- MPYF32 completes, R2H valid</pre>
```

**Note:** Instructions in delay slots cannot use the instruction's destination register as a source register.

Any operation used for pipeline alignment delay must not use the destination register of the instruction requiring the delay as a source register as shown in Example 3-9. For parallel instructions, the current value of a register can be used in the parallel operation before it is overwritten as shown in Example 3-11.

In Example 3-9 the MPYF32 instruction again uses R2H as its destination register. The next instruction should not use R2H as its source since the MPYF32 will take an additional cycle to complete. Since the ADDF32 instruction uses the R2H register a pipeline conflict will be issued by the assembler. This conflict can be resolved by using a register other than R2H or by inserting a non-conflicting instruction between the MPYF32 and ADDF32 instructions. Since the SUBF32 does not use R2H this instruction can be moved before the ADDF32 as shown in Example 3-10.

#### Example 3-9. Destination/Source Register Conflict

```
; Invalid delay instruction. ADDF32 should not use R2H as a source operand
MPYF32 R2H, R1H, R0H ; 2p instruction
ADDF32 R3H, R3H, R2H ; Invalid delay instruction
SUBF32 R4H, R1H, R0H
```

#### Example 3-10. Destination/Source Register Conflict Resolved

```
; Valid delay instruction.
MPYF32 R2H, R1H, R0H
SUBF32 R4H, R1H, R0H
ADDF32 R3H, R3H, R2H
NOP
; <-- SUBF32 completes, R4H valid</pre>
```

It should be noted that a source register for the 2nd operation within a parallel instruction can be the same as the destination register of the first operation. This is because the two operations are started at the same time. The 2nd operation is not in the delay slot of the first operation. Consider Example 3-11 where the MPYF32 uses R2H as its destination register. The MOV32 is the 2nd operation in the instruction and can freely use R2H as a source register. The contents of R2H before the multiply will be used by MOV32.



#### Example 3-11. Parallel Instruction Destination/Source Exception

| ; Valid parallel operation. |                                |
|-----------------------------|--------------------------------|
| MPYF32 R2H, R1H, R0H        | ; 2p/1 instruction             |
| MOV32 mem32, R2H            | ; < Uses R2H before the MPYF32 |
|                             | ; < mem32 updated              |
| NOP                         | ; < Delay for MPYF32           |
|                             | ; < R2H updated                |
|                             | -                              |

Likewise, the source register for the 2nd operation within a parallel instruction can be the same as one of the source registers of the first operation. The MPYF32 operation in Example 3-12 uses the R1H register as one of its sources. This register is also updated by the MOV32 register. The multiplication operation will use the value in R1H before the MOV32 updates it.

#### Example 3-12. Parallel Instruction Destination/Source Exception

```
; Valid parallel instruction
MPYF32 R2H, R1H, R0H ; 2p/1 instruction
|| MOV32 R1H, mem32 ; Valid
NOP ; <-- MOV32 completes, R1H valid
; <-- MPYF32, R2H valid</pre>
```

**Note:** Operations within parallel instructions cannot use the same destination register.

When two parallel operations have the same destination register, the result is invalid.

For example, see Example 3-13.

If both operations within a parallel instruction try to update the same destination register as shown in Example 3-13 the assembler will issue an error.

#### Example 3-13. Invalid Destination Within a Parallel Instruction

```
; Invalid parallel instruction. Both operations use the same destination register
MPYF32 R2H, R1H, R0H ; 2p/1 instruction
|| MOV32 R2H, mem32 ; Invalid
```

Some instructions access or modify the STF flags. Because the instruction requiring a delay slot will also be accessing the STF flags, these instructions should not be used in delay slots. These instructions are SAVE, SETFLG, RESTORE and MOVST0.

**Note:** Do not use SAVE, SETFLG, RESTORE, or the MOVST0 instruction in a delay slot.



#### 3.7 Optimizing the Pipeline

The following example shows how delay slots can be used to improve the performance of an algorithm. The example performs two Y = MX+B operations. In Example 3-14, no optimization has been done. The Y = MX+B calculations are sequential and each takes 7 cycles to complete. Notice there are NOPs in the delay slots that could be filled with non-conflicting instructions. The only requirement is these instructions must not cause a register conflict or access the STF register flags.

Example 3-14. Floating-Point Code Without Pipeline Optimization

```
; Using NOPs for alignment cycles, calculate the following:
; Y1 = M1 * X1 + B1
 Y2 = M2 * X2 + B2
;
;
; Calculate Y1
  NOV32RUH,@M1; Load ROH with M1 - single cycleMOV32R1H,@X1; Load R1H with X1 - single cycleMPYF32R1H,R1H,ROH; R1H = M1 * X1 - 20 cmMOV32R0H,@B1;
;
|| MOV32 R0H,@B1
   NOP
                               ; Wait for MPYF32 to complete
                                ; <-- MPYF32 completes, R1H is valid
   ADDF32 R1H,R1H,R0H
                                ; R1H = R1H + R0H - 2p operation
   NOP
                               ; Wait for ADDF32 to complete
                                ; <-- ADDF32 completes, R1H is valid
   MOV32 @Y1,R1H
                                 ; Save R1H in Y1
                                                     - single cycle
; Calculate Y2
   MOV32
           ROH,@M2
                                ; Load ROH with M2 - single cycle
   MOV32
           R1H,@X2
                               ; Load R1H with X2 - single cycle
                                ; R1H = M2 * X2 - 2p operation
; Load R0H with B2 - single cycle
   MPYF32 R1H,R1H,R0H
|| MOV32
           R0H,@B2
   NOP
                                ; Wait for MPYF32 to complete
                                ; <-- MPYF32 completes, R1H is valid
   ADDF32 R1H,R1H,R0H
                                ; R1H = R1H + R0H
                                ; Wait for ADDF32 to complete
   NOP
                                ; <-- ADDF32 completes, R1H is valid
   MOV32 @Y2,R1H
                                 ; Save R1H in Y2
; 14 cycles
; 48 bytes
```

The code shown in Example 3-15 was generated by the C28x+FPU compiler with optimization enabled. Notice that the NOPs in the first example have now been filled with other instructions. The code for the two Y = MX+B calculations are now interleaved and both calculations complete in only 9 cycles.



#### Example 3-15. Floating-Point Code With Pipeline Optimization

```
; Using non-conflicting instructions for alignment cycles,
; calculate the following:
; Y1 = M1*X1 + B1
; Y2 = M2 * X2 + B2
   MOV32
             R2H,@X1
                              ; Load R2H with X1 - single cycle
                             ; Load R1H with M1 - single cycle
   MOV32
             R1H,@M1
                             ; R3H = M1 * X1 - 2p operation
; Load R0H with M2 - single cycle
   MPYF32
             R3H,R2H,R1H
             ROH,@M2
MOV32
                               ; Load R1H with X2 - single cycle
   MOV32
             R1H,@X2
                               ; <-- MPYF32 completes, R3H is valid
                               ; ROH = M2 * X2
   MPYF32
             ROH,R1H,ROH
                                                  - 2p operation
|| MOV32
             R4H,@B1
                              ; Load R4H with B1 - single cycle
                               ; <-- MOV32 completes, R4H is valid
                               ; R1H = B1 + M1*X1 - 2p operation
; Load R2H with B2 - single cycle
   ADDF32
             R1H,R4H,R3H
|| MOV32
             R2H,@B2
                               ; <-- MPYF32 completes, ROH is valid
                               ; R0H = B2 + M2\timesZ - 2p operation
   ADDF32
             ROH,R2H,ROH
                               ; <-- ADDF32 completes, R1H is valid
   MOV32
             @Y1,R1H
                               ; Store Y1
                               ; <-- ADDF32 completes, ROH is valid
   MOV32
             @Y2,R0H
                               ; Store Y2
;
 9 cycles
; 36 bytes
```

28



### **Instruction Set**

This chapter describes the assembly language instructions of the TMS320C28x plus floating-point processor. Also described are parallel operations, conditional operations, resource constraints, and addressing modes. The instructions listed here are an extension to the standard C28x instruction set. For information on standard C28x instructions, see the *TMS320C28x DSP CPU and Instruction Set Reference Guide* (literature number SPRU430).

| Торіс      |                          | Page |
|------------|--------------------------|------|
| 4.1<br>4.2 | Instruction Descriptions |      |



#### 4.1 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following information:

- Operands
- Opcode
- Description
- Exceptions
- Pipeline
- Examples
- See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The example describes the kind of information you will find in each part of the individual instruction description and where to obtain more information. On the C28x+FPU instructions, follow the same format as the C28x. The source operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the TMS320C28x plus floating-point processor are given in Table 4-1. For information on the operands of standard C28x instructions, see the TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430).

| Symbol         | Description                                                                                                                                                           |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #16FHi         | 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower 16-bits of the mantissa are assumed to be zero. |
| #16FHiHex      | 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value. Lower 16-bits of the mantissa are assumed to be zero.            |
| #16FLoHex      | A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value                                                                 |
| #32Fhex        | 32-bit immediate value that represents an IEEE 32-bit floating-point value                                                                                            |
| #32F           | Immediate float value represented in floating-point representation                                                                                                    |
| #0.0           | Immediate zero                                                                                                                                                        |
| #RC            | 16-bit immediate value for the repeat count                                                                                                                           |
| *(0:16bitAddr) | 16-bit immediate address, zero extended                                                                                                                               |
| CNDF           | Condition to test the flags in the STF register                                                                                                                       |
| FLAG           | Selected flags from STF register (OR) 11 bit mask indicating which floating-point status flags to change                                                              |
| label          | Label representing the end of the repeat block                                                                                                                        |
| mem16          | Pointer (using any of the direct or indirect addressing modes) to a 16-bit memory location                                                                            |
| mem32          | Pointer (using any of the direct or indirect addressing modes) to a 32-bit memory location                                                                            |
| RaH            | R0H to R7H registers                                                                                                                                                  |
| RbH            | R0H to R7H registers                                                                                                                                                  |
| RcH            | R0H to R7H registers                                                                                                                                                  |
| RdH            | R0H to R7H registers                                                                                                                                                  |
| ReH            | R0H to R7H registers                                                                                                                                                  |
| RfH            | R0H to R7H registers                                                                                                                                                  |
| RB             | Repeat Block Register                                                                                                                                                 |
| STF            | FPU Status Register                                                                                                                                                   |
| VALUE          | Flag value of 0 or 1 for selected flag (OR) 11 bit mask indicating the flag value; 0 or 1                                                                             |

#### **Table 4-1. Operand Nomenclature**



#### INSTRUCTION dest1, source1, source2 Short Description

#### Operands

| •            |                            |                                                                                                                                                                                                                                              |
|--------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | dest1                      | description for the 1st operand for the instruction                                                                                                                                                                                          |
|              | source1                    | description for the 2nd operand for the instruction                                                                                                                                                                                          |
|              | source2                    | description for the 3rd operand for the instruction                                                                                                                                                                                          |
|              |                            | tion has a table that gives a list of the operands and a short description.<br>always have their destination operand(s) first followed by the source                                                                                         |
| Opcode       | This section               | shows the opcode for the instruction.                                                                                                                                                                                                        |
| Description  |                            | cription of the instruction execution is described. Any constraints on the processor or the assembler are discussed.                                                                                                                         |
| Restrictions | Any constrai<br>discussed. | ints on the operands or use of the instruction imposed by the processor are                                                                                                                                                                  |
| Pipeline     | This section<br>Chapter 3. | describes the instruction in terms of pipeline cycles as described in                                                                                                                                                                        |
| Example      | before and a               | f instruction execution. If applicable, register and memory values are given<br>after instruction execution. All examples assume the device is running with<br>DE set to 1. Normally the boot ROM or the c-code initialization will set this |
| See Also     | Lists related              | instructions.                                                                                                                                                                                                                                |
|              |                            |                                                                                                                                                                                                                                              |



#### 4.2 Instructions

The instructions are listed alphabetically, preceded by a summary.

#### Table 4-2. Summary of Instructions

#### Title

| ÷ |                                                                                                                | ιu   | ge |
|---|----------------------------------------------------------------------------------------------------------------|------|----|
|   | ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value                                                           | . 34 | 4  |
|   | ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition                                                         |      |    |
|   | ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition                                                         |      |    |
|   | ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition                                                            |      |    |
|   | ADDF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move                        |      |    |
|   | ADDF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move                        |      |    |
|   | CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than                             |      |    |
|   | CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than                          | . 4  | 5  |
|   | CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than                            | . 4  | 6  |
|   | EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation                                                | . 4  | 7  |
|   | EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation                                  | . 4  | 9  |
|   | F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer                                        | . 5  | 1  |
|   | F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round                             | . 5  | 2  |
|   | F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer                                        | . 5  | 3  |
|   | F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer                              | . 5  | 4  |
|   | F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round                   | . 5  | 5  |
|   | F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer                              | . 5  | 6  |
|   | FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value                                           | . 5  | 7  |
|   | I16TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value                                        |      |    |
|   | I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value                                      |      |    |
|   | I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value                                      |      |    |
|   | I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value                                        |      |    |
|   | MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add                                |      | 2  |
|   | MACF32 R3H, R2H, RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Paral Move  |      | 4  |
|   | MACF32 R7H, R3H, mem32, *XAR7++ 32-bit Floating-Point Multiply and Accumulate                                  | . 6  | 6  |
|   | MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add                                | . 6  | 8  |
|   | MACF32 R7H, R6H, RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Paral Move. |      | 0  |
|   | MAXF32 RaH, RbH 32-bit Floating-Point Maximum                                                                  |      |    |
|   | MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum                                                               |      |    |
|   | MAXF32 RaH, RbH MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move                                |      |    |
|   | MINF32 RaH, RbH 32-bit Floating-Point Minimum                                                                  |      |    |
|   | MINF32 RaH, #16FHi 32-bit Floating-Point Minimum                                                               |      |    |
|   | MINF32 RaH, RbH MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move                                |      |    |
|   | MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory                                        |      |    |
|   | MOV32 *(0:16bitAddr), loc32 Move the Contents of loc32 to Memory                                               |      |    |
|   | MOV32 ACC, RaH Move 32-bit Floating-Point Register Contents to ACC                                             |      |    |
|   | MOV32 loc32, *(0:16bitAddr) Move 32-bit Value from Memory to loc32                                             | . 8  | 1  |
|   | MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory                                        |      |    |
|   | MOV32 mem32, STF Move 32-bit STF Register to Memory                                                            | . 8  | 3  |
|   | MOV32 P, RaH Move 32-bit Floating-Point Register Contents to P                                                 |      |    |
|   | MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register                                    | . 8  | 5  |
|   | MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move                                                              |      |    |
|   | MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register                                        | - 8  | 8  |
|   |                                                                                                                |      |    |



#### Table 4-2. Summary of Instructions (continued)

| MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move                                                      |
|------------------------------------------------------------------------------------------------------|
| MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register                        |
| MOV32 RaH, XT Move the Contents of XT to a 32-bit Floating-Point Register                            |
| MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register                                   |
| MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn                                 |
| MOV32 XT, RaH Move 32-bit Floating-Point Register Contents to XT                                     |
| MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy                                       |
| MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register                                |
| MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate          |
| MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register                      |
| MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register                      |
| MOVST0 FLAG Load Selected STF Flags into ST0 100                                                     |
| MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register                  |
| MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply 102                                              |
| MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply 103                                           |
| MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply 104                                           |
| MPYF32 RaH, RbH, RcH ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add 105       |
| MPYF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move 107          |
| MPYF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move 109          |
| MPYF32 RaH, RbH, RcH ISUBF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Subtract 110 |
| NEGF32 RaH, RbH{, CNDF} Conditional Negation 111                                                     |
| POP RB Pop the RB Register from the Stack 112                                                        |
| PUSH RB Push the RB Register onto the Stack 113                                                      |
| RESTORE Restore the Floating-Point Registers 114                                                     |
| RPTB label, loc16 Repeat A Block of Code 116                                                         |
| RPTB label, #RC Repeat a Block of Code 118                                                           |
| SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG 120                        |
| SETFLG FLAG, VALUE Set or clear selected floating-point status flags                                 |
| SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction 123                                           |
| SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction                                            |
| SUBF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move 125       |
| SUBF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move 127       |
| SWAPF RaH, RbH{, CNDF} Conditional Swap 128                                                          |
| TESTTF CNDF Test STF Register Flag Condition 129                                                     |
| UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value                  |
| UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value                    |
| UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value                  |
| UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value                    |
| ZERO RaH Zero the Floating-Point Register RaH 134                                                    |
| ZEROA Zero All Floating-Point Registers                                                              |
|                                                                                                      |



Instructions

#### ABSF32 RaH, RbH 32-bit Floating-Point Absolute Value

#### Operands

| Operands    |                                                                                                                       |                               |         |                            |          |        |     |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|----------------------------|----------|--------|-----|--|--|--|--|
|             | RaHfloating-point destination register (R0H to R7H)RbHfloating-point source register (R0H to R7H)                     |                               |         |                            |          |        |     |  |  |  |  |
|             |                                                                                                                       |                               |         |                            |          |        |     |  |  |  |  |
|             |                                                                                                                       |                               |         |                            |          |        |     |  |  |  |  |
| Opcode      | LSW: 1110 01<br>MSW: 0000 00                                                                                          |                               |         |                            |          |        |     |  |  |  |  |
| Description | The absolute value of RbH is loaded into RaH. Only the sign bit of the operand is modified by the ABSF32 instruction. |                               |         |                            |          |        |     |  |  |  |  |
|             | if (RbH < 0<br>else                                                                                                   | ) {RaH = -RbH]<br>{RaH = RbH] |         |                            |          |        |     |  |  |  |  |
| Flags       | This instruction modifies the following flags in the STF register:                                                    |                               |         |                            |          |        |     |  |  |  |  |
|             | Flag TF                                                                                                               | ZI                            | NI      | ZF                         | NF       | LUF    | LVF |  |  |  |  |
|             | Modified No                                                                                                           | No                            | No      | Yes                        | Yes      | No     | No  |  |  |  |  |
|             | NF = 0;<br>ZF = 0;                                                                                                    | ister flags are               |         | s follows:                 |          |        |     |  |  |  |  |
| Pipeline    | This is a sing                                                                                                        | gle-cycle instru              | uction. |                            |          |        |     |  |  |  |  |
| Example     | MOVIZF32<br>ABSF32                                                                                                    | R1H, #-2.0<br>R1H, R1H        |         | 2.0 (0xC000<br>2.0 (0x4000 | ,        | NF = 0 |     |  |  |  |  |
|             | MOVIZF32<br>ABSF32                                                                                                    | ROH, #5.0<br>ROH, ROH         |         | 5.0 (0x40A0<br>5.0 (0x40A0 | ,        | NF = 0 |     |  |  |  |  |
|             | MOVIZF32<br>ABSF32                                                                                                    | R0H, #0.0<br>R1H, R0H         |         | 0.0<br>0.0 ZF = 1          | , NF = 0 |        |     |  |  |  |  |
| See also    | NEGF32 Ra                                                                                                             | H, RbH{, CND                  | F}      |                            |          |        |     |  |  |  |  |



#### ADDF32 RaH, #16FHi, RbH 32-bit Floating-Point Addition

#### Operands

| Operands    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----|-----|--|--|--|--|
|             | RaH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | floating-point destination register (R0H to R7H) |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | #16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-I floating-point value. The low 16-bits of the mantissa are assumed to be all                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | RbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
| Opcode      | LSW: 1110 1000 10II IIII<br>MSW: IIII IIII IIbb baaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
| Description | Add RbH to the floating-point value represented by the immediate operand. Store the result of the addition in RaH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | <ul> <li>#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is most useful for representing constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.</li> <li>RaH = RbH + #16FHi:0</li> <li>This instruction can also be written as ADDF32 RaH, RbH, #16FHi.</li> </ul> |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
| Flags       | This instruction r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nodifies the f                                   | following fla                                                                                                                     | igs in the S | TF register | r:  |     |  |  |  |  |
|             | Flag TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZI                                               | NI                                                                                                                                | ZF           | NF          | LUF | LVF |  |  |  |  |
|             | Modified No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                                               | No                                                                                                                                | No           | No          | Yes | Yes |  |  |  |  |
| Pipeline    | <ul> <li>The STF register flags are modified as follows:</li> <li>LUF = 1 if ADDF32 generates an underflow condition.</li> <li>LVF = 1 if ADDF32 generates an overflow condition.</li> <li>This is a 2 pipeline-cycle instruction (2p). That is:<br/>ADDF32 RaH, #16FHi, RbH ; 2 pipeline cycles (2p)</li> </ul>                                                                                                                                                                                                                                                                                                                         |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | NOP ; 1 cycle delay or non-conflicting instruction<br>; < ADDF32 completes, RaH updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | Any instruction in the delay slot must not use RaH as a destination register or use RaH as a source operand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
| Example     | kample; Add to RlH the value 2.0 in 32-bit floating-point f<br>ADDF32 R0H, #2.0, RlH; R0H = 2.0 + RlH<br>; Delay for ADDF32 to com<br>; < ADDF32 completes, R<br>; NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                   |              |             |     |     |  |  |  |  |
|             | ; Add to R3H th<br>ADDF32 R2H,<br>NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | in 32-bit floating-point format<br>; R2H = -2.5 + R3H<br>; Delay for ADDF32 to complete<br>; < ADDF32 completes, R2H updated<br>; |              |             |     |     |  |  |  |  |
|             | ; Add to R5H th<br>ADDF32 R5H,<br>NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | C00000 (1.5)<br>; R5H = 1.5 + R5H<br>; Delay for ADDF32 to complete<br>; < ADDF32 completes, R5H updated<br>;                     |              |             |     |     |  |  |  |  |



See also

ADDF32 RaH, RbH, #16FHi ADDF32 RaH, RbH, RcH ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32 ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH MACF32 R3H, R2H, RdH, ReH, RfH MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH



# ADDF32 RaH, RbH, #16FHi 32-bit Floating-Point Addition

| Operands    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                             |                                                           |                    |               |               |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|--------------------|---------------|---------------|--|--|
|             | RaH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | floating-poir                                                                                                                                                                    | nt destination              | register (R0H t                                           | o R7H)             |               |               |  |  |
|             | RbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | floating-poir                                                                                                                                                                    | nt source regi              | ster (R0H to R                                            | 7H)                |               |               |  |  |
|             | #16FHi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                             | that represent low 16-bits of t                           |                    |               |               |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                             |                                                           |                    |               |               |  |  |
| Opcode      | LSW: 1110 1000 10II IIII<br>MSW: IIII IIII IIbb baaa                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                             |                                                           |                    |               |               |  |  |
| Description | Add RbH to the<br>result of the add                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                             | presented by                                              | / the immed        | liate operan  | d. Store the  |  |  |
|             | #16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is most useful for representing constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x4000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, the value -1.5 can be represented as #-1.5 or #0xBFC0. |                                                                                                                                                                                  |                             |                                                           |                    |               |               |  |  |
|             | This instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | can also be                                                                                                                                                                      | written as                  | ADDF32 Ra                                                 | aH, #16FHi,        | RbH.          |               |  |  |
| Flags       | This instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | modifies the                                                                                                                                                                     | following                   | flags in the                                              | STF registe        | r:            |               |  |  |
|             | Flag TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZI                                                                                                                                                                               | NI                          | ZF                                                        | NF                 | LUF           | LVF           |  |  |
|             | Modified No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                                                                                                                                                                               | No                          | No                                                        | No                 | Yes           | Yes           |  |  |
| Pipeline    | <ul> <li>The STF register flags are modified as follows:</li> <li>LUF = 1 if ADDF32 generates an underflow condition.</li> <li>LVF = 1 if ADDF32 generates an overflow condition.</li> <li>This is a 2 pipeline-cycle instruction (2p). That is: <ul> <li>ADDF32 RaH, #16FHi, RbH</li> <li>i 2 pipeline cycles (2p)</li> <li>i 1 cycle delay or non-conflicting instruction</li> <li>i - ADDF32 completes, RaH updated</li> </ul> </li> </ul>                                                                |                                                                                                                                                                                  |                             |                                                           |                    |               |               |  |  |
|             | NOP<br>Any instruction i<br>as a source ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                  | slot must r                 | not use RaH                                               | as a destin        | ation registe | er or use RaH |  |  |
| Example     | ; Add to RlH th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; Add to R1H the value 2.0 in 32-bit floating-point format<br>ADDF32 R0H, R1H, #2.0 ; R0H = R1H + 2.0<br>NOP ; Delay for ADDF32 to complete<br>; < ADDF32 completes, R0H updated |                             |                                                           |                    |               |               |  |  |
|             | ; Add to R3H th<br>ADDF32 R2H,<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  | ; R2H =<br>; Delay<br>; < 7 | it floating<br>= R3H + (-2<br>y for ADDF32<br>ADDF32 comp | .5)<br>2 to comple | te            |               |  |  |
|             | NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | ;                           |                                                           |                    |               |               |  |  |
|             | ; Add to R5H th<br>ADDF32 R5H,<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  | 20 ; R5H ;<br>; Delay       |                                                           |                    |               |               |  |  |
|             | NOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | ;                           |                                                           |                    |               |               |  |  |



See also

ADDF32 RaH, #16FHi, RbH ADDF32 RaH, RbH, RcH ADDF32 RdH, ReH, RfH || MOV32 RaH, mem32 ADDF32 RdH, ReH, RfH || MOV32 mem32, RaH MACF32 R3H, R2H, RdH, ReH, RfH MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH



# ADDF32 RaH, RbH, RcH 32-bit Floating-Point Addition

| Operands    |                                                                                                     |                                                                                                   |                                         |                                       |                                                       |               |               |                  |
|-------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------------------|---------------|---------------|------------------|
|             | RaH                                                                                                 | floa                                                                                              | ting-poi                                | nt destination                        | register (R0H                                         | to R7H)       |               |                  |
|             | RbH                                                                                                 | floa                                                                                              | ting-poi                                | nt source regi                        | ster (R0H to R                                        | .7H)          |               |                  |
|             | RcH                                                                                                 |                                                                                                   | • ·                                     | •                                     | ster (R0H to R                                        | ,             |               |                  |
|             |                                                                                                     |                                                                                                   | 01                                      | 0                                     | ,                                                     | ,             |               |                  |
| Opcode      | LSW: 111<br>MSW: 000                                                                                | .0 0111 0001<br>00 000c ccbb                                                                      | 0000<br>baaa                            |                                       |                                                       |               |               |                  |
| Description | Add the contents of RcH to the contents of RbH and load the result into RaH.<br>RaH = $RbH$ + $RcH$ |                                                                                                   |                                         |                                       |                                                       |               |               |                  |
| Flags       | This inst                                                                                           | ruction modif                                                                                     | ies the                                 | e following                           | flags in the                                          | STF registe   | er:           |                  |
|             | Flag                                                                                                | TF ZI                                                                                             |                                         | NI                                    | ZF                                                    | NF            | LUF           | LVF              |
|             | Modified                                                                                            | No No                                                                                             | )                                       | No                                    | No                                                    | No            | Yes           | Yes              |
|             | <ul><li>LUF</li><li>LVF</li></ul>                                                                   | Fregister flag<br>= 1 if ADDF3<br>= 1 if ADDF3                                                    | 2 gene<br>2 gene                        | erates an u<br>erates an o            | nderflow co<br>verflow con                            |               |               |                  |
| Pipeline    |                                                                                                     | 2 pipeline-cy                                                                                     |                                         | `                                     | . ,                                                   |               |               |                  |
|             | ADDF3<br>NOP                                                                                        | 32 RaH, RbH,                                                                                      | RCH                                     |                                       | peline cycl<br>cle delay o                            |               | licting inst  | cruction         |
|             | NOD                                                                                                 |                                                                                                   |                                         | -                                     | ADDF32 comp                                           |               |               |                  |
|             | NOP                                                                                                 |                                                                                                   |                                         | _                                     |                                                       |               |               |                  |
|             | -                                                                                                   | ruction in the<br>irce operand.                                                                   | delay                                   | slot must r                           | iot use RaH                                           | l as a destir | nation regist | er or use RaH    |
| Example     |                                                                                                     | e Y = M1*X1<br>ata page.                                                                          | + B1.                                   | This exam                             | ole assume                                            | s that M1, >  | ۲, B1 and ۱)  | r are all on the |
|             | MOVW<br>MOV32<br>MOV32<br>MPYF3<br>   MOV32<br>NOP                                                  | 2 R1H,@X1<br>32 R1H,R1H,R<br>2 R0H,@B1                                                            | ;<br>;<br>:OH ;<br>;<br>;               | <pre> MOV32 </pre>                    | with M1<br>with X1<br>M1*X1<br>complete<br>2 complete |               |               |                  |
|             | ADDF3<br>NOP                                                                                        | 32 R1H,R1H,R                                                                                      |                                         |                                       | to B1 and                                             |               | LH            |                  |
|             | MOV32                                                                                               | 2 @Y1,R1H                                                                                         |                                         | Store the                             | 32 complete<br>e result                               |               |               |                  |
|             | Calculat                                                                                            | e Y = A + B.                                                                                      |                                         |                                       |                                                       |               |               |                  |
|             | MOVL<br>MOV32                                                                                       | XAR4, #A<br>ROH, *XAR<br>XAR4, #B<br>RIH, *XAR<br>2 ROH,RIH,RO                                    | .4 ;                                    | Load R0H v<br>Load R1H v<br>Add A + B |                                                       | н             |               |                  |
|             |                                                                                                     | XAR4, #Y<br>2 *XAR4,ROH                                                                           |                                         | < ADDF32<br>Store the                 | -                                                     |               |               |                  |
| See also    | ADDF32<br>ADDF32<br>ADDF32<br>MACF32                                                                | 2 RaH, #16FF<br>2 RaH, RbH, 3<br>2 RdH, ReH, 1<br>2 RdH, ReH, 1<br>2 R3H, R2H, 1<br>2 RaH, RbH, 1 | #16FH<br>RfH     <br>RfH     <br>RdH, F | i<br>MOV32 Ra<br>MOV32 me<br>ReH, RfH | m32, RaH                                              | RfH           |               |                  |



# ADDF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Addition with Parallel Move

| Operands    |                                                                |                                                                                                                                                                                                                                                                                                                                              |                |                          |                         |                                            |               |  |  |
|-------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-------------------------|--------------------------------------------|---------------|--|--|
|             | RdH                                                            | floating-poi                                                                                                                                                                                                                                                                                                                                 | nt destinatior | n register for the       | ADDF32 (R0              | H to R7H)                                  |               |  |  |
|             | ReH                                                            | floating-poi                                                                                                                                                                                                                                                                                                                                 | nt source reg  | ister for the ADD        | 0F32 (R0H to            | R7H)                                       |               |  |  |
|             | RfH floating-point source register for the ADDF32 (R0H to R7H) |                                                                                                                                                                                                                                                                                                                                              |                |                          |                         |                                            |               |  |  |
|             | mem32                                                          | pointer to a                                                                                                                                                                                                                                                                                                                                 | 32-bit memo    | ory location. This       | will be the de          | estination of the                          | e MOV32.      |  |  |
|             | RaH                                                            | floating-poi                                                                                                                                                                                                                                                                                                                                 | nt source reg  | jister for the MO        | V32 (R0H to I           | R7H)                                       |               |  |  |
| Oncodo      | T CHI. 1110 00                                                 | 00 0001 555-                                                                                                                                                                                                                                                                                                                                 |                |                          |                         |                                            |               |  |  |
| Opcode      | LSW: 1110 00<br>MSW: eedd da                                   |                                                                                                                                                                                                                                                                                                                                              |                |                          |                         |                                            |               |  |  |
| Description | the result in F<br>by mem32. n<br>modes suppo<br>RdH = ReH +   | Perform an ADDF32 and a MOV32 in parallel. Add RfH to the contents of ReH and store<br>the result in RdH. In parallel move the contents of RaH to the 32-bit location pointed to<br>by mem32. mem32 addresses memory using any of the direct or indirect addressing<br>modes supported by the C28x CPU.<br>RdH = ReH + RfH,<br>[mem32] = RaH |                |                          |                         |                                            |               |  |  |
| Flags       | This instruction                                               | on modifies the                                                                                                                                                                                                                                                                                                                              | e following    | flags in the S           | STF registe             | r:                                         |               |  |  |
|             | Flag TF                                                        | ZI                                                                                                                                                                                                                                                                                                                                           | NI             | ZF                       | NF                      | LUF                                        | LVF           |  |  |
|             | Modified No                                                    | No                                                                                                                                                                                                                                                                                                                                           | No             | No                       | No                      | Yes                                        | Yes           |  |  |
| Pipeline    | ADDF32 is a<br>ADDF32<br>   MOV32<br>NOP                       | MOV32 mem32, RaH ; 1 cycle<br>; < MOV32 completes, mem32 updated                                                                                                                                                                                                                                                                             |                |                          |                         |                                            |               |  |  |
|             | NOP                                                            |                                                                                                                                                                                                                                                                                                                                              |                |                          |                         |                                            |               |  |  |
|             | Any instruction<br>as a source of                              | on in the delay<br>operand.                                                                                                                                                                                                                                                                                                                  | slot must      | not use RdH              | as a destir             | ation regist                               | er or use RdH |  |  |
| Example     | ADDF32<br>   MOV32                                             | R3H, R6H, H<br>R7H, *-SP[2                                                                                                                                                                                                                                                                                                                   |                | ; (A) R3;<br>;<br>; < R7 |                         | R4H and R7H                                | I = I3        |  |  |
|             | SUBF32                                                         | R6H, R6H, 1                                                                                                                                                                                                                                                                                                                                  | R4H            |                          | H = R6H -<br>DF32 (A) c | R4H<br>completes, F                        | 3H valid      |  |  |
|             | SUBF32<br>   MOV32                                             | R3H, R1H, I<br>*+XAR5[2],                                                                                                                                                                                                                                                                                                                    |                | ; (C) R3                 | H = R1H -               | R7H and sto                                | ore R3H (A)   |  |  |
|             |                                                                | TARCE [2],                                                                                                                                                                                                                                                                                                                                   | KJII           |                          |                         | ompletes, R<br>tes, (A) st                 |               |  |  |
|             | ADDF32                                                         | R4H, R7H, 1                                                                                                                                                                                                                                                                                                                                  | R1H            |                          | -                       | R1H and sto                                |               |  |  |
|             | MOV32                                                          | *+XAR5[6],                                                                                                                                                                                                                                                                                                                                   | R6H            | ;<br>; < SU              | BF32 (C) c              | completes, R                               | 3H valid      |  |  |
|             | MOV32                                                          | *+XAR5[0],                                                                                                                                                                                                                                                                                                                                   | R3H            | ; store<br>; < MO        | R3H (C)<br>V32 comple   | tes, (B) st<br>tes, (C) st<br>completes, F | ored          |  |  |
|             | MOV32                                                          | *+XAR5[4],                                                                                                                                                                                                                                                                                                                                   | R4H            | ; store                  | R4H (D)                 | etes, (D) st                               |               |  |  |



| www.ti.com |                                                                                                                                                                                                          | Instructions |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| See also   | ADDF32 RaH, #16FHi, RbH<br>ADDF32 RaH, RbH, #16FHi<br>ADDF32 RaH, RbH, RcH<br>MACF32 R3H, R2H, RdH, ReH, RfH<br>MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH<br>ADDF32 RdH, ReH, RfH    MOV32 RaH, mem32 |              |

# ADDF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Addition with Parallel Move

| Operands     |                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                  |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------|--|
|              | RdH                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                  |                                                                                                                           | register for the register as Ra                                                        |                                                                              | H to R7H).                                 |                 |  |
|              | ReH                                                                                                                                                                                                                                                                                                                                                         |                                                                            | floating-po                                                                      | int source regi                                                                                                           | ster for the AD                                                                        | DF32 (R0H to                                                                 | R7H)                                       |                 |  |
|              | RfH                                                                                                                                                                                                                                                                                                                                                         |                                                                            | R7H)                                                                             |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
|              | RaH                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                  |                                                                                                                           | register for the<br>register as Ro                                                     |                                                                              | I to R7H).                                 |                 |  |
|              | mem32                                                                                                                                                                                                                                                                                                                                                       |                                                                            | pointer to a                                                                     | a 32-bit memo                                                                                                             | ry location. Thi                                                                       | s is the source                                                              | e for the MOV3                             | 2.              |  |
| Opcode       | LSW: 1110 0011 0001 fffe<br>MSW: eedd daaa mem32                                                                                                                                                                                                                                                                                                            |                                                                            |                                                                                  |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
| Description  | Perform an ADDF32 and a MOV32 operation in parallel. Add RfH to the contents of ReH<br>and store the result in RdH. In parallel move the contents of the 32-bit location pointed to<br>by mem32 to RaH. mem32 addresses memory using any of the direct or indirect<br>addressing modes supported by the C28x CPU.<br>RdH = ReH + RfH,<br>RaH = [mem32]      |                                                                            |                                                                                  |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
| Restrictions |                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                  | the ADDF3                                                                                                                 |                                                                                        | IOV32 mus                                                                    | t be unique                                | . That is, RaH  |  |
|              | Any insti<br>as a sou                                                                                                                                                                                                                                                                                                                                       |                                                                            | •                                                                                | slot must r                                                                                                               | not use RdH                                                                            | as a destir                                                                  | ation regist                               | er or use RdH   |  |
| Flags        | This instruction modifies the following flags in the STF register:                                                                                                                                                                                                                                                                                          |                                                                            |                                                                                  |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
|              | Flag                                                                                                                                                                                                                                                                                                                                                        | TF                                                                         | ZI                                                                               | NI                                                                                                                        | ZF                                                                                     | NF                                                                           | LUF                                        | LVF             |  |
|              | Modified                                                                                                                                                                                                                                                                                                                                                    | No                                                                         | Yes                                                                              | Yes                                                                                                                       | Yes                                                                                    | Yes                                                                          | Yes                                        | Yes             |  |
|              | <ul> <li>The STF register flags are modified as follows:</li> <li>LUF = 1 if ADDF32 generates an underflow condition.</li> <li>LVF = 1 if ADDF32 generates an overflow condition.</li> <li>The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:</li> <li>NF = RaH(31);<br/>ZF = 0;<br/>if(RaH(30:23) == 0) { ZF = 1; NF = 0; }</li> </ul> |                                                                            |                                                                                  |                                                                                                                           |                                                                                        |                                                                              |                                            |                 |  |
|              | The MO'<br>NF = RaH<br>ZF = 0;<br>if(RaH(3<br>NI = RaH                                                                                                                                                                                                                                                                                                      | V32 Inst<br>(31);<br>0:23) ==                                              | DF32 gen<br>ruction will                                                         | erates an o<br>set the NF                                                                                                 | verflow con<br>, ZF, NI anc                                                            | dition.                                                                      | follows:                                   |                 |  |
|              | The MO'<br>NF = RaH<br>ZF = 0;<br>if(RaH(3<br>NI = RaH<br>ZI = 0;                                                                                                                                                                                                                                                                                           | V32 Inst<br>(31);<br>(32) ==<br>(31);                                      | DF32 gen<br>ruction will                                                         | erates an o<br>set the NF<br>= 1; NF = (                                                                                  | verflow con<br>, ZF, NI anc                                                            | dition.                                                                      | follows:                                   |                 |  |
| Pipeline     | The MO'<br>NF = RaH<br>ZF = 0;<br>if(RaH(3<br>NI = RaH<br>ZI = 0;<br>if(RaH(3                                                                                                                                                                                                                                                                               | V32 Inst<br>((31);<br>((31);<br>((31);<br>((31);<br>1:0) ==                | DF32 gen<br>ruction will<br>= 0) { ZF<br>0) ZI = 1                               | erates an o<br>set the NF<br>= 1; NF = (<br>;                                                                             | verflow con<br>, ZF, NI anc                                                            | dition.<br>I ZI flags as                                                     |                                            | cycle. That is: |  |
| Pipeline     | The MO'<br>NF = RaH<br>ZF = 0;<br>if(RaH(3<br>NI = RaH<br>ZI = 0;<br>if(RaH(3                                                                                                                                                                                                                                                                               | V32 Inst<br>((31);<br>((31);<br>((31);<br>(1:0) ==<br>DF32 tak<br>(32) RdH | DF32 gen<br>ruction will<br>= 0) { ZF<br>0) ZI = 1                               | erates an o<br>set the NF<br>= 1; NF = (<br>;<br>ne cycles (;<br>; 2 pipe<br>; 1 cycl                                     | verflow con<br>, ZF, NI and<br>); }<br>2p) and the<br>eline cycle                      | dition.<br>I ZI flags as<br>MOV32 tak<br>s (2p)                              | es a single                                | cycle. That is: |  |
| Pipeline     | The MO'<br>NF = RaH<br>ZF = 0;<br>if(RaH(3<br>NI = RaH<br>ZI = 0;<br>if(RaH(3<br>The ADE                                                                                                                                                                                                                                                                    | V32 Inst<br>((31);<br>((31);<br>((31);<br>(1:0) ==<br>DF32 tak<br>(32) RdH | DF32 gen<br>ruction will<br>= 0) { ZF<br>0) ZI = 1<br>res 2 pipeli<br>, ReH, RfH | erates an o<br>set the NF<br>= 1; NF = (<br>;<br>ne cycles (;<br>; 2 pipe<br>; 1 cyc;<br>; 3 cyc;<br>; 1 cyc;<br>; 1 cyc; | verflow con<br>, ZF, NI and<br>); }<br>2p) and the<br>eline cycle<br>le<br>DV32 comple | dition.<br>I ZI flags as<br>MOV32 tak<br>s (2p)<br>tes, RaH up<br>non-confli | <b>es a single</b><br>dated<br>cting instr |                 |  |



| www.ti.com |                                                     |
|------------|-----------------------------------------------------|
| Example    | Calculate $Y = A + B - C$ :                         |
|            | MOVL XAR4, #A                                       |
|            | MOV32 ROH, *XAR4 ; Load ROH with A                  |
|            | MOVL XAR4, #B                                       |
|            | MOV32 R1H, *XAR4 ; Load R1H with B                  |
|            | MOVL XAR4, #C                                       |
|            | ADDF32 R0H,R1H,R0H ; Add A + B and in parallel      |
|            | MOV32 R2H, *XAR4 ; Load R2H with C                  |
|            | ; < MOV32 complete                                  |
|            | MOVL XAR4, #Y                                       |
|            | ; ADDF32 complete                                   |
|            | SUBF32 ROH,ROH,R2H ; Subtract C from (A + B)<br>NOP |
|            | ; < SUBF32 completes                                |
|            | MOV32 *XAR4,ROH ; Store the result                  |
| See also   | ADDF32 RaH, #16FHi, RbH                             |
|            | ADDF32 RaH, RbH, #16FHi                             |
|            |                                                     |
|            | ADDF32 RaH, RbH, RcH                                |
|            | ADDF32 RdH, ReH, RfH    MOV32 mem32, RaH            |
|            | MACF32 R3H, R2H, RdH, ReH, RfH                      |
|            | MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH        |
|            | $\lambda = 0$ . The set of $0$                      |

Instructions

TEXAS INSTRUMENTS

www.ti.com

# CMPF32 RaH, RbH 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

| ••••••••••••••••    |                                                                                                                                                                                                                                |                                                                  | <b>1</b>      | , <u></u>       |                                         |              |                |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|-----------------|-----------------------------------------|--------------|----------------|--|--|
| Operands            |                                                                                                                                                                                                                                |                                                                  |               |                 |                                         |              |                |  |  |
|                     | RaH                                                                                                                                                                                                                            | floating-poi                                                     | nt source reg | ister (R0H to R | 7H)                                     |              |                |  |  |
|                     | RbH                                                                                                                                                                                                                            | floating-poi                                                     | nt source reg | ster (R0H to R  | 7H)                                     |              |                |  |  |
|                     |                                                                                                                                                                                                                                |                                                                  |               |                 |                                         |              |                |  |  |
| Opcode              |                                                                                                                                                                                                                                | LSW: 1110 0110 1001 0100<br>MSW: 0000 0000 00bb baaa             |               |                 |                                         |              |                |  |  |
| Description         | as a logical                                                                                                                                                                                                                   | NF flags on the<br>compare operation of the<br>ot. Basically the | tion. This is | s possible be   | ecause of the                           | ne IEEE forr | nat offsetting |  |  |
|                     | Special case                                                                                                                                                                                                                   | es for inputs:                                                   |               |                 |                                         |              |                |  |  |
|                     | •                                                                                                                                                                                                                              | zero will be tre                                                 | ated as po    | sitive zero.    |                                         |              |                |  |  |
|                     | -                                                                                                                                                                                                                              | nalized value w                                                  | •             |                 | e zero.                                 |              |                |  |  |
|                     |                                                                                                                                                                                                                                | umber (NaN) wil                                                  |               | •               |                                         |              |                |  |  |
| Flags               |                                                                                                                                                                                                                                | tion modifies the                                                |               |                 | STF registe                             | er:          |                |  |  |
|                     | Flag TF                                                                                                                                                                                                                        |                                                                  | NI            | ZF              | NF                                      | LUF          | LVF            |  |  |
|                     | Modified No                                                                                                                                                                                                                    | No                                                               | No            | Yes             | Yes                                     | No           | No             |  |  |
| Pipeline<br>Example | <pre>If(RaH &lt; RbH) {ZF=0, NF=1} This is a single-cycle instruction. ; Behavior of ZF and NF flags for different comparisons MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC0000000) MOVIZF32 R0H, #5.0 ; R0H = 5.0 (0x40A00000)</pre> |                                                                  |               |                 |                                         |              |                |  |  |
|                     | CMPF32                                                                                                                                                                                                                         | ROH, #5.0<br>R1H, ROH                                            | ; $ZF = 0$    |                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                |  |  |
|                     | CMPF32         R0H, R1H         ; ZF = 0, NF = 0           CMPF32         R0H, R0H         ; ZF = 1, NF = 0                                                                                                                    |                                                                  |               |                 |                                         |              |                |  |  |
|                     | ; Using the result of a compare for loop control                                                                                                                                                                               |                                                                  |               |                 |                                         |              |                |  |  |
|                     | Loop:<br>MOV32<br>MOV32<br>CMPF32<br>MOVST0<br>BF                                                                                                                                                                              | R0H,*XAR4++<br>R1H,*XAR3++<br>R1H, R0H<br>ZF, NF<br>Loop, GT     | ; Copy Z      |                 |                                         | N bits       |                |  |  |
| See also            | CMPF32 Ra<br>CMPF32 Ra<br>MAXF32 Ra<br>MAXF32 Ra<br>MINF32 Ra<br>MINF32 Ra                                                                                                                                                     | aH, #0.0<br>aH, #16FHi<br>aH, RbH<br>H, #16FHi                   |               |                 |                                         |              |                |  |  |



# CMPF32 RaH, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

| Operands    |                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|--|
|             | RaH                                                                                                                                                                               | floating-poi                                                                                                                                                                                                                      | int source regis                                            | ster (R0H to R7                                              | H)                                                     |                                              |                                             |  |  |  |
|             | #16FHi                                                                                                                                                                            |                                                                                                                                                                                                                                   |                                                             | that represents<br>ow 16-bits of th                          |                                                        |                                              |                                             |  |  |  |
|             |                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
| Opcode      | LSW: 1110 100<br>MSW: IIII III                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
| Description | Compare the<br>operand. Set                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        | ented by th                                  | e immediate                                 |  |  |  |
|             | #16FHi is a 1<br>floating-point<br>addressing m<br>are 0. Some e<br>-1.5 (0xBFC0<br>value. That is                                                                                | value. The low<br>ode is most us<br>examples are<br>0000). The as                                                                                                                                                                 | w 16-bits of<br>seful for con<br>2.0 (0x4000<br>sembler wil | the mantissanstants when<br>00000), 4.0 (0<br>I accept eithe | a are assur<br>e the lowes<br>0x4080000<br>er a hex or | ned to be a<br>st 16-bits of<br>0), 0.5 (0x3 | ll 0. This<br>the mantissa<br>F000000), and |  |  |  |
|             | because of th                                                                                                                                                                     | The CMPF32 instruction is performed as a logical compare operation. This is possible because of the IEEE floating-point format offsets the exponent. Basically the bigger the binary number, the bigger the floating-point value. |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
|             | Special cases                                                                                                                                                                     | Special cases for inputs:                                                                                                                                                                                                         |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
|             | Denormali                                                                                                                                                                         | zero will be tre<br>zed value will<br>nber (NaN) wi                                                                                                                                                                               | be treated                                                  | as positive z                                                | ero.                                                   |                                              |                                             |  |  |  |
| Flags       | This instruction                                                                                                                                                                  | on modifies the                                                                                                                                                                                                                   | e following f                                               | lags in the S                                                | TF registe                                             | r:                                           |                                             |  |  |  |
|             | Flag TF                                                                                                                                                                           | ZI                                                                                                                                                                                                                                | NI                                                          | ZF                                                           | NF                                                     | LUF                                          | LVF                                         |  |  |  |
|             | Modified No                                                                                                                                                                       | No                                                                                                                                                                                                                                | No                                                          | Yes                                                          | Yes                                                    | No                                           | No                                          |  |  |  |
|             | The STF regis<br>If(RaH == #16<br>If(RaH > #16<br>If(RaH < #16                                                                                                                    | 5FHi:0) {ZF=1<br>5FHi:0) {ZF=0                                                                                                                                                                                                    | , NF=0}, NF=0}                                              | follows:                                                     |                                                        |                                              |                                             |  |  |  |
| Pipeline    | This is a sing                                                                                                                                                                    | le-cycle instru                                                                                                                                                                                                                   | ction                                                       |                                                              |                                                        |                                              |                                             |  |  |  |
| Example     | ; Behavior of                                                                                                                                                                     | ZF and NF f                                                                                                                                                                                                                       | lags for di                                                 | fferent com                                                  | parisons                                               |                                              |                                             |  |  |  |
|             | MOVIZF32R1H, #-2.0; R1H = -2.0 (0xC000000)MOVIZF32R0H, #5.0; R0H = 5.0 (0x40A00000)CMPF32R1H, #-2.2; ZF = 0, NF = 0CMPF32R0H, #6.5; ZF = 0, NF = 1CMPF32R0H, #5.0; ZF = 1, NF = 0 |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
|             | ; Using the result of a compare for loop control                                                                                                                                  |                                                                                                                                                                                                                                   |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |
|             | Loop:<br>MOV32<br>CMPF32<br>MOVST0<br>BF                                                                                                                                          | R1H,*XAR3++<br>R1H, #2.0<br>ZF, NF<br>Loop, GT                                                                                                                                                                                    | ; Copy ZF                                                   | H<br>ar ZF and NI<br>and NF to S<br>R1H > #2.0               |                                                        | N bits                                       |                                             |  |  |  |
| See also    | CMPF32 RaH<br>CMPF32 RaH<br>MAXF32 RaH<br>MAXF32 RaH<br>MINF32 RaH,<br>MINF32 RaH,                                                                                                | I, RbH<br>I, #16FHi<br>I, RbH<br>, #16FHi                                                                                                                                                                                         |                                                             |                                                              |                                                        |                                              |                                             |  |  |  |

TEXAS INSTRUMENTS

#### Operands RaH floating-point source register (R0H to R7H) #0.0 zero Opcode LSW: 1110 0101 1010 0aaa Description Set the ZF and NF flags on (RaH - #0.0). The CMPF32 instruction is performed as a logical compare operation. This is possible because of the IEEE floating-point format offsets the exponent. Basically the bigger the binary number, the bigger the floating-point value. Special cases for inputs: Negative zero will be treated as positive zero. • Denormalized value will be treated as positive zero. Not-a-Number (NaN) will be treated as infinity. • Flags This instruction modifies the following flags in the STF register: Flag TF ΖI NI ZF NF LUF LVF Modified No No No Yes Yes No No The STF register flags are modified as follows: If(RaH == #0.0) {ZF=1, NF=0} If(RaH > #0.0) {ZF=0, NF=0} $If(RaH < \#0.0) \{ZF=0, NF=1\}$ **Pipeline** This is a single-cycle instruction. Example ; Behavior of ZF and NF flags for different comparisons MOVIZF32 R0H, #5.0 ; $ROH = 5.0 (0 \times 40 \land 0000)$ MOVIZF32 R1H, #-2.0 ; R1H = -2.0 (0xC000000)MOVIZF32 R2H, #0.0 ; R2H = 0.0 (0x0000000); ZF = 0, NF = 0ROH, #0.0 CMPF32 CMPF32 R1H, #0.0 ; ZF = 0, NF = 1R2H, #0.0 ; ZF = 1, NF = 0CMPF32 ; Using the result of a compare for loop control Loop: ; Load R1H R1H,\*XAR3++ MOV32 CMPF32 R1H, #0.0 ; Set/clear ZF and NF MOVST0 ZF, NF ; Copy ZF and NF to STO Z and N bits BF Loop, GT ; Loop if R1H > #0.0 CMPF32 RaH, #0.0 See also CMPF32 RaH, #16FHi MAXF32 RaH, #16FHi MAXF32 RaH, RbH MINF32 RaH, #16FHi MINF32 RaH, RbH

#### CMPF32 RaH, #0.0 32-bit Floating-Point Compare for Equal, Less Than or Greater Than



# EINVF32 RaH, RbH 32-bit Floating-Point Reciprocal Approximation

| Operands    |                                 |                                    |                                        |                  |                 |                                                   |              |                             |   |
|-------------|---------------------------------|------------------------------------|----------------------------------------|------------------|-----------------|---------------------------------------------------|--------------|-----------------------------|---|
|             | RaH                             |                                    | floating-p                             | oint destinatior | register (R0H   | to R7H)                                           |              |                             |   |
|             | RbH                             |                                    | floating-p                             | oint source reg  | ister (R0H to F | R7H)                                              |              |                             |   |
|             |                                 |                                    |                                        |                  |                 |                                                   |              |                             |   |
| Opcode      | LSW: 111<br>MSW: 000            |                                    | 1001 001<br>00bb baa                   |                  |                 |                                                   |              |                             |   |
| Description | approxir<br>more ac<br>Ye = Est | nately 8<br>curate a               | bits. This<br>answer. Th               | value can b      |                 |                                                   |              | accurate to<br>thm to get a |   |
|             | $Ye = Ye^{2}$<br>$Ye = Ye^{2}$  |                                    |                                        |                  |                 |                                                   |              |                             |   |
|             | 10 10                           | (2.0                               | ic n,                                  |                  |                 |                                                   |              |                             |   |
|             | accurate<br>approxir<br>DeNorm  | e to the 3<br>nately d<br>i or NaN | 32-bit float<br>oubles. Th<br>I value. | ing-point for    | rmat. Õn ea     | n, you will g<br>ch iteration t<br>vill not gener | the mantissa | a bit accuracy              |   |
|             | RaH = Es                        | stimate                            | of 1/RbH                               |                  |                 |                                                   |              |                             |   |
| Flags       | This ins                        | truction                           | modifies th                            | ne following     | flags in the    | STF registe                                       | r:           |                             |   |
|             | Flag                            | TF                                 | ZI                                     | NI               | ZF              | NF                                                | LUF          | LVF                         |   |
|             | Modified                        | No                                 | No                                     | No               | No              | No                                                | Yes          | Yes                         |   |
| Pipeline    |                                 |                                    |                                        |                  |                 |                                                   |              |                             | I |



| 1130 000013 |                                                                | www.u.com                                                              |
|-------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| Example     | Calculate Y = A/B. A fast divis<br>C28x FPU Fast RTS Library ( | sion routine similar to that shown below can be found in the SPRC664). |
|             | MOVL XAR4, #A                                                  |                                                                        |
|             | MOV32 R0H, *XAR4 ;<br>MOVL XAR4, #B                            | Load ROH with A                                                        |
|             | ,                                                              | Load R1H with B                                                        |
|             |                                                                | Calculate ROH = ROH / R1H                                              |
|             | MOV32 *XAR4, R0H ;                                             |                                                                        |
|             |                                                                |                                                                        |
|             | DIV:                                                           |                                                                        |
|             | EINVF32 R2H, R1H                                               | ; $R2H = Ye = Estimate(1/B)$                                           |
|             | CMPF32 R0H, #0.0                                               | ; Check if $A == 0$                                                    |
|             | MPYF32 R3H, R2H, R1                                            | 1H ; R3H = Ye*B                                                        |
|             | NOP                                                            |                                                                        |
|             | SUBF32 R3H, #2.0, F<br>NOP                                     | R3H ; R3H = 2.0 - Ye*B                                                 |
|             | MPYF32 R2H, R2H, R3<br>NOP                                     | 3H ; R2H = Ye = Ye*(2.0 - Ye*B)                                        |
|             | MPYF32 R3H, R2H, R1                                            | 1H ; R3H = Ye*B                                                        |
|             | CMPF32 R1H, #0.0                                               |                                                                        |
|             | SUBF32 R3H, #2.0, F                                            |                                                                        |
|             | NEGF32 ROH, ROH, EC                                            |                                                                        |
|             | MPYF32 R2H, R2H, R3<br>NOP                                     |                                                                        |
|             | -                                                              | 2H ; ROH = Y = A*Ye = A/B                                              |

See also

EISQRTF32 RaH, RbH



# EISQRTF32 RaH, RbH 32-bit Floating-Point Square-Root Reciprocal Approximation

| RaH                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | floating-po                                                                                                                                                                                                                                                                                                                                                                                                                 | oint destination                                                                                                                                                                                                                                                                                                                                                                                                                                                     | register (R0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to R7H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RbH                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | floating-po                                                                                                                                                                                                                                                                                                                                                                                                                 | oint source reg                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ister (R0H to F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| to appro                                                        | ximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / 8 bits. Th                                                                                                                                                                                                                                                                                                                                                                                                                | is value car                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ye = Ye                                                         | *(1.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ye*Ye*X/2                                                                                                                                                                                                                                                                                                                                                                                                                   | .0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| accurate<br>approxir<br>DeNorm                                  | e to the<br>nately d<br>or NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32-bit float<br>oubles. Th<br>I value.                                                                                                                                                                                                                                                                                                                                                                                      | ing-point for<br>e EISQRTF                                                                                                                                                                                                                                                                                                                                                                                                                                           | mat. Õn ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ch iteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the mantissa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a bit accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| This ins                                                        | truction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | modifies th                                                                                                                                                                                                                                                                                                                                                                                                                 | e following                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flags in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STF registe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Flag                                                            | TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZI                                                                                                                                                                                                                                                                                                                                                                                                                          | NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Modified                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LUF     LVF     This is a     EINN     NOP     NOP     Any inst | = 1 if EI<br>= 1 if EI<br>a 2 pipel<br>/F32 Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SQRTF32<br>SQRTF32<br>ine cycle (ź<br>, ĸbн<br>n the delay                                                                                                                                                                                                                                                                                                                                                                  | generates<br>generates<br>2p) instructi<br>; 2 pip<br>; 1 cyc<br>; < E                                                                                                                                                                                                                                                                                                                                                                                               | an underflow<br>an overflow<br>on. That is:<br>eline cycle<br>le delay or<br>ISQRTF32 cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | condition.<br>s (2p)<br>non-confli<br>mpletes, Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | RbHLSW: 111MSW: 000This operationto approximate ap | RbHLSW: 1110 0110<br>MSW: 0000 0000This operation g<br>to approximately<br>more accurate a<br>Ye = Stimate(1<br>Ye = Ye*(1.5 -<br>Ye = Ye*(1.5 -<br>Ye = Ye*(1.5 -<br>Ye = Ye*(1.5 -After 2 iterations<br>accurate to the a<br>approximately d<br>DeNorm or NaN<br>RaH = EstimateThis instructionFlagTF<br>Modified<br>NoThe STF register<br>• LUF = 1 if EI<br>This is a 2 pipel<br>EINVF32<br>NOP<br>NOPAny instruction i | RbHfloating-pcLSW: 1110 0110 1001 0010MSW: 0000 0000 00bb baasThis operation generates a<br>to approximately 8 bits. Th<br>more accurate answer. This<br>Ye = Setimate(1/sqrt(X));<br>Ye = Ye*(1.5 - Ye*Ye*X/2)Ye = Estimate(1/sqrt(X));<br>Ye = Ye*(1.5 - Ye*Ye*X/2)After 2 iterations of the Net<br>accurate to the 32-bit floati<br>approximately doubles. Th<br>DeNorm or NaN value.RaH = Estimate of 1/sqrtThis instruction modifies thFlagTFZIModifiedNoNOPNOP | RbHfloating-point source regLSW: 1110 0110 1001 0010<br>MSW: 0000 0000 00bb baaaThis operation generates an estimate<br>to approximately 8 bits. This value car<br>more accurate answer. That is:Ye = Estimate(1/sqrt(X));<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)After 2 iterations of the Newton-Raphs<br>accurate to the 32-bit floating-point for<br>approximately doubles. The EISQRTF<br>DeNorm or NaN value.<br>RaH = Estimate of 1/sqrt (RbH)This instruction modifies the followingFlagTFZlNoNoNoNoNoNoNoEINVF32RaH, RbH $(2 pip)$<br>NOPNOP $(1 cyc)$<br>$(< - E)$ Any instruction in the delay slot must of | RbHfloating-point source register (R0H to RLSW: 1110 0110 1001 0010<br>MSW: 0000 0000 00bb baaaThis operation generates an estimate of 1/sqrt(X)<br>to approximately 8 bits. This value can be used in<br>more accurate answer. That is:Ye = Estimate(1/sqrt(X));<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)After 2 iterations of the Newton-Raphson algorithm<br>accurate to the 32-bit floating-point format. On ear<br>approximately doubles. The EISQRTF32 operation<br>DeNorm or NaN value.RaH = Estimate of 1/sqrt (RbH)This instruction modifies the following flags in theFlagTFZINIZFModifiedNoNoNoNoThe STF register flags are modified as follows:LUF = 1 if EISQRTF32 generates an underflowLUF = 1 if EISQRTF32 generates an overflowThis is a 2 pipeline cycle (2p) instruction. That is:<br>EINVF32 RaH, RbH<br>NOPEINVF32 RaH, RbH<br>S of the cycle delay or<br>S of the cycle delay or<br>S of the cycle delay of the cycle delay of the cycle delay of the cycle delay store | RbHfloating-point source register (R0H to R7H)LSW: 1110 0110 1001 0010<br>MSW: 0000 0000 00bb baaaImage: Source register (R0H to R7H)LSW: 1110 0110 1001 0010<br>MSW: 0000 0000 00bb baaaThis operation generates an estimate of 1/sqrt(X) in 32-bit float<br>to approximately 8 bits. This value can be used in a Newton-I<br>more accurate answer. That is:<br>Ye = Estimate(1/sqrt(X));<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)<br>Ye = Ye*(1.5 - Ye*Ye*X/2.0)After 2 iterations of the Newton-Raphson algorithm, you will g<br>accurate to the 32-bit floating-point format. On each iteration<br>approximately doubles. The EISQRTF32 operation will not ge<br>DeNorm or NaN value.<br>RaH = Estimate of 1/sqrt (RbH)This instruction modifies the following flags in the STF registerFlagTFZINIZFNFModifiedNoNoNoNoNoNoNoNoNoNoNoNoSuppeline cycles (2p)<br>(1 cycle delay or non-confli<br>(2 confletes, Ra<br>NOPAny instruction in the delay slot must not use RaH as a destif | RbHfloating-point source register (R0H to R7H)LSW: 1110 0110 1001 0010<br>MSW: 0000 0000 00bb baaaDiscrete register (R0H to R7H)This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point for<br>to approximately 8 bits. This value can be used in a Newton-Raphson alg<br>more accurate answer. That is:<br>$Ye = Estimate(1/sqrt(X));$<br>$Ye = Ye*(1.5 - Ye*Ye*X/2.0)$<br>$Ye = Ye*(1.5 - Ye*Ye*X/2.0)$<br>After 2 iterations of the Newton-Raphson algorithm, you will get an exact<br>accurate to the 32-bit floating-point format. On each iteration the mantissa<br>approximately doubles. The EISQRTF32 operation will not generate a neg<br>DeNorm or NaN value.<br>RaH = Estimate of 1/sqrt (RbH)This instruction modifies the following flags in the STF register: <a href="#">Image TF</a> <a href="#">ZI</a> NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoPAfter 2 iterations of the Stretce and overflow condition.LUF = 1 if EISQRTF32 generates an underflow condition. <a href="#">LUF = 1 if EISQRTF32 generates an overflow condition.</a> <a href="#">LUF = 1 if EISQRTF32 generates an overflow condition.</a> <a href="#">LUF = 1 if EISQRTF32 generates an overflow condition.</a> <a href="#">LUF = 1 if EISQRTF32 generates an overflow condition.</a> <a href="#">LUF = 1 if EISQRTF32 generates an overflow condition.</a> <a href="#">MOP</a> < |



Instructions

Example

Calculate the square root of X. A square-root routine similar to that shown below can be found in the *C28x FPU Fast RTS Library* (<u>SPRC664</u>).

| ; Ye = Ye*(1.5<br>; Y = X*Ye | - Ye*Ye*X*0.5) |                                             |
|------------------------------|----------------|---------------------------------------------|
| _sqrt:                       |                |                                             |
|                              |                | ; ROH = X on entry                          |
| EISQRTF32                    | R1H, R0H       | ; R1H = Ye = Estimate(1/sqrt(X))            |
| MPYF32                       | R2H, R0H, #0.5 | ; R2H = X*0.5                               |
| MPYF32<br>NOP                | R3H, R1H, R1H  | ; R3H = Ye*Ye                               |
| MPYF32<br>NOP                | R3H, R3H, R2H  | ; R3H = Ye*Ye*X*0.5                         |
| SUBF32<br>NOP                | R3H, #1.5, R3H | ; R3H = 1.5 - Ye*Ye*X*0.5                   |
| MPYF32<br>NOP                | R1H, R1H, R3H  | ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)         |
| MPYF32<br>NOP                | R3H, R1H, R2H  | ; R3H = Ye*X*0.5                            |
| MPYF32<br>NOP                | R3H, R1H, R3H  | ; R3H = Ye*Ye*X*0.5                         |
| SUBF32                       | R3H, #1.5, R3H | ; R3H = 1.5 - Ye*Ye*X*0.5                   |
| CMPF32                       |                | ; Check if $X == 0$                         |
| MPYF32<br>NOP                |                | ; R2H = Ye = Ye*(1.5 - Ye*Ye*X*0.5)         |
| MOV32                        |                | ; If X is zero, change the Ye estimate to 0 |
| MOV32<br>MPYF32<br>LRETR     |                | ; ROH = Y = $X*Ye$ = sqrt(X)                |

See also

EINVF32 RaH, RbH



# F32TOI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer

| Operands            |                                                                                                              |                                                    |                                                                                                      |                                                         |                                                                                                        |                                           |                   |   |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|---|
|                     | RaH                                                                                                          | floating-poir                                      | nt destination                                                                                       | register (R0H                                           | to R7H)                                                                                                |                                           |                   |   |
|                     | RbH                                                                                                          | floating-poir                                      | nt source regi                                                                                       | ster (R0H to R                                          | 7H)                                                                                                    |                                           |                   |   |
|                     |                                                                                                              |                                                    |                                                                                                      |                                                         |                                                                                                        |                                           |                   |   |
| Opcode              | LSW: 1110 0110<br>MSW: 0000 0000                                                                             |                                                    |                                                                                                      |                                                         |                                                                                                        |                                           |                   |   |
| Description         | Convert a 32-b<br>will be stored in<br>RaH(15:0) = F<br>RaH(31:16) = s                                       | n <b>RaH.</b><br>32TOI16(RbH)                      |                                                                                                      |                                                         | 6-bit intege                                                                                           | r and trunca                              | e. The result     |   |
| Flags               | This instruction                                                                                             | does not aff                                       | ect any flag                                                                                         | gs:                                                     |                                                                                                        |                                           |                   |   |
|                     | Flag TF                                                                                                      | ZI                                                 | NI                                                                                                   | ZF                                                      | NF                                                                                                     | LUF                                       | LVF               |   |
|                     | Modified No                                                                                                  | No                                                 | No                                                                                                   | No                                                      | No                                                                                                     | No                                        | No                |   |
| Pipeline<br>Example | This is a 2 pipe<br>F32TOI16<br>NOP<br>NOP<br>Any instruction<br>as a source op<br>MOVIZF32                  | п the delay                                        | ; 2 pir<br>; 1 cyo<br>; < 1<br>slot must r                                                           | eeline cycl<br>le delay o:<br>32TOII6 con<br>ot use RaH | r non-confl<br>mpletes, Ra                                                                             | _                                         |                   | ł |
|                     | F32TOI16<br>MOVIZF32<br>F32TOI16<br>NOP                                                                      | R1H, R0H<br>R2H, #-5.0<br>R3H, R2H                 | <pre>; R1H(31::;<br/>; R2H = -5;<br/>; &lt; F32;<br/>; R3H(15:0;<br/>; R3H(31::;<br/>; 1 Cycle</pre> | COI16 comple<br>) = F32TO<br>.6) = Sign<br>delay for 2  | extension c<br>0000)<br>ete, R1H(15<br>R1H(31<br>I16(R2H)<br>extension c<br>F32TOI16 tc<br>ete, R3H(15 | 5:0) = 5 (0<br>.:16) = 0 (0<br>of R3H(15) | x0000)<br>0xFFFB) |   |
| See also            | F32TOI16R Ra<br>F32TOUI16 Ra<br>F32TOUI16R F<br>I16TOF32 RaH<br>I16TOF32 RaH<br>UI16TOF32 Ra<br>UI16TOF32 Ra | H, RbH<br>RaH, RbH<br>, RbH<br>, mem16<br>H, mem16 |                                                                                                      |                                                         |                                                                                                        |                                           |                   |   |



# F32TOI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Integer and Round

| Operanus    |                                                                                                              |                                                       |                    |                          |                   |                                           |                  |
|-------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|--------------------------|-------------------|-------------------------------------------|------------------|
|             | RaH                                                                                                          | floating-point of                                     | destination        | register (R0H            | to R7H)           |                                           |                  |
|             | RbH                                                                                                          | floating-point :                                      | source regi        | ster (R0H to F           | R7H)              |                                           |                  |
|             |                                                                                                              |                                                       |                    |                          | ,                 |                                           |                  |
| Opcode      | LSW: 1110 0110<br>MSW: 1000 0000                                                                             |                                                       |                    |                          |                   |                                           |                  |
| Description | Convert the 32 even value. Th                                                                                |                                                       |                    |                          | 16-bit integ      | ger and roun                              | d to the nearest |
|             | RaH(15:0) = F<br>RaH(31:16) = s                                                                              |                                                       |                    | .5)                      |                   |                                           |                  |
| Flags       | This instruction                                                                                             | does not affeo                                        | t any flag         | js:                      |                   |                                           |                  |
|             | Flag TF                                                                                                      | ZI                                                    | NI                 | ZF                       | NF                | LUF                                       | LVF              |
|             | Modified No                                                                                                  | No                                                    | No                 | No                       | No                | No                                        | No               |
|             |                                                                                                              |                                                       |                    |                          |                   |                                           |                  |
| Pipeline    | This is a 2 pipe                                                                                             | line cycle (2p)                                       | instructio         | n. That is:              |                   |                                           |                  |
|             | F32TOI16R<br>NOP                                                                                             |                                                       | ; 2 pip<br>; 1 cyc | eline cycl<br>le delay c | or non-conf       | licting inst<br>RaH updated               | ruction          |
|             | NOP                                                                                                          |                                                       | / < 1              | JZIOIIOR C               | Julipieces, 1     | an updated                                |                  |
|             | Any instruction as a source op                                                                               |                                                       | ot must n          | ot use Ra⊦               | l as a desti      | nation regist                             | er or use RaH    |
| Example     | MOVIZ                                                                                                        | ROH, #0x3FD9                                          | ; R0H [            | 31:16] = 0               | x3FD9             |                                           |                  |
| -           | MOVXI                                                                                                        | ROH, #0x999A                                          |                    | 15:0] = 0                |                   |                                           |                  |
|             | F32TOI16R                                                                                                    | R1H, R0H                                              | ; R1H(1            |                          | 2TOI16round       |                                           |                  |
|             | MOVF32                                                                                                       | R2H, #-1.7                                            |                    | 1:16) = Si<br>-1.7 (0xE  |                   | on of R1H(15                              | ;)               |
|             |                                                                                                              | , "                                                   |                    |                          | omplete, R        | 1H(15:0) =                                |                  |
|             | F32TOI16R                                                                                                    | R3H, R2H                                              | ;<br>; R3H(1       | (5:0) = F3               | R:<br>2TOI16round | 1H(31:16) =<br>d (R2H)                    | 0 (0x0000)       |
|             |                                                                                                              |                                                       | ; R3H(3            | 1:16) = Si               | gn extensio       | on of R2H(15                              |                  |
|             | NOP                                                                                                          |                                                       | -                  | -                        | omplete, R        | 6R to comple<br>1H(15:0) =<br>1H(31:16) = | -2 (OxFFFE)      |
| See also    | F32TOI16 RaH<br>F32TOUI16 Ra<br>F32TOUI16R F<br>I16TOF32 RaH<br>I16TOF32 RaH<br>UI16TOF32 Ra<br>UI16TOF32 Ra | H, RbH<br>RaH, RbH<br>I, RbH<br>I, mem16<br>∖H, mem16 |                    |                          |                   |                                           |                  |



# F32TOI32 RaH, RbH Convert 32-bit Floating-Point Value to 32-bit Integer

| Operands    |                     |                               |                        |                                                       |                                                                                                |                                                                          |                                   |             |
|-------------|---------------------|-------------------------------|------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|-------------|
|             | RaH                 |                               | floating-po            | int destinatior                                       | n register (R0H                                                                                | I to R7H)                                                                |                                   |             |
|             | RbH                 |                               | floating-po            | int source reg                                        | jister (R0H to F                                                                               | R7H)                                                                     |                                   |             |
|             |                     |                               |                        |                                                       |                                                                                                |                                                                          |                                   |             |
| Opcode      | LSW: 11:<br>MSW: 00 |                               | 1000 1000<br>00bb baaa |                                                       |                                                                                                |                                                                          |                                   |             |
| Description | Convert<br>Store th | e result                      | in RaH.                | point value                                           | in RbH to a                                                                                    | a 32-bit integ                                                           | ger value an                      | d truncate. |
| Flags       | This ins            | truction                      | does not at            | ffect any fla                                         | ags:                                                                                           |                                                                          |                                   |             |
|             | Flag                | TF                            | ZI                     | NI                                                    | ZF                                                                                             | NF                                                                       | LUF                               | LVF         |
|             | Modified            | No                            | No                     | No                                                    | No                                                                                             | No                                                                       | No                                | No          |
|             | NOP                 | truction i                    |                        | ; 1 cy<br>; <                                         | F32T0I32 co                                                                                    | or non-confi<br>ompletes, Ra                                             | _                                 | eruction    |
| Example     | MOVI                | TOI32 F<br>F32 F              | R3H, R2H               | ; R<br>94005.0 ; R<br>; <<br>; R<br>; R<br>; 1<br>; 2 | 3H = F32T01<br>4H = -11204<br>F32T0132<br>3H = 112040<br>5H = F32T01<br>Cycle dela<br>F32T0132 | 4005.0 (0xCH<br>2 complete,<br>005 (0x00AAH<br>132 (R4H)<br>ay for F32TC | 32AF5A5)<br>F5A5)<br>DI32 to comp | olete       |
| See also    | UI32TO              | 32 RaH,<br>32 RaH,<br>F32 Ral | , RbH<br>, mem32       |                                                       |                                                                                                |                                                                          | - •                               |             |



# F32TOUI16 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

| Operands    |                                                                                                              |                                                         |                                                                                       |                                                                                                     |                                                                                                     |                           |                          |
|-------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|--------------------------|
|             | RaH                                                                                                          | floating-poin                                           | t destination                                                                         | register (R0H                                                                                       | to R7H)                                                                                             |                           |                          |
|             | RbH                                                                                                          | floating-poin                                           | nt source regi                                                                        | ster (R0H to R                                                                                      | 27H)                                                                                                |                           |                          |
|             |                                                                                                              |                                                         |                                                                                       |                                                                                                     |                                                                                                     |                           |                          |
| Opcode      | LSW: 1110 0110<br>MSW: 0000 0000                                                                             |                                                         |                                                                                       |                                                                                                     |                                                                                                     |                           |                          |
| Description | Convert the 32<br>truncate to zero<br>nearest even v<br>RaH(15:0) = F<br>RaH(31:16) = 0                      | D. The result value use the 32ToUI16(RbH                | will be stor<br>F32TOUI1                                                              | ed in RaH.                                                                                          | To instead                                                                                          |                           |                          |
| Flags       | This instruction                                                                                             | does not affe                                           | ect any fla                                                                           | gs:                                                                                                 |                                                                                                     |                           |                          |
|             | Flag TF                                                                                                      | ZI                                                      | NI                                                                                    | ZF                                                                                                  | NF                                                                                                  | LUF                       | LVF                      |
|             | Modified No                                                                                                  | No                                                      | No                                                                                    | No                                                                                                  | No                                                                                                  | No                        | No                       |
| Pipeline    | This is a 2 pipe<br>F32TOUI16<br>NOP<br>NOP<br>Any instruction<br>as a source op                             | RaH, RbH                                                | ; 2 p;<br>; 1 c;<br>; <                                                               | ipeline cyc<br>ycle delay<br>F32TOUI16                                                              | or non-conf<br>completes,                                                                           | RaH updated               | 1                        |
| Example     | MOVIZF32<br>F32TOUI16<br>MOVIZF32<br>F32TOUI16<br>NOP                                                        | R6H, #-9.0<br>R7H, R6H                                  | <pre>; R5H (15 ; R5H (31 ; R6H = -9 ; &lt; F32' ; ; R7H (15 ; R7H (31 ; 1 Cycle</pre> | :0) = F32TO<br>:16) = 0x00<br>9.0 (0xC110<br>TOUI16 comp<br>:0) = F32TO<br>:16) = 0x00<br>delay for | UI16 (R4H)<br>00<br>0000)<br>lete, R5H (<br>R5H (<br>UI16 (R6H)<br>00<br>F32TOUI16 t<br>lete, R7H ( | 31:16) = 0.<br>o complete | 0 (0x0000)<br>0 (0x0000) |
| See also    | F32TOI16 RaH<br>F32TOUI16R F<br>F32TOUI16R F<br>I16TOF32 RaH<br>I16TOF32 RaH<br>UI16TOF32 Ra<br>UI16TOF32 Ra | RaH, RbH<br>RaH, RbH<br>I, RbH<br>I, mem16<br>IH, mem16 |                                                                                       |                                                                                                     |                                                                                                     |                           |                          |



# F32TOUI16R RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

| Operands    |                                                                                                                     |                                              |                         |                                      |                                                       |                              |               |
|-------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|--------------------------------------|-------------------------------------------------------|------------------------------|---------------|
|             | RaH                                                                                                                 | floating-point d                             | estination r            | egister (R0H                         | to R7H)                                               |                              |               |
|             | RbH                                                                                                                 | floating-point s                             | ource regis             | ster (R0H to R                       | 87H)                                                  |                              |               |
| Opcode      | LSW: 1110 0110<br>MSW: 1000 0000                                                                                    | 1000 1110<br>00bb baaa                       |                         |                                      |                                                       |                              |               |
| Description | Convert the 32-<br>the closest even<br>converted value<br>RaH(15:0) = F3<br>RaH(31:16) = 0x                         | value. The re<br>, use the F32T              | sult will t<br>OUI16 ir | be stored ir                         | -                                                     | -                            |               |
| Flags       | This instruction                                                                                                    |                                              |                         |                                      |                                                       |                              |               |
|             | Flag TF                                                                                                             | ZI                                           | NI                      | ZF                                   | NF                                                    | LUF                          | LVF           |
|             | Modified No                                                                                                         | No                                           | No                      | No                                   | No                                                    | No                           | No            |
| Pipeline    | This is a 2 pipel<br>F32TOUI16R<br>NOP<br>NOP                                                                       |                                              | ; 2 p<br>; 1 c          | ipeline cy<br>ycle delay             | or non-cor                                            | nflicting ir<br>s, RaH updat |               |
|             | Any instruction i<br>as a source ope                                                                                |                                              | ot must no              | ot use Ra⊦                           | l as a destir                                         | nation regist                | er or use RaH |
| Example     | MOVIZ<br>MOVXI                                                                                                      | R5H, #0x412C<br>R5H, #0xCCCD                 | ; R5H                   | = 0x412C<br>= 0xCCCD<br>= 10.8 (0x   | 412CCCCD)                                             |                              |               |
|             | F32TOUI16R                                                                                                          | R6H, R5H                                     | ; R6H                   |                                      | F32TOUI16rc                                           | ound (R5H)                   |               |
|             | MOVF32                                                                                                              | R7H, #-10.8                                  | ; R7H<br>; <<br>; R6H   | = -10.8 (0<br>F32TOUI16R<br>(15:0) = | x0xCl2CCCCI<br>complete,<br>11.0 (0x000<br>0.0 (0x000 | )B)                          |               |
|             | F32TOUI16R                                                                                                          | ROH, R7H                                     | ; R0H                   |                                      | F32TOUI16rc                                           |                              |               |
|             | NOP                                                                                                                 |                                              | ; 1 Cy<br>; <<br>; ROH  | cle delay<br>F32TOUI16R<br>(15:0) =  |                                                       |                              | plete         |
| See also    | F32TOI16 RaH,<br>F32TOI16R RaH<br>F32TOUI16 RaH<br>I16TOF32 RaH,<br>I16TOF32 RaH,<br>UI16TOF32 RaH<br>UI16TOF32 RaH | H, RbH<br>H, RbH<br>RbH<br>mem16<br>H, mem16 |                         |                                      |                                                       |                              |               |



# F32TOUI32 RaH, RbH Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

| Operands    |                                 |                                    |                                                      |                                                     |                                                                         |                                                    |                                           |                          |   |
|-------------|---------------------------------|------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------|---|
|             | RaH                             |                                    | floating-poir                                        | nt destinatior                                      | register (R0H                                                           | to R7H)                                            |                                           |                          |   |
|             | RbH                             |                                    | floating-poir                                        | nt source reg                                       | ister (R0H to F                                                         | R7H)                                               |                                           |                          |   |
|             |                                 |                                    |                                                      |                                                     |                                                                         |                                                    |                                           |                          |   |
| Opcode      | LSW: 111<br>MSW: 000            |                                    | 1000 1010<br>00bb baaa                               |                                                     |                                                                         |                                                    |                                           |                          |   |
| Description | Convert<br>result in<br>RaH = 1 | RaH.                               |                                                      | oint value                                          | in RbH to a                                                             | n unsigned                                         | 32-bit intege                             | er and store the         |   |
| Flags       | This ins                        | truction                           | does not aff                                         | ect any fla                                         | gs:                                                                     |                                                    |                                           |                          |   |
|             | Flag                            | TF                                 | ZI                                                   | NI                                                  | ZF                                                                      | NF                                                 | LUF                                       | LVF                      | • |
|             | Modified                        | No                                 | No                                                   | No                                                  | No                                                                      | No                                                 | No                                        | No                       | _ |
| Pipeline    | F32<br>NOP<br>NOP               | FOUI32                             | ine cycle (2р<br><sup>кан, кbн</sup><br>in the delav | ; 2 pi<br>; 1 cy<br>; <                             | peline cycl<br>cle delay c<br>F32TOUI32 c                               | or non-confl<br>completes, F                       | -                                         | ruction<br>er or use RaH |   |
|             | as a sou                        |                                    |                                                      |                                                     |                                                                         |                                                    |                                           |                          |   |
| Example     | F32<br>MOV                      | IZF32<br>TOUI32<br>IZF32<br>TOUI32 | R6H, #12.5<br>R7H, R6H<br>R1H, #-6.5<br>R2H, R1H     | ; R7H =<br>; R1H =<br>; < F3<br>; R2H =<br>; 1 Cycl | F32TOUI32 (<br>-6.5 (0xC0I<br>2TOUI32 com<br>F32TOUI32 (<br>e delay for | R6H)<br>000000)<br>plete, R7H<br>R1H)<br>F32TOUI32 | = 12.0 (0x0<br>to complete<br>= 0.0 (0x00 | 1                        |   |
| See also    | UI32TO                          | 32 RaH<br>32 RaH<br>F32 Ral        | RbH<br>mem32                                         |                                                     |                                                                         |                                                    |                                           |                          |   |



# FRACF32 RaH, RbH Fractional Portion of a 32-bit Floating-Point Value

| Operanus    |                       |                            |                         |                    |                            |                    |                          |               |    |
|-------------|-----------------------|----------------------------|-------------------------|--------------------|----------------------------|--------------------|--------------------------|---------------|----|
|             | RaH                   |                            | floating-point          | destination        | register (R0H              | to R7H)            |                          |               |    |
|             | RbH                   |                            | floating-point          | source regi        | ster (R0H to R             | 7H)                |                          |               |    |
| Opcode      | LSW: 111<br>MSW: 000  |                            | 1111 0001<br>00bb baaa  |                    |                            |                    |                          |               |    |
| Description | Returns               | in RaH t                   | the fractional          | portion c          | f the 32-bit               | floating-poi       | nt value in F            | RpH           |    |
| Flags       | This inst             | ruction o                  | does not affe           | ct any fla         | gs:                        |                    |                          |               |    |
|             | Flag                  | TF                         | ZI                      | NI                 | ZF                         | NF                 | LUF                      | LVF           |    |
|             | Modified              | No                         | No                      | No                 | No                         | No                 | No                       | No            |    |
| Pipeline    |                       | <b>2 pipeli</b><br>F32 Rai | ne cycle (2p)<br>н, кbн | ; 2 pig<br>; 1 cyc | peline cycl<br>cle delay o |                    | icting inst<br>updated   | ruction       |    |
|             | Any insti<br>as a sou |                            |                         | lot must r         | ot use RaH                 | l as a destir      | nation regist            | er or use Ral | -1 |
| Example     | MOVI<br>FRAC<br>NOP   |                            | 2H, #19.625<br>3H, R2H  | ; R3H =<br>; 1 Cyc | -                          | 2H)<br>r FRACF32 t | o complete<br>0.625 (0x3 | F200000)      |    |
| See also    |                       |                            |                         |                    |                            |                    |                          |               |    |



# I16TOF32 RaH, RbH Convert 16-bit Integer to 32-bit Floating-Point Value

| Operands    |                            |                                                                                         |                                                                                                   |                                           |                                                                                       |                                            |              |   |
|-------------|----------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|--------------|---|
|             | RaH                        | floating-poir                                                                           | nt destination                                                                                    | n register (R0H                           | I to R7H)                                                                             |                                            |              |   |
|             | RbH                        | floating-poir                                                                           | nt source reg                                                                                     | ister (R0H to F                           | R7H)                                                                                  |                                            |              |   |
| Opcode      | LSW: 1110 (<br>MSW: 0000 ( |                                                                                         |                                                                                                   |                                           |                                                                                       |                                            |              |   |
| Description | result in Ra               |                                                                                         | teger in R                                                                                        | bH to a 32-l                              | bit floating p                                                                        | oint value a                               | nd store the |   |
|             | RaH = I16To                | F32 RbH                                                                                 |                                                                                                   |                                           |                                                                                       |                                            |              |   |
| Flags       | This instruc               | tion does not aff                                                                       | ect any fla                                                                                       | igs:                                      |                                                                                       |                                            |              |   |
|             | Flag TF                    | ZI                                                                                      | NI                                                                                                | ZF                                        | NF                                                                                    | LUF                                        | LVF          |   |
|             | Modified No                | o No                                                                                    | No                                                                                                | No                                        | No                                                                                    | No                                         | No           |   |
| Pipeline    | I16TOF3<br>NOP<br>NOP      | bipeline cycle (2)<br>B2 RaH, RbH<br>tion in the delay<br>e operand.                    | ; 2 pi<br>; 1 cy<br>; <                                                                           | peline cycl<br>cle delay o<br>I16TOF32 co | les (2p)<br>or non-confi<br>ompletes, Ra                                              | -                                          |              | I |
| Example     | MOVIZ<br>MOVXI             | R0H, #0x0000<br>R0H, #0x0004<br>R2 R1H, R0H<br>R2H, #0x0000<br>R2H, #0xFFFC<br>R2H, R2H | <pre>H ; R0H[1 ; R1H = ) ; R2H[3 ; <i1 1="" ;="" c="" cyc<="" pre="" r2h[1="" r3h=";"></i1></pre> | 5:0] = -4.0<br>I16TOF32 (<br>le delay fo  | 0 (0x0004)<br>(R0H)<br>0 (0x0000)<br>plete, R1H<br>0 (0xFFFC)<br>(R2H)<br>0r I16TOF32 | = 4.0 (0x408<br>to complete<br>= -4.0 (0x0 | 1            |   |
| See also    | 116TOF32 F                 | RaH, RbH<br>RaH, RbH<br>R RaH, RbH<br>RaH, mem16<br>RaH, mem16                          |                                                                                                   |                                           |                                                                                       |                                            |              |   |



# I16TOF32 RaH, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

| Operands    |                                                                                            |                                                                  |                                                                       |                                                                                      |                                                                      |                                            |      |
|-------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|------|
|             | RaH                                                                                        | floating-point                                                   | t destinatior                                                         | n register (R0H                                                                      | I to R7H)                                                            |                                            |      |
|             | mem316                                                                                     | 16-bit source                                                    | e memory lo                                                           | ocation to be co                                                                     | onverted                                                             |                                            |      |
| Opcode      | LSW: 1110 01<br>MSW: 0000 0a                                                               |                                                                  |                                                                       |                                                                                      |                                                                      |                                            |      |
| Description |                                                                                            | 16-bit signed into<br>t value and store                          |                                                                       |                                                                                      | e mem16 po                                                           | inter to a 32                              | -bit |
| Flags       | This instructi                                                                             | on does not affe                                                 | ect any fla                                                           | igs:                                                                                 |                                                                      |                                            |      |
|             | Flag TF                                                                                    | ZI                                                               | NI                                                                    | ZF                                                                                   | NF                                                                   | LUF                                        | LVF  |
|             | Modified No                                                                                | No                                                               | No                                                                    | No                                                                                   | No                                                                   | No                                         | No   |
| Pipeline    | I16TOF32<br>NOP<br>NOP                                                                     | ipeline cycle (2p<br>RaH, mem16<br>on in the delay s<br>operand. | ; 2 pi<br>; 1 cy<br>; <                                               | peline cycl<br>cle delay o<br>I16TOF32 co                                            | les (2p)<br>or non-confi<br>ompletes, Ra                             |                                            |      |
| Example     | MOVW<br>MOV<br>I16TOF32<br>MOV<br>I16TOF32<br>NOP                                          | @1, #0xFFFC                                                      | ; [0x00<br>; R0H =<br>; [0x00<br>; <i1<br>; R1H =<br/>; 1 Cyc</i1<br> | A000] = 4.0<br>I16TOF32  <br>A001] = -4.<br>6TOF32 comp<br>I16TOF32  <br>le delay fo | [0x00A000]<br>.0 (0xFFFC)<br>plete, R0H<br>[0x00A001]<br>pr I16TOF32 | = 4.0 (0x408<br>to complete<br>= -4.0 (0x0 | 2    |
| See also    | F32TOI16 R<br>F32TOI16R<br>F32TOUI16<br>F32TOUI16F<br>I16TOF32 R<br>UI16TOF32<br>UI16TOF32 | RaH, RbH<br>RaH, RbH<br>R RaH, RbH<br>aH, RbH<br>RaH, mem16      |                                                                       |                                                                                      |                                                                      |                                            |      |

# I32TOF32 RaH, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

| Operands    |                                                     |                                                                                                                                                                                          |                                                      |                                                                |                                                                                        |                                                                     |                                                            |               |  |  |  |
|-------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------|--|--|--|
|             | RaH                                                 |                                                                                                                                                                                          | floating-poin                                        | t destinatior                                                  | register (R0H                                                                          | to R7H)                                                             |                                                            |               |  |  |  |
|             | mem32                                               | mem32 32-bit source for the MOV32 operation. mem32 means that the operation can only<br>address memory using any of the direct or indirect addressing modes supported by the<br>C28x CPU |                                                      |                                                                |                                                                                        |                                                                     |                                                            |               |  |  |  |
| Opcode      | LSW: 1110<br>MSW: 0000                              |                                                                                                                                                                                          | 1000 1000<br>mem32                                   |                                                                |                                                                                        |                                                                     |                                                            |               |  |  |  |
| Description |                                                     | ue and                                                                                                                                                                                   | bit signed int<br>store the res                      |                                                                |                                                                                        | mem32 po                                                            | inter to a 32-                                             | -bit floating |  |  |  |
| Flags       | This instr                                          | uction                                                                                                                                                                                   | does not affe                                        | ect any fla                                                    | gs:                                                                                    |                                                                     |                                                            |               |  |  |  |
|             | Flag                                                | TF                                                                                                                                                                                       | ZI                                                   | NI                                                             | ZF                                                                                     | NF                                                                  | LUF                                                        | LVF           |  |  |  |
|             | Modified                                            | No                                                                                                                                                                                       | No                                                   | No                                                             | No                                                                                     | No                                                                  | No                                                         | No            |  |  |  |
|             | •                                                   |                                                                                                                                                                                          |                                                      | ; <                                                            | I32TOF32 cc                                                                            | mpletes, Ra                                                         | -                                                          | er or use RaH |  |  |  |
| Example     | AS A SOUR<br>MOVW<br>MOV<br>MOV<br>I32TC<br>NOP     | L<br>(G<br>(G                                                                                                                                                                            | PP, #0x0280<br>00, #0x1111<br>01, #0x1111<br>R1H, @0 | <pre>; [0x00A ; [0x00A ; Value ; 0x00A0 ; R1H = ; 1 Cycl</pre> | 000] = 4369<br>001] = 4369<br>of the 32 b<br>01 and 0x00<br>I32TOF32 (0<br>e delay for | (0x1111)<br>oit signed :<br>A000 is +28<br>x11111111)<br>I32TOF32 1 | integer pres<br>36331153 (02<br>to complete<br>= 286331153 |               |  |  |  |
| See also    | F32T013<br>F32T0U1<br>I32T0F3<br>U132T0F<br>U132T0F | 32 Rai<br>2 RaH,<br>32 Rai                                                                                                                                                               | H, RbH<br>RbH                                        | 15                                                             |                                                                                        | ,                                                                   |                                                            |               |  |  |  |



# I32TOF32 RaH, RbH Convert 32-bit Integer to 32-bit Floating-Point Value

| Operands    |                                                    |                                |                                       |                                                     |                                           |                                                               |                |               |
|-------------|----------------------------------------------------|--------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------|---------------|
|             | RaH                                                |                                | floating-point                        | destination                                         | register (R0H                             | to R7H)                                                       |                |               |
|             | RbH                                                |                                | floating-point                        | source reg                                          | ister (R0H to F                           | 87H)                                                          |                |               |
| Opcode      | LSW: 111<br>MSW: 000                               |                                | 1000 1001<br>00bb baaa                |                                                     |                                           |                                                               |                |               |
| Description | Convert<br>result in<br>RaH = 13                   | RaH.                           | ned 32-bit inte                       | eger in R                                           | bH to a 32-t                              | bit floating-p                                                | oint value ai  | nd store the  |
| Flags       | This inst                                          | truction                       | does not affe                         | ect any fla                                         | igs:                                      |                                                               |                |               |
|             | Flag                                               | TF                             | ZI                                    | NI                                                  | ZF                                        | NF                                                            | LUF            | LVF           |
|             | Modified                                           | No                             | No                                    | No                                                  | No                                        | No                                                            | No             | No            |
| Pipeline    | I327<br>NOP<br>NOP                                 | TOF32 R                        | ine cycle (2р<br>ан, Rbн              | ; 2 pi<br>; 1 cy<br>; <                             | peline cycl<br>cle delay c<br>I32TOF32 cc | r non-confl<br>mpletes, Ra                                    | -              |               |
|             | Any inst<br>as a sou                               |                                |                                       | lot must                                            | not use RaF                               | l as a destir                                                 | nation registe | er or use RaH |
| Example     | MOVI<br>MOVX<br>I327<br>NOP                        | KI R                           | 2H, #0x1111<br>2H, #0x1111<br>3H, R2H | ; R2H[1<br>; Value<br>; in R2<br>; R3H =<br>; 1 Cyc | H is +28633<br>I32TOF32 (<br>le delay fo  | 9 (0x1111)<br>bit signed<br>1153 (0x111<br>R2H)<br>r I32TOF32 | to complete    |               |
| See also    | F32T013<br>F32T0U<br>132T0F3<br>U132T01<br>U132T01 | JI32 Rai<br>32 RaH,<br>F32 Rai | H, RbH<br>mem32                       | , < 1                                               | 5210F52 COI                               | piece, KSU                                                    | - 200331133    | (074000000)   |

# MACF32 R3H, R2H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

| Operands     |                                                                                   |            |                             |                | Ilel multiply               |                  |                | e operands are   |  |
|--------------|-----------------------------------------------------------------------------------|------------|-----------------------------|----------------|-----------------------------|------------------|----------------|------------------|--|
|              |                                                                                   |            | , RaH, RbH<br>, R3H, R2H    |                |                             |                  |                |                  |  |
|              | R3H                                                                               |            | floating-poir               | nt destination | and source reg              | gister for the A | DDF32          |                  |  |
|              | R2H                                                                               |            | floating-poir               | nt source reg  | ister for the AD            | DF32 operatio    | on (R0H to R7H | I)               |  |
|              | RdH                                                                               |            | floating-poir<br>RdH cannot |                | register for MF             | YF32 operati     | on (R0H to R7H | H)               |  |
|              | ReH                                                                               |            | floating-poir               | nt source reg  | ister for MPYF3             | 2 operation (I   | R0H to R7H)    |                  |  |
|              | RfH                                                                               |            | floating-poir               | nt source reg  | ister for MPYF3             | 2 operation (I   | R0H to R7H)    |                  |  |
|              |                                                                                   |            |                             |                |                             |                  |                |                  |  |
| Opcode       | LSW: 111<br>MSW: fee                                                              |            | 0100 00ff<br>ccbb baaa      |                |                             |                  |                |                  |  |
| Description  | This inst<br>instruction                                                          |            | s an alias fo               | or the para    | llel multiply               | and add, M       | IACF32    AE   | DDF32,           |  |
|              | RdH = Re<br>R3H = R3                                                              |            |                             |                |                             |                  |                |                  |  |
| Restrictions | The des<br>cannot b                                                               |            | egister for                 | the MPYF       | 32 and the A                | .DDF32 mu        | ist be unique  | e. That is, RdH  |  |
| Flags        | This inst                                                                         | ruction r  | nodifies the                | following      | flags in the                | STF registe      | er:.           |                  |  |
|              | Flag                                                                              | TF         | ZI                          | NI             | ZF                          | NF               | LUF            | LVF              |  |
|              | Modified                                                                          | No         | No                          | No             | No                          | No               | Yes            | Yes              |  |
|              |                                                                                   |            |                             |                |                             |                  |                |                  |  |
|              | The STF                                                                           | - register | r flags are r               | nodified as    | s follows:                  |                  |                |                  |  |
|              | <ul> <li>LUF = 1 if MPYF32 or ADDF32 generates an underflow condition.</li> </ul> |            |                             |                |                             |                  |                |                  |  |
|              |                                                                                   |            |                             |                | nerates an o                |                  |                |                  |  |
| Pipeline     | Both MF                                                                           | YF32 ar    | nd ADDF32                   | take 2 pir     | eline cycles                | (2p) That i      | s:             |                  |  |
|              |                                                                                   |            | , RbH, RcH                  |                | eline cycles                |                  | •••            |                  |  |
|              | ADDE<br>NOP                                                                       | 32 RdH     | , ReH, RfH                  |                | eline cycles                |                  | ating instr    | wation           |  |
|              | NOP                                                                               |            |                             |                | le delay or<br>PYF32, ADDF3 |                  |                |                  |  |
|              | NOP                                                                               |            |                             |                |                             |                  |                |                  |  |
|              | Any inst<br>a source                                                              |            |                             | slot must i    | not use RaH                 | or RdH as        | a destinatio   | n register or as |  |
|              |                                                                                   |            |                             |                |                             |                  |                |                  |  |



| Example  | ; Perform 5 multiply and accumulate operations:                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------|
|          | ; 1st multiply: A = X0 * Y0                                                                                       |
|          | ; 2nd multiply: B = X1 * Y1                                                                                       |
|          | ; 3rd multiply: C = X2 * Y2                                                                                       |
|          | ; 4th multiply: D = X3 * Y3                                                                                       |
|          | ; 5th multiply: E = X3 * Y3                                                                                       |
|          | ;<br>; Result = A + B + C + D + E                                                                                 |
|          | MOV32 R0H, *XAR4++ ; R0H = X0                                                                                     |
|          | MOV32 R1H, $*XAR5++$ ; R1H = Y0                                                                                   |
|          | ; $R2H = A = X0 * Y0$                                                                                             |
|          | MPYF32 R2H, R0H, R1H ; In parallel R0H = X1                                                                       |
|          | MOV32 R0H, *XAR4++                                                                                                |
|          | MOV32 R1H, *XAR5++ ; R1H = Y1                                                                                     |
|          | ; R3H = B = X1 * Y1                                                                                               |
|          | MPYF32 R3H, R0H, R1H ; In parallel R0H = X2                                                                       |
|          | MOV32 ROH, *XAR4++                                                                                                |
|          | MOV32 R1H, *XAR5++ ; R1H = Y2                                                                                     |
|          | ; $R3H = A + B$<br>; $R2H = C = X2 * Y2$                                                                          |
|          | MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3                                                             |
|          | MOV32 ROH, *XAR4++                                                                                                |
|          | MOV32 R1H, *XAR5++ ; R1H = Y3                                                                                     |
|          | ; $R3H = (A + B) + C$                                                                                             |
|          | ; $R2H = D = X3 * Y3$                                                                                             |
|          | MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4                                                             |
|          | MOV32 R0H, *XAR4                                                                                                  |
|          | MOV32 R1H, *XAR5 ; R1H = Y4                                                                                       |
|          | ; The next MACF32 is an alias for<br>; MPYF32    ADDF32                                                           |
|          | ; $R2H = E = X4 * Y4$                                                                                             |
|          | MACF32 R3H, R2H, R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D<br>NOP ; Wait for MPYF32    ADDF32 to complete |
|          | ADDF32 R3H, R3H, R2H ; R3H = $(A + B + C + D) + E$                                                                |
|          | NOP ; Wait for ADDF32 to complete<br>MOV32 @Result, R3H ; Store the result                                        |
|          | MOV32 @Result, RSH , Store the result                                                                             |
| See also | MACF32 R3H, R2H, RdH, ReH, RfH    MOV32 RaH, mem32                                                                |
|          | MACF32 R7H, R3H, mem32, *XAR7++                                                                                   |
|          | MACF32 R7H, R6H, RdH, ReH, RfH                                                                                    |
|          | MACF32 R7H, R6H, RdH, ReH, RfH    MOV32 RaH, mem32                                                                |
|          |                                                                                                                   |
|          | MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH                                                                      |



### MACF32 R3H, R2H, RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel Move

| Operands     |                                      |                                                                                                                                                                                     |                                                |                                           |                                             |                            |                              |                        |  |
|--------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------|----------------------------|------------------------------|------------------------|--|
|              | R3H                                  | flo                                                                                                                                                                                 | ating-point                                    | destination/s                             | source registe                              | r R3H for the a            | add operation                |                        |  |
|              | R2H                                  | R2Hfloating-point source register R2H for the add operationRdHfloating-point destination register (R0H to R7H) for the multiply operation<br>RdH cannot be the same register as RaH |                                                |                                           |                                             |                            |                              |                        |  |
|              | RdH                                  |                                                                                                                                                                                     |                                                |                                           |                                             |                            |                              |                        |  |
|              | ReH                                  | H floating-point source register (R0H to R7H) for the multiply operation                                                                                                            |                                                |                                           |                                             |                            |                              |                        |  |
|              | RfH                                  | floating-point source register (R0H to R7H) for the multiply operation                                                                                                              |                                                |                                           |                                             |                            |                              |                        |  |
|              | RaH                                  |                                                                                                                                                                                     |                                                |                                           | register for the<br>e same regist           |                            | ation (R0H to R              | 7H).                   |  |
|              | mem32                                | 32                                                                                                                                                                                  | 2-bit source                                   | for the MOV                               | /32 operation                               |                            |                              |                        |  |
| Opcode       | LSW: 1110<br>MSW: eedd               |                                                                                                                                                                                     | .1 fffe<br>nem32                               |                                           |                                             |                            |                              |                        |  |
| Description  |                                      | . The des                                                                                                                                                                           | tination re                                    | egister for                               |                                             |                            | s and move<br>the same a     | from register<br>s the |  |
|              | R3H = R3H<br>RdH = ReH<br>RaH = [mem | * RfH,                                                                                                                                                                              |                                                |                                           |                                             |                            |                              |                        |  |
| Restrictions |                                      |                                                                                                                                                                                     |                                                |                                           |                                             | MOV32 mu<br>ster as RdH    |                              | e. That is, RaH        |  |
| Flags        | This instru                          | ction mod                                                                                                                                                                           | ifies the f                                    | following f                               | lags in the                                 | STF registe                | r:                           |                        |  |
|              | Flag T                               | F Z                                                                                                                                                                                 | (1                                             | NI                                        | ZF                                          | NF                         | LUF                          | LVF                    |  |
|              | Modified N                           | lo Y                                                                                                                                                                                | ′es                                            | Yes                                       | Yes                                         | Yes                        | Yes                          | Yes                    |  |
|              | • LVF = '                            | 1 if MACF<br>1 if MACF<br>ts the NF,<br>1);<br>23) == 0)<br>1);                                                                                                                     | 32 (add c<br>32 (add c<br>, ZF, NI a<br>{ zF = | or multiply<br>or multiply<br>and ZI flag | r) generates<br>) generates<br>s as follows | an overflow                | ow conditior<br>v condition. | l.                     |  |
| Pipeline     | The MACF                             | 32 takes                                                                                                                                                                            | 2 pipeline                                     | e cycles (2                               | 2p) and the                                 | MOV32 tak                  | es a single                  | cycle. That is:        |  |
|              | MACF32<br>   MOV32<br>NOP            | R3H, R2<br>RaH, me                                                                                                                                                                  |                                                | ReH, RfH                                  | ; 1 cycl<br>; < MO<br>; 1 cycl              | V32 complet<br>e delay for | es, RaH upd                  |                        |  |
|              | NOP                                  |                                                                                                                                                                                     |                                                |                                           |                                             |                            |                              |                        |  |
|              |                                      |                                                                                                                                                                                     |                                                |                                           | version of<br>s a source                    |                            | ust not use                  | R3H or RdH as          |  |



| Example  | ; Perform 5 multiply and accumulate operations:                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | ;<br>; 1ST multiply: A = X0 * Y0<br>; 2nd multiply: B = X1 * Y1<br>; 3rd multiply: C = X2 * Y2<br>; 4TH multiply: D = X3 * Y3<br>; 5th multiply: E = X3 * Y3                                              |
|          | ;<br>; Result = A + B + C + D + E                                                                                                                                                                         |
|          | MOV32 R0H, *XAR4++ ; R0H = X0<br>MOV32 R1H, *XAR5++ ; R1H = Y0                                                                                                                                            |
|          | <pre></pre>                                                                                                                                                                                               |
|          | ; R3H = B = X1 * Y1<br>MPYF32 R3H, R0H, R1H ; In parallel R0H = X2<br>   MOV32 R0H, *XAR4++                                                                                                               |
|          | MOV32 R1H, *XAR5++ ; R1H = Y2                                                                                                                                                                             |
|          | ; R3H = A + B<br>; R2H = C = X2 * Y2<br>MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3<br>   MOV32 R0H, *XAR4++                                                                                    |
|          | MOV32 R1H, *XAR5++ ; R1H = Y3<br>; R3H = (A + B) + C                                                                                                                                                      |
|          | ; R2H = D = X3 * Y3<br>MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4<br>   MOV32 R0H, *XAR4<br>MOV32 R1H, *XAR5 ; R1H = Y4                                                                        |
|          | ; R2H = E = X4 * Y4                                                                                                                                                                                       |
|          | MPYF32 R2H, R0H, R1H ; in parallel R3H = (A + B + C) + D<br>   ADDF32 R3H, R3H, R2H                                                                                                                       |
|          | NOP ; Wait for MPYF32    ADDF32 to complete                                                                                                                                                               |
|          | ADDF32 R3H, R3H, R2H; R3H = (A + B + C + D) + ENOP; Wait for ADDF32 to completeMOV32 @Result, R3H; Store the result                                                                                       |
| See also | MACF32 R3H, R2H, RdH, ReH, RfH<br>MACF32 R7H, R3H, mem32, *XAR7++<br>MACF32 R7H, R6H, RdH, ReH, RfH<br>MACF32 R7H, R6H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH |



# MACF32 R7H, R3H, mem32, \*XAR7++ 32-bit Floating-Point Multiply and Accumulate

### Operands

| Operands     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|--|--|--|
|              | R7H                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                           | floating-p                                    | oint destinatior                                               | register                                                                                                   |                                                                                                        |                                                     |                |  |  |  |
|              | R3H                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                           | floating-p                                    | oint destinatior                                               | register                                                                                                   |                                                                                                        |                                                     |                |  |  |  |
|              | mem32                                                                                                                        | mem32 pointer to a 32-bit source location                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
|              | *XAR7                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
|              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
| Opcode       | LSW: 111<br>MSW: 00b                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | 0101 000<br>mem32                             | 0                                                              |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
| Description  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | ccumulate c<br>a single mul                                    |                                                                                                            |                                                                                                        | s a stand-ald                                       | one operation, |  |  |  |
|              | Cycle 1:                                                                                                                     | R3H =                                                                                                                                                                                                                                                                                                                                                                                                     | R3H + R2H                                     | [, R2H = [me                                                   | m32] * [XAR                                                                                                | 7++]                                                                                                   |                                                     |                |  |  |  |
|              | repeat in<br>alternate<br>tempora<br><sub>Cycle 1</sub> :                                                                    | This instruction is the only floating-point instruction that can be repeated using the single repeat instruction (RPT   ). When repeated, the destination of the accumulate will alternate between R3H and R7H on each cycle and R2H and R6H are used as temporary storage for each multiply.<br>Cycle 1: R3H = R3H + R2H, R2H = [mem32] * [XAR7++]<br>Cycle 2: R7H = R7H + R6H, R6H = [mem32] * [XAR7++] |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
|              | Cycle 4:<br>etc                                                                                                              | R7H =                                                                                                                                                                                                                                                                                                                                                                                                     | R7H + R6H                                     | I, R2H = [me<br>I, R6H = [me                                   | m32] * [XAR                                                                                                | .7++]                                                                                                  |                                                     |                |  |  |  |
| Restrictions | R2H and R6H will be used as temporary storage by this instruction.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                |                                                                                                            |                                                                                                        |                                                     |                |  |  |  |
| Flags        | This inst                                                                                                                    | ruction                                                                                                                                                                                                                                                                                                                                                                                                   | modifies t                                    | he following                                                   | flags in the                                                                                               | STF registe                                                                                            | r:                                                  |                |  |  |  |
|              | Flag                                                                                                                         | TF                                                                                                                                                                                                                                                                                                                                                                                                        | ZI                                            | NI                                                             | ZF                                                                                                         | NF                                                                                                     | LUF                                                 | LVF            |  |  |  |
|              | Modified                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                        | No                                            | No                                                             | No                                                                                                         | No                                                                                                     | Yes                                                 | Yes            |  |  |  |
| Pipeline     | <ul> <li>LUF</li> <li>LVF :</li> <li>When reinstruction restriction </li> <li>inst </li> <li>inst </li> <li>MACF3</li> </ul> | = 1 if M<br>= 1 if M<br>epeated<br>on is repond<br>function<br>function<br>(N-1)<br>22 R7H,                                                                                                                                                                                                                                                                                                               | ACF32 ge<br>ACF32 ge<br>the MACF<br>beated. W | e modified as<br>enerates an o<br>532 takes 3 -<br>hen repeate | underflow co<br>overflow cor<br>+ N cycles v<br>d, this instru<br>; No re<br>; Canno<br>; to R2<br>; Execu | ndition.<br>where N is the<br>action has the<br>striction<br>t be a 2p i<br>H, R3H, R6F<br>te N times, | e following p<br>nstruction<br>or R7H<br>where N is | bipeline       |  |  |  |
|              | <inst< td=""><td>ructior</td><td>13&gt;</td><td></td><td></td><td>strictions.</td><td>U P6U and</td><td>ס7ט</td></inst<>     | ructior                                                                                                                                                                                                                                                                                                                                                                                                   | 13>                                           |                                                                |                                                                                                            | strictions.                                                                                            | U P6U and                                           | ס7ט            |  |  |  |

; Can read R2H, R3H, R6H and R7H



Example

MACF32 can also be used standalone. In this case, the insruction takes 2 cycles and the following pipeline restrictions apply:

| <instruction1><br/><instruction2><br/>MACF32 R7H, R3H, *XAR6, *XAR7</instruction2></instruction1> | <pre>; No restriction ; Cannot be a 2p instruction that writes ; to R2H, R3H, R6H or R7H ; R3H = R3H + R2H, R2H = [mem32] * [XAR7++] ; &lt; R2H and R3H are valid (note: no</pre> |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| delay required)                                                                                   |                                                                                                                                                                                   |
| NOP                                                                                               |                                                                                                                                                                                   |
| ZERO R2H<br>ZERO R3H<br>ZERO R6H<br>ZERO R7H                                                      | ; Zero the accumulation registers<br>; and temporary multiply storage registers                                                                                                   |
| RPT #3                                                                                            | ; Repeat MACF32 N+1 (4) times                                                                                                                                                     |
| MACF32 R7H, R3H, *XAR6++, *XAR7++                                                                 | -                                                                                                                                                                                 |
| ADDF32 R7H, R7H, R3H                                                                              | ; Final accumulate                                                                                                                                                                |
| NOP                                                                                               | ; < ADDF32 completes, R7H valid                                                                                                                                                   |
|                                                                                                   |                                                                                                                                                                                   |

Cascading of RPT || MACF32 is allowed as long as the first and subsequent counts are even. Cascading is useful for creating interruptible windows so that interrupts are not delayed too long by the RPT instruction. For example:

|    | ZERO R2H<br>ZERO R3H                        |   | Zero the accumulation registers<br>and temporary multiply storage registers |
|----|---------------------------------------------|---|-----------------------------------------------------------------------------|
|    | ZERO R6H<br>ZERO R7H                        |   |                                                                             |
|    | RPT #3                                      | ; | Execute MACF32 N+1 (4) times                                                |
|    | MACF32 R7H, R3H, *XAR6++, *XAR7++<br>RPT #5 | ; | Execute MACF32 N+1 (6) times                                                |
|    | MACF32 R7H, R3H, *XAR6++, *XAR7++           |   |                                                                             |
| 11 | RPT #N<br>MACF32 R7H, R3H, *XAR6++, *XAR7++ | ; | Repeat MACF32 N+1 times where N+1 is even                                   |
| 11 | ADDF32 R7H, R7H, R3H                        | ; | Final accumulate                                                            |
|    | 101                                         | ; | < ADDF32 completes, R7H valid                                               |

See also

MACF32 R3H, R2H, RdH, ReH, RfH || MOV32 RaH, mem32 MACF32 R7H, R6H, RdH, ReH, RfH || MOV32 RaH, mem32 MPYF32 RaH, RbH, RcH || ADDF32 RdH, ReH, RfH



# MACF32 R7H, R6H, RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

| Operands     | This instruction is an alias for the parallel multiply and add instruction. The operands are translated by the assembler such that the instruction becomes: |           |                             |               |                             |                |                |                  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|---------------|-----------------------------|----------------|----------------|------------------|--|--|
|              |                                                                                                                                                             |           | , RaH, RbH<br>, R7H, R6H    |               |                             |                |                |                  |  |  |
|              | R7H floating-point destination and source register for the ADDF32                                                                                           |           |                             |               |                             |                |                |                  |  |  |
|              | R6H floating-point source register for the ADDF32 operation (R0H to R7H)                                                                                    |           |                             |               |                             |                |                |                  |  |  |
|              | RdH                                                                                                                                                         |           | floating-poir<br>RdH cannot |               | register for MP             | YF32 operation | on (R0H to R7H | 1)               |  |  |
|              | ReH                                                                                                                                                         |           | floating-poir               | nt source reg | ister for MPYF3             | 2 operation (F | R0H to R7H)    |                  |  |  |
|              | RfH                                                                                                                                                         |           | floating-poir               | nt source reg | ister for MPYF3             | 2 operation (F | R0H to R7H)    |                  |  |  |
|              |                                                                                                                                                             |           |                             |               |                             |                |                |                  |  |  |
| Opcode       | LSW: 111<br>MSW: fee                                                                                                                                        |           | 0100 00ff<br>ccbb baaa      |               |                             |                |                |                  |  |  |
| Description  | This inst<br>instruction                                                                                                                                    |           | s an alias fo               | or the para   | llel multiply a             | and add, M     | ACF32    AE    | )DF32,           |  |  |
|              | RdH = Ra<br>R7H = R6                                                                                                                                        |           |                             |               |                             |                |                |                  |  |  |
| Restrictions | The des<br>cannot b                                                                                                                                         |           | egister for                 | the MPYF      | 32 and the A                | DDF32 mu       | ist be unique  | e. That is, RdH  |  |  |
| Flags        | This inst                                                                                                                                                   | ruction r | nodifies the                | following     | flags in the S              | STF registe    | er:.           |                  |  |  |
|              | Flag                                                                                                                                                        | TF        | ZI                          | NI            | ZF                          | NF             | LUF            | LVF              |  |  |
|              | Modified                                                                                                                                                    | No        | No                          | No            | No                          | No             | Yes            | Yes              |  |  |
|              | <b>T</b> 0 <b>T</b>                                                                                                                                         | <u> </u>  | 4                           |               | <b>6</b> H                  |                |                |                  |  |  |
|              |                                                                                                                                                             | -         | flags are r                 |               |                             |                |                |                  |  |  |
|              |                                                                                                                                                             |           |                             | 0             | nerates an u                |                |                |                  |  |  |
|              | • LVF                                                                                                                                                       | = 1 if MF | PYF32 or A                  | DDF32 ge      | nerates an o                | verflow cor    | ndition.       |                  |  |  |
| Pipeline     | Both MF                                                                                                                                                     | YF32 ar   | nd ADDF32                   | take 2 pip    | eline cycles                | (2p) That i    | s:             |                  |  |  |
|              |                                                                                                                                                             |           | , RbH, RcH                  |               | eline cycles                | -              |                |                  |  |  |
|              | ADDF<br>NOP                                                                                                                                                 | 32 RdH    | , ReH, RfH                  |               | eline cycles<br>le delay or |                | cting instr    | ruction          |  |  |
|              |                                                                                                                                                             |           |                             | -             | PYF32, ADDF3                |                |                |                  |  |  |
|              | NOP                                                                                                                                                         |           |                             |               |                             |                |                |                  |  |  |
|              | Any inst<br>a source                                                                                                                                        |           |                             | slot must i   | not use RaH                 | or RdH as      | a destinatio   | n register or as |  |  |
|              |                                                                                                                                                             |           |                             |               |                             |                |                |                  |  |  |



| Example  | ; Perform 5 multiply and accumulate operations:                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <pre>; 1st multiply: A = X0 * Y0<br/>; 2nd multiply: B = X1 * Y1<br/>; 3rd multiply: C = X2 * Y2<br/>; 4th multiply: D = X3 * Y3<br/>; 5th multiply: E = X3 * Y3</pre>                                                                                                          |
|          | ;<br>; Result = A + B + C + D + E                                                                                                                                                                                                                                               |
|          | MOV32 R0H, *XAR4++ ; R0H = X0<br>MOV32 R1H, *XAR5++ ; R1H = Y0<br>; R6H = A = X0 * Y0                                                                                                                                                                                           |
|          | MPYF32 R6H, R0H, R1H ; In parallel R0H = X1<br>   MOV32 R0H, *XAR4++<br>MOV32 R1H, *XAR5++ ; R1H = Y1                                                                                                                                                                           |
|          | <pre>; R7H = B = X1 * Y1 ; In parallel R0H = X2    MOV32 R0H, *XAR4++ MOV32 R1H, *XAR5++ ; R1H = Y2 ; R7H = A + B</pre>                                                                                                                                                         |
|          | ; R6H = C = X2 * Y2<br>MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3<br>   MOV32 R0H, *XAR4++<br>MOV32 R1H, *XAR5++<br>; R1H = Y3<br>; R7H = (A + B) + C                                                                                                                |
|          | ; R6H = D = X3 * Y3<br>MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4<br>   MOV32 R0H, *XAR4<br>MOV32 R1H, *XAR5 ; R1H = Y4                                                                                                                                              |
|          | ; Next MACF32 is an alias for<br>; MPYF32    ADDF32                                                                                                                                                                                                                             |
|          | MACF32 R7H, R6H, R6H, R0H, R1H ; R6H = E = X4 * Y4<br>; in parallel R7H = (A + B + C) + D<br>; Wait for MPYF32    ADDF32 to complete<br>ADDF32 R7H, R7H, R6H<br>; R7H = (A + B + C + D) + E<br>NOP<br>; Wait for ADDF32 to complete<br>MOV32 @Result, R7H<br>; Store the result |
| See also | MACF32 R3H, R2H, RdH, ReH, RfH<br>MACF32 R3H, R2H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MACF32 R7H, R3H, mem32, *XAR7++<br>MACF32 R7H, R6H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH                                                   |



# MACF32 R7H, R6H, RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply and Accumulate with Parallel Move

| •                     |                                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                   |                                                                                                    |                                                                               |                                                               |               |     |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|-----|
| Operands              | . <u></u>                                                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                   |                                                                                                    |                                                                               |                                                               |               |     |
|                       | R7H                                                                                                                                                                                                                | floating-po                                                                                                                                 | pint destination                                                                                                                  | source registe                                                                                     | r R7H for the                                                                 | add operation                                                 |               |     |
|                       | R6H                                                                                                                                                                                                                | floating-po                                                                                                                                 | pint source regi                                                                                                                  | ster R6H for th                                                                                    | e add operati                                                                 | on                                                            |               |     |
|                       | RdH                                                                                                                                                                                                                |                                                                                                                                             | pint destination<br>not be the same                                                                                               |                                                                                                    |                                                                               | e multiply opera                                              | ation.        |     |
|                       | ReH                                                                                                                                                                                                                | floating-po                                                                                                                                 | pint source regi                                                                                                                  | ster (R0H to R                                                                                     | 7H) for the m                                                                 | ultiply operation                                             | l             |     |
|                       | RfH                                                                                                                                                                                                                | floating-po                                                                                                                                 | pint source regi                                                                                                                  | ster (R0H to R                                                                                     | 7H) for the m                                                                 | ultiply operation                                             | I             |     |
|                       | RaH                                                                                                                                                                                                                |                                                                                                                                             | oint destination<br>ot be R3H or t                                                                                                |                                                                                                    |                                                                               | ation (R0H to F                                               | R7H).         |     |
|                       | mem32                                                                                                                                                                                                              | 32-bit sou                                                                                                                                  | Irce for the MO                                                                                                                   | V32 operation                                                                                      |                                                                               |                                                               |               |     |
| Opcode<br>Description | LSW: 1110 00<br>MSW: eedd da<br>Multiply/accu<br>memory. The<br>registers for f<br>R7H = R7H +<br>RdH = ReH *<br>RaH = [mem32                                                                                      | aa mem32<br>mulate the co<br>destination r<br>he MACF32.<br>R6H<br>RfH,                                                                     | ontents of flo                                                                                                                    |                                                                                                    |                                                                               |                                                               |               |     |
|                       |                                                                                                                                                                                                                    |                                                                                                                                             |                                                                                                                                   |                                                                                                    |                                                                               |                                                               |               |     |
| Restrictions          |                                                                                                                                                                                                                    |                                                                                                                                             | or the MACF                                                                                                                       |                                                                                                    |                                                                               |                                                               | e. That is, F | RaH |
|                       | cannot be R7                                                                                                                                                                                                       | 'H and RaH c                                                                                                                                | annot be the                                                                                                                      | e same regi                                                                                        | ster as RdH                                                                   | ۱                                                             | e. That is, F | RaH |
| Restrictions<br>Flags | cannot be R7                                                                                                                                                                                                       |                                                                                                                                             | annot be the                                                                                                                      | e same regi                                                                                        | ster as RdH                                                                   | ۱                                                             | e. That is, F | RaH |
|                       | cannot be R7                                                                                                                                                                                                       | 'H and RaH c                                                                                                                                | annot be the                                                                                                                      | e same regi                                                                                        | ster as RdH                                                                   | ۱                                                             | e. That is, F | RaH |
|                       | cannot be R7                                                                                                                                                                                                       | 'H and RaH o<br>on modifies th                                                                                                              | annot be the                                                                                                                      | e same regis<br>flags in the s                                                                     | ster as RdH<br>STF registe                                                    | H.<br>er:                                                     |               | {аН |
|                       | cannot be R7<br>This instruction<br>Flag TF<br>Modified No<br>The STF regination<br>• LUF = 1 if<br>• LVF = 1 if<br>The MOV32<br>NF = RaH(31)<br>ZF = 0;<br>if(RaH(30:23)<br>NI = RaH(31)<br>ZI = 0;               | TH and RaH c<br>on modifies th<br>Yes<br>ster flags are<br>f MACF32 (ac<br>MACF32 (ac<br>Instruction wil<br>;<br>) == 0) {ZF =              | annot be the<br>ne following<br><u>NI</u><br>Yes<br>modified as<br>d or multiply<br>d or multiply<br>ll set the NF<br>= 1; NF = 0 | e same regis<br>flags in the s<br>Yes<br>follows:<br>y) generates<br>y) generates<br>, ZF, NI and  | ster as RdH<br>STF registe<br><u>NF</u><br>Yes<br>s an underf<br>s an overflo | I.<br>Er:<br>Ves<br>Now condition<br>w condition.             | LVF<br>Yes    | {аН |
|                       | cannot be R7<br>This instruction<br>Flag TF<br>Modified No<br>The STF regin<br>• LUF = 1 if<br>• LVF = 1 if<br>The MOV32<br>NF = RaH(31)<br>ZF = 0;<br>if (RaH(30:23)<br>NI = RaH(31)<br>ZI = 0;<br>if (RaH(31:0)) | TH and RaH c<br>on modifies th<br><u>ZI</u><br>Yes<br>ster flags are<br>f MACF32 (ac<br>MACF32 (ac<br>Instruction wil<br>;<br>) == 0) {ZF = | me following<br>NI<br>Yes<br>modified as<br>d or multiply<br>d or multiply<br>ll set the NF<br>= 1; NF = 0<br>1;                  | e same regis<br>flags in the s<br>Yes<br>follows:<br>y) generates<br>y) generates<br>y, ZF, NI and | ster as RdH<br>STF registe<br><u>NF</u><br>Yes<br>an underf<br>an overflo     | I.<br>LUF<br>Yes<br>low condition<br>w condition.<br>follows: | LVF<br>Yes    |     |



| Example  | ; Perform 5 multiply and accumulate operations:                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <pre> / Ist multiply: A = X0 * Y0 / 2nd multiply: B = X1 * Y1 / 3rd multiply: C = X2 * Y2 / 4th multiply: D = X3 * Y3 / 5th multiply: E = X3 * Y3 /</pre> |
|          | ; Result = $A + B + C + D + E$                                                                                                                            |
|          | MOV32 R0H, *XAR4++ ; R0H = X0<br>MOV32 R1H, *XAR5++ ; R1H = Y0                                                                                            |
|          | ; R6H = A = X0 * Y0                                                                                                                                       |
|          | MPYF32 R6H, R0H, R1H ; In parallel R0H = X1                                                                                                               |
|          | MOV32 R1H, *XAR5++ ; R1H = Y1                                                                                                                             |
|          | ; R7H = B = X1 * Y1                                                                                                                                       |
|          | MPYF32 R7H, R0H, R1H ; In parallel R0H = X2                                                                                                               |
|          | MOV32 R0H, *XAR4++<br>MOV32 R1H, *XAR5++ ; R1H = Y2                                                                                                       |
|          | ; R7H = A + B<br>; R6H = C = X2 * Y2<br>MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X3<br>   MOV32 R0H, *XAR4++<br>MOV32 R1H, *XAR5++ ; R1H = Y3   |
|          | ; R7H = (A + B) + C<br>; R6H = D = X3 * Y3                                                                                                                |
|          | MACF32 R7H, R6H, R6H, R0H, R1H ; In parallel R0H = X4                                                                                                     |
|          | MOV32 R1H, *XAR5 ; R1H = Y4                                                                                                                               |
|          | ; R6H = E = X4 * Y4<br>MPYF32 R6H, R0H, R1H ; in parallel R7H = (A + B + C) + D<br>   ADDF32 R7H, R7H, R6H                                                |
|          | NOP ; Wait for MPYF32    ADDF32 to complete                                                                                                               |
|          | ADDF32 R7H, R7H, R6H ; R7H = (A + B + C + D) + E<br>NOP ; Wait for ADDF32 to complete                                                                     |
|          | MOV32 @Result, R7H ; Store the result                                                                                                                     |
| See also | MACF32 R7H, R3H, mem32, *XAR7++<br>MACF32 R3H, R2H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MPYF32 RaH, RbH, RcH    ADDF32 RdH, ReH, RfH                     |



# MAXF32 RaH, RbH 32-bit Floating-Point Maximum

|                     | RaH                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | floating-po                                            | int source/de                                                              | stination registe                                                                                           | r (R0H to R7H                                                             | )              |                 |  |
|---------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|-----------------|--|
|                     | RbH                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | floating-po                                            | int source rec                                                             | jister (R0H to R                                                                                            | 7H)                                                                       |                |                 |  |
| pcode               | LSW: 111<br>MSW: 000                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                            |                                                                                                             |                                                                           |                |                 |  |
| Description         | if(RaH <                                                           | if(RaH < RbH) RaH = RbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                            |                                                                                                             |                                                                           |                |                 |  |
|                     | Special cases for the output from the MAXF32 operation:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                            |                                                                                                             |                                                                           |                |                 |  |
|                     |                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | will be conv<br>ized output                            |                                                                            | finity<br>verted to pos                                                                                     | sitive zero.                                                              |                |                 |  |
| Flags               | This instruction modifies the following flags in the STF register: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                            |                                                                                                             |                                                                           |                |                 |  |
|                     | Flag                                                               | TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZI                                                     | NI                                                                         | ZF                                                                                                          | NF                                                                        | LUF            | LVF             |  |
|                     | Modified                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                                                     | No                                                                         | Yes                                                                                                         | Yes                                                                       | No             | No              |  |
|                     | in the de<br>if(RaH =                                              | stinati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on register.<br>{ZF=1, NF=                             | 0}                                                                         | on the result                                                                                               | of the opera                                                              | ition, not the | e result stored |  |
|                     | <pre>in the de<br/>if(RaH =<br/>if(RaH &gt;</pre>                  | stinati<br>= RbH)<br>RbH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on register.                                           | 0}<br>0}                                                                   | in the result                                                                                               | of the opera                                                              | ition, not the | e result stored |  |
| ipeline             | <pre>in the de<br/>if(RaH =<br/>if(RaH &gt;<br/>if(RaH &lt;</pre>  | estinati<br>= RbH)<br>RbH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on register.<br>{ZF=1, NF=<br>{ZF=0, NF=               | 0}<br>0}<br>1}                                                             | n the result                                                                                                | of the opera                                                              | ition, not the | e result stored |  |
| Pipeline<br>Example | <pre>in the de<br/>if(RaH =<br/>if(RaH &gt;<br/>if(RaH &lt;</pre>  | estinati<br>= RbH)<br>> RbH)<br>< RbH)<br>a single<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32<br>xF32 | on register.<br>{ZF=1, NF=<br>{ZF=0, NF=<br>{ZF=0, NF= | 0}<br>0}<br>1}<br>iction.<br>0 ; R1H<br>5 ; R2H<br>; R2H<br>; R1H<br>; R2H | n the result<br>= 5.0 (0x<br>= -2.0 (0x<br>= -1.5 (0x<br>= -1.5, ZF<br>= -1.5, ZF<br>= 5.0, ZF<br>= 5.0, ZF | 40A00000)<br>C0000000)<br>BFC00000)<br>= NF = 0<br>= 0, NF =<br>= 0, NF = | 1              | e result stored |  |



# MAXF32 RaH, #16FHi 32-bit Floating-Point Maximum

#### Operands

| Operands    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      |                                         |                |                 |  |  |  |  |
|-------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------|-----------------|--|--|--|--|
|             | RaH                                                                            | floating-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oint source/de                 | stination registe                                                    | er (R0H to R7H                          | I)             |                 |  |  |  |  |
|             | #16FHi                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      | nts the upper 16<br>the mantissa a      |                |                 |  |  |  |  |
|             |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      |                                         |                |                 |  |  |  |  |
| Opcode      | LSW: 1110 10<br>MSW: IIII II                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      |                                         |                |                 |  |  |  |  |
| Description | immediate va                                                                   | Compare RaH with the floating-point value represented by the immediate operand. If the immediate value is larger, then load it into RaH.<br>if(RaH < #16FHi:0) RaH = #16FHi:0                                                                                                                                                                                                                                                                                                                       |                                |                                                                      |                                         |                |                 |  |  |  |  |
|             | #16FHi is a 1<br>floating-point<br>addressing m<br>are 0. Some<br>-1.5 (0xBFC0 | #16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This addressing mode is most useful for constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x4000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, -1.5 can be represented as #-1.5 or #0xBFC0. |                                |                                                                      |                                         |                |                 |  |  |  |  |
|             | Special cases                                                                  | Special cases for the output from the MAXF32 operation:                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                      |                                         |                |                 |  |  |  |  |
|             |                                                                                | ut will be cor<br>alized output                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      | sitive zero.                            |                |                 |  |  |  |  |
| Flags       | This instruction modifies the following flags in the STF register:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                      |                                         |                |                 |  |  |  |  |
|             | Flag TF                                                                        | ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NI                             | ZF                                                                   | NF                                      | LUF            | LVF             |  |  |  |  |
|             | Modified No                                                                    | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                             | Yes                                                                  | Yes                                     | No             | No              |  |  |  |  |
|             | The ZF and N<br>in the destina<br>if(RaH == #1<br>if(RaH > #1<br>if(RaH < #1   | tion register.<br>5FHi:0) {ZF=<br>5FHi:0) {ZF=                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, NF=0}<br>0, NF=0}           | on the result                                                        | of the opera                            | ation, not the | e result stored |  |  |  |  |
| Pipeline    | This is a sing                                                                 | le-cycle instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uction.                        |                                                                      |                                         |                |                 |  |  |  |  |
| Example     | MOVIZF32<br>MOVIZF32<br>MOVIZF32<br>MAXF32<br>MAXF32                           | ROH, #5.<br>R1H, #4.<br>R2H, #-1<br>ROH, #5.<br>R1H, #2.                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 ; R1H<br>.5 ; R2H<br>5 ; R0H | I = 5.0 (0) $I = 4.0 (0)$ $I = -1.5 (0)$ $I = 5.5, ZH$ $I = 4.0, ZH$ | (40800000)<br>(BFC00000)<br>F = 0, NF = |                |                 |  |  |  |  |
|             | MAXF32<br>MAXF32<br>MAXF32                                                     | R2H, #-1<br>R2H, #-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                      | F = 0, NF = F = 1, NF =                 | 1              |                 |  |  |  |  |

Submit Documentation Feedback



Instructions

www.ti.com

# MAXF32 RaH, RbH ||MOV32 RcH, RdH 32-bit Floating-Point Maximum with Parallel Move

| Operands     |                                                                                               |                                                                                                                                                          |                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                          |                            |        |
|--------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|----------------------------|--------|
|              | RaH                                                                                           |                                                                                                                                                          |                                                                                                          | point source/des                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | (F32 operation (                                                         | R0H to R7H)                |        |
|              | RbH                                                                                           |                                                                                                                                                          | floating-p                                                                                               | oint source regi                                                                                                                                                                                     | ster for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAXF32 operat              | ion (R0H to R7H                                                          | H)                         |        |
|              | RcH                                                                                           |                                                                                                                                                          |                                                                                                          | point destination                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | eration (R0H to I                                                        | R7H)                       |        |
|              | RdH                                                                                           |                                                                                                                                                          | floating-p                                                                                               | point source regi                                                                                                                                                                                    | ster for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOV32 operation            | on (R0H to R7H                                                           | )                          |        |
| Opcode       | LSW: 111<br>MSW: 000                                                                          |                                                                                                                                                          | 1001 110<br>ccbb baa                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                          |                            |        |
| Description  |                                                                                               | n value                                                                                                                                                  | . If RaH is                                                                                              | hen load Ral<br>less than R                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                          |                            |        |
|              | if(RaH <                                                                                      | RbH)                                                                                                                                                     | { RaH = Rk                                                                                               | oH; RcH = Rdl                                                                                                                                                                                        | H; }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                          |                            |        |
|              | because                                                                                       | of the                                                                                                                                                   | IEEE float                                                                                               | s performed<br>ing-point forr<br>the floating-                                                                                                                                                       | nat offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s the expone               | •                                                                        | •                          |        |
|              | Special of                                                                                    | cases fo                                                                                                                                                 | or the outp                                                                                              | out from the I                                                                                                                                                                                       | MAXF32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operation:                 |                                                                          |                            |        |
|              |                                                                                               | •                                                                                                                                                        |                                                                                                          | nverted to inf<br>t will be conv                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ositive zero.              |                                                                          |                            |        |
| Restrictions | The dest                                                                                      | ination                                                                                                                                                  | rogistor fo                                                                                              | r the MAVE                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOV/22 m                   | at ha uniqua                                                             | That is D                  |        |
| Restrictions |                                                                                               |                                                                                                                                                          |                                                                                                          | or the MAXF:<br>ter as RcH.                                                                                                                                                                          | 32 and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | ist be unique                                                            | . That is, R               | ап     |
|              | cannot b                                                                                      | e the s                                                                                                                                                  | ame regis                                                                                                | ter as RcH.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                          | . mai 15, Ki               | ап     |
| Flags        | cannot b                                                                                      | e the s<br>ruction                                                                                                                                       | ame regis<br>modifies t                                                                                  | ter as RcH.<br>he following                                                                                                                                                                          | flags in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ie STF regist              | er:                                                                      |                            | an<br> |
|              | cannot b                                                                                      | e the s                                                                                                                                                  | ame regis                                                                                                | ter as RcH.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                          | LVF                        | an<br> |
| Flags        | cannot b<br>This insti<br>Flag<br>Modified<br>The ZF a<br>in the de<br>if (RaH =<br>if (RaH > | e the s<br>ruction<br>TF<br>No<br>and NF<br>stinatio<br>= RbH)<br>RbH)<br>RbH)                                                                           | ame regis<br>modifies t<br>ZI<br>No<br>flags are<br>on register.<br>{ZF=1, NF<br>{ZF=0, NF<br>{ZF=0, NF  | ter as RcH.<br>he following<br>NI<br>No<br>configured of<br>r=0 }<br>r=1 }                                                                                                                           | flags in th<br><b>ZF</b><br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne STF regist<br>NF<br>Yes | er:<br>LUF<br>No                                                         | LVF<br>No                  |        |
|              | cannot b<br>This insti<br>Flag<br>Modified<br>The ZF a<br>in the de<br>if (RaH =<br>if (RaH > | e the s<br>ruction<br>TF<br>No<br>and NF<br>stinatio<br>= RbH)<br>RbH)<br>RbH)                                                                           | ame regis<br>modifies t<br>ZI<br>No<br>flags are<br>flags are<br>son register.<br>{ZF=1, NF<br>{ZF=0, NF | ter as RcH.<br>he following<br>NI<br>No<br>configured of<br>r=0 }<br>r=1 }                                                                                                                           | flags in th<br><b>ZF</b><br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne STF regist<br>NF<br>Yes | er:<br>LUF<br>No                                                         | LVF<br>No                  |        |
| Flags        | cannot b<br>This insti<br>Flag<br>Modified<br>The ZF a<br>in the de<br>if (RaH =<br>if (RaH > | e the s<br>ruction<br>TF<br>No<br>and NF<br>stinatic<br>= RbH)<br>RbH)<br>Single-<br>ZF32<br>ZF32<br>ZF32<br>ZF32<br>ZF32<br>ZF32<br>32<br>2<br>32<br>32 | ame regis<br>modifies t<br>ZI<br>No<br>flags are<br>on register.<br>{ZF=1, NF<br>{ZF=0, NF<br>{ZF=0, NF  | ter as RcH.<br>he following<br>NI<br>No<br>configured of<br>r=0 }<br>r=0 }<br>r=1 }<br>ruction.<br>5.0 ; R01<br>1.0 ; R11<br>1.1.5 ; R21<br>2.0 ; R31<br>H ; R01<br>2H<br>2H ; R01<br>2H<br>2H ; R01 | flags in the ZF<br>Yes<br>The result of the resul | ne STF regist<br>NF<br>Yes | er:<br><u>LUF</u><br>No<br>ration, not the<br>ZF = 0, NF =<br>ZF = 0, NF | LVF<br>No<br>e result stor |        |



| perands           |                                                                            |                                                           |                                                                      |                                                                               |                        |               |                 |
|-------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|---------------|-----------------|
|                   | RaH                                                                        | floating-poin                                             | t source/desti                                                       | nation registe                                                                | r (R0H to R7H)         |               |                 |
|                   | RbH                                                                        | floating-poin                                             | t source regis                                                       | ter (R0H to R                                                                 | .7H)                   |               |                 |
|                   |                                                                            |                                                           |                                                                      |                                                                               |                        |               |                 |
| ocode             | LSW: 1110 0110<br>MSW: 0000 0000                                           |                                                           |                                                                      |                                                                               |                        |               |                 |
| scription         | if(RaH > RbH)                                                              | RaH = RbH                                                 |                                                                      |                                                                               |                        |               |                 |
|                   | Special cases                                                              | for the output                                            | from the M                                                           | INF32 ope                                                                     | eration:               |               |                 |
|                   | <ul> <li>NaN output</li> </ul>                                             | will be conve                                             | rted to infir                                                        | ity                                                                           |                        |               |                 |
|                   | <ul> <li>A denorma</li> </ul>                                              | ized output w                                             | ill be conve                                                         | erted to pos                                                                  | sitive zero.           |               |                 |
| Flags             | This instructior                                                           | modifies the                                              | following f                                                          | ags in the                                                                    | STF register           |               |                 |
|                   | Flag TF                                                                    | ZI                                                        | NI                                                                   | ZF                                                                            | NF                     | LUF           | LVF             |
|                   | Modified No                                                                | No                                                        | No                                                                   | Yes                                                                           | Yes                    | No            | No              |
|                   | The ZF and NI                                                              |                                                           | nfigured on                                                          | the result                                                                    | of the opera           | tion, not the | e result stored |
|                   | <pre>in the destinati if(RaH == RbH if(RaH &gt; RbH if(RaH &lt; RbH)</pre> | on register.<br>{ZF=1, NF=0<br>{ZF=0, NF=0<br>{ZF=0, NF=1 | }<br>}<br>}                                                          | the result                                                                    | of the opera           | tion, not the | e result stored |
| peline            | <pre>in the destinati if(RaH == RbH) if(RaH &gt; RbH)</pre>                | on register.<br>{ZF=1, NF=0<br>{ZF=0, NF=0<br>{ZF=0, NF=1 | }<br>}<br>}                                                          | the result                                                                    | of the opera           | tion, not the | e result store  |
| ipeline<br>xample | <pre>in the destinati if(RaH == RbH if(RaH &gt; RbH if(RaH &lt; RbH)</pre> | on register.<br>{ZF=1, NF=0<br>{ZF=0, NF=0<br>{ZF=0, NF=1 | <pre>} } tion. ; R0H ; R0H ; R1H ; R2H ; R0H ; R1H ; R2H ; R2H</pre> | = 5.0 (0x<br>= 4.0 (0x<br>= -1.5 (0x<br>= 4.0, ZF<br>= -1.5, ZF<br>= -1.5, ZF | 40A00000)<br>40800000) |               | e result stored |

# MINF32 RaH, RbH 32-bit Floating-Point Minimum

# MINF32 RaH, #16FHi 32-bit Floating-Point Minimum

### Operands

| Operands    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
|-------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|-----------------|--|--|--|--|
|             | RaH                                                                             | floating-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oint source/des                                       | tination register                                                                             | r (R0H to R7H                                                 | )              |                 |  |  |  |  |
|             | #16FHi                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | that represent low 16-bits of t                                                               |                                                               |                |                 |  |  |  |  |
|             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
| Opcode      | LSW: 1110 100<br>MSW: IIII III                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
| Description | immidate valu                                                                   | Compare RaH with the floating-point value represented by the immediate operand. If the immidate value is smaller, then load it into RaH.<br>if(RaH > #16FHi:0) RaH = #16FHi:0                                                                                                                                                                                                                                                                                                                        |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
|             | floating-point<br>addressing m<br>are 0. Some e<br>-1.5 (0xBFC0                 | #16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This addressing mode is most useful for constants where the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate value. That is, -1.5 can be represented as #-1.5 or #0xBFC0. |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
|             | Special cases for the output from the MINF32 operation:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
|             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | verted to inf                                         | inity<br>rerted to pos                                                                        | itive zero.                                                   |                |                 |  |  |  |  |
| Flags       | This instruction modifies the following flags in the STF register:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |
|             | Flag TF                                                                         | ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NI                                                    | ZF                                                                                            | NF                                                            | LUF            | LVF             |  |  |  |  |
|             | Modified No                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No                                                    | Yes                                                                                           | Yes                                                           | No             | No              |  |  |  |  |
|             | The ZF and N<br>in the destina<br>if(RaH == #16<br>if(RaH > #16<br>if(RaH < #16 | tion register.<br>FHi:0) {ZF=<br>FHi:0) {ZF=                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, NF=0}<br>0, NF=0}                                  | n the result o                                                                                | of the opera                                                  | ation, not the | e result stored |  |  |  |  |
| Pipeline    | This is a singl                                                                 | e-cycle instr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uction.                                               |                                                                                               |                                                               |                |                 |  |  |  |  |
| Example     | MOVIZF32<br>MOVIZF32<br>MOVIZF32<br>MINF32<br>MINF32<br>MINF32<br>MINF32        | ROH, #5.<br>R1H, #4.<br>R2H, #-1<br>ROH, #5.<br>R1H, #2.<br>R2H, #-1<br>R2H, #-1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 ; R1H<br>.5 ; R2H<br>5 ; R0H<br>5 ; R1H<br>.0 ; R2H | = 5.0 (0x4<br>= 4.0 (0x4<br>= -1.5 (0xH<br>= 5.0, 2F<br>= 2.5, 2F<br>= -1.5, 2F<br>= -1.5, 2F | 40800000)<br>3FC00000)<br>= 0, NF =<br>= 0, NF =<br>= 0, NF = | 0<br>1         |                 |  |  |  |  |
| See also    | MAXF32 RaH<br>MAXF32 RaH<br>MINF32 RaH,<br>MINF32 RaH,                          | , RbH<br>RbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                               |                                                               |                |                 |  |  |  |  |

www.ti.com



### MINF32 RaH, RbH MOV32 RcH, RdH 32-bit Floating-Point Minimum with Parallel Move

| Operands     |                                                                    |                                 |                                                                                                                                        |                                           |                                                                     |                                                                                                             |              |                 |  |  |
|--------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------|-----------------|--|--|
|              | RaH                                                                |                                 | floating-point s<br>RaH cannot b                                                                                                       |                                           |                                                                     | er for the MIN32 c<br>RcH                                                                                   | peration (RC | )H to R7H)      |  |  |
|              | RbH                                                                |                                 | floating-point :                                                                                                                       | source regist                             | er for the M                                                        | IN32 operation (R                                                                                           | 0H to R7H)   |                 |  |  |
|              | RcH                                                                |                                 | floating-point of RcH cannot be                                                                                                        |                                           |                                                                     | ne MOV32 operatio<br>RaH                                                                                    | on (R0H to F | R7H)            |  |  |
|              | RdH                                                                |                                 | floating-point :                                                                                                                       | source regist                             | er for the M                                                        | OV32 operation (F                                                                                           | R0H to R7H)  |                 |  |  |
| Opcode       | LSW: 111<br>MSW: 000                                               |                                 | 1001 1101<br>ccbb baaa                                                                                                                 |                                           |                                                                     |                                                                                                             |              |                 |  |  |
| Description  | if(RaH >                                                           | RbH) {                          | RaH = RbH; H                                                                                                                           | RcH = RdH;                                | }                                                                   |                                                                                                             |              |                 |  |  |
|              | Special of                                                         | cases for                       | the output fi                                                                                                                          | om the M                                  | NF32 op                                                             | eration:                                                                                                    |              |                 |  |  |
|              | NaN                                                                | output w                        | ill be convert                                                                                                                         | ed to infin                               | ty                                                                  |                                                                                                             |              |                 |  |  |
|              | A der                                                              | normalize                       | ed output will                                                                                                                         | be conve                                  | rted to po                                                          | sitive zero.                                                                                                |              |                 |  |  |
| Restrictions |                                                                    |                                 | egister for the me register a                                                                                                          |                                           | and the N                                                           | MOV32 must b                                                                                                | e unique.    | That is, RaH    |  |  |
| Flags        | This instruction modifies the following flags in the STF register: |                                 |                                                                                                                                        |                                           |                                                                     |                                                                                                             |              |                 |  |  |
|              | Flag                                                               | TF                              | ZI                                                                                                                                     | NI                                        | ZF                                                                  | NF                                                                                                          | LUF          | LVF             |  |  |
|              | Modified                                                           | No                              | No                                                                                                                                     | No                                        | Yes                                                                 | Yes                                                                                                         | No           | No              |  |  |
|              | <pre>in the de<br/>if(RaH =<br/>if(RaH &gt;</pre>                  | stination<br>= RbH) {<br>RbH) { | ags are conf<br>register.<br>ZF=1, NF=0}<br>ZF=0, NF=0}<br>ZF=0, NF=1}                                                                 | igured on                                 | the result                                                          | of the operation                                                                                            | on, not the  | e result stored |  |  |
| Pipeline     | This is a                                                          | single-c                        | ycle instruction                                                                                                                       | on.                                       |                                                                     |                                                                                                             |              |                 |  |  |
| Example      | MOVI<br>MOVI                                                       | 2<br>32<br>2<br>32<br>32        | R0H, #5.0<br>R1H, #4.0<br>R2H, #-1.5<br>R3H, #-2.0<br>R0H, R1H<br>R3H, R2H<br>R1H, R0H<br>R3H, R2H<br>R3H, R2H<br>R2H, R1H<br>R1H, R3H | ; R1H<br>; R2H<br>; R3H<br>; R0H<br>; R1H | $= 4.0 (0)$ $= -1.5 (0)$ $= -2.0 (0)$ $= 4.0, R^{2}$ $= 4.0, R^{2}$ | Dx40A00000)<br>Dx40800000)<br>DxBFC00000)<br>DxC0000000)<br>3H = -1.5, ZF<br>3H = -1.5, ZF<br>R1H = 4.0, ZF | = 1, NF =    | - 0             |  |  |
| See also     | MINF32<br>MINF32                                                   | RaH, Rb<br>RaH, #1              |                                                                                                                                        |                                           |                                                                     |                                                                                                             |              |                 |  |  |



# MOV16 mem16, RaH Move 16-bit Floating-Point Register Contents to Memory

| epolaliao   |                                  |                                             |                  |                  |             |               |                |    |  |
|-------------|----------------------------------|---------------------------------------------|------------------|------------------|-------------|---------------|----------------|----|--|
|             | mem16                            | points to                                   | the 16-bit dest  | ination memory   | ,           |               |                |    |  |
|             | RaH                              | floating-p                                  | point source reg | jister (R0H to F | 87H)        |               |                |    |  |
| Opcode      | LSW: 1110 0<br>MSW: 0000 0       |                                             | 1                |                  |             |               |                |    |  |
| Description |                                  | value from th<br>nted to by me<br>aH[15:0]  |                  | oits of the flo  | ating-point | register (Ral | ⊣[15:0]) to th | IE |  |
| Flags       | No flags STF flags are affected. |                                             |                  |                  |             |               |                |    |  |
|             | Flag TF                          | ZI                                          | NI               | ZF               | NF          | LUF           | LVF            |    |  |
|             | Modified No                      | No                                          | No               | No               | No          | No            | No             |    |  |
| Pipeline    | This is a sir                    | gle-cycle insti                             | ruction.         |                  |             |               |                |    |  |
| Example     | MOVW<br>MOVXI<br>MOV16           | DP, #0x02C0<br>R4H,#0x0003<br>@0, R4H       | ; R4H = 3.       |                  | x0003)      |               |                |    |  |
| See also    | MOVIZF32                         | I, #16FHiHex<br>RaH, #16FHi<br>I, #16FLoHex |                  |                  |             |               |                |    |  |



# MOV32 \*(0:16bitAddr), loc32 Move the Contents of loc32 to Memory

| Operatius   |                                     |                                |                                          |                                                              |                                                                                                                    |                                       |              |              |
|-------------|-------------------------------------|--------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--------------|
|             | 0:16bitAd                           | dr                             | 16-bit immedi                            | ate addres                                                   | s, zero extende                                                                                                    | ed                                    |              |              |
|             | loc32                               |                                | 32 bit source                            | location                                                     |                                                                                                                    |                                       |              |              |
| Opcode      | LSW: 101<br>MSW: III                |                                | loc32<br>IIII IIII                       |                                                              |                                                                                                                    |                                       |              |              |
| Description | EALLOV                              |                                | e ST1 regist                             |                                                              |                                                                                                                    |                                       | sed by 0:16l | bitAddr. The |
| Flags       | This inst                           | ruction d                      | oes not mod                              | lify any S                                                   | STF register                                                                                                       | flags.                                |              |              |
|             | Flag                                | TF                             | ZI                                       | NI                                                           | ZF                                                                                                                 | NF                                    | LUF          | LVF          |
|             | Modified                            | No                             | No                                       | No                                                           | No                                                                                                                 | No                                    | No           | No           |
| Pipeline    | This is a                           | two-cycl                       | e instruction                            | I.                                                           |                                                                                                                    |                                       |              |              |
| Example     | MOVI<br>MOVX<br>NOP<br>MOV3<br>MOV3 | XI R5H,<br>32 ACC,             | #0x1234<br>#0xABCD<br>R5H<br>A000), @ACC | ; R5H[1<br>; 1 Ali<br>; ACC =<br>; [0x00<br>; 1 Cyc<br>; < M | 1:16] = 0x1<br>5:0] = 0xA<br>gnment Cycl<br>0x1234ABCD<br>A000] = ACC<br>le delay fo<br>0V32 *(0:16<br>A000] = 0xA | BCD<br>e<br>r MOV32 to<br>bitAddr), l | .oc32 comple |              |
| See also    | MOV32                               | mem32,<br>mem32,<br>loc32, *(( |                                          |                                                              |                                                                                                                    |                                       |              |              |



|             |                                                                    |                                                              | ing i en                                                  | it negletel                                                                                              | •••••••                                                                       |                                                       |                                                |              |  |
|-------------|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|--------------|--|
| Operands    |                                                                    |                                                              |                                                           |                                                                                                          |                                                                               |                                                       |                                                |              |  |
|             | ACC                                                                |                                                              | 28x accun                                                 | nulator                                                                                                  |                                                                               |                                                       |                                                |              |  |
|             | RaH                                                                |                                                              | floating-po                                               | oint source regi                                                                                         | ster (R0H to R                                                                | :7H)                                                  |                                                |              |  |
|             |                                                                    |                                                              |                                                           |                                                                                                          |                                                                               |                                                       |                                                |              |  |
| Opcode      | LSW: 101<br>MSW: III                                               |                                                              | loc32<br>IIII IIII                                        | I                                                                                                        |                                                                               |                                                       |                                                |              |  |
| Description | floating-p                                                         | point reg                                                    |                                                           | n move the<br>ated by Ral                                                                                |                                                                               | referenced                                            | by mem32                                       | to the       |  |
|             | ACC = Ra                                                           |                                                              |                                                           |                                                                                                          |                                                                               |                                                       |                                                |              |  |
| Flags       | No STF flags are affected.                                         |                                                              |                                                           |                                                                                                          |                                                                               |                                                       |                                                |              |  |
|             | Flag                                                               | TF                                                           | ZI                                                        | NI                                                                                                       | ZF                                                                            | NF                                                    | LUF                                            | LVF          |  |
|             | Modified                                                           | No                                                           | No                                                        | No                                                                                                       | No                                                                            | No                                                    | No                                             | No           |  |
| Pipeline    | While thi<br>copying<br>floating p<br>MINF3<br>NOP<br>MOV32<br>NOP | s is a sir<br>a floating<br>point inst<br>2 ROH,R1<br>@ACC,R | ngle-cycle<br>g-point reg<br>ruction, a<br>. <sup>H</sup> | <pre>gister to a C<br/>single align<br/>; Single-cy<br/>; 1 alignmd<br/>; Copy ROH<br/>; Any inst;</pre> | additional p<br>28x register<br>ment cycle<br>ment cycle<br>to ACC<br>ruction | pipeline alig<br>r. If the mov<br>must be ad<br>ction | nment is rec<br>ve follows a s<br>ded. For exa | single cycle |  |
|             |                                                                    |                                                              | or example                                                |                                                                                                          |                                                                               |                                                       |                                                |              |  |
|             | NOP                                                                | 2 R2H, F<br>ACC, F                                           |                                                           | ; < ADDF;<br>; 1 alignme<br>; copy R2H                                                                   | delay for A<br>32 complete<br>ent cycle<br>into ACC,<br>2 completes           | DDF32 to co<br>s, R2H is v<br>takes 2 cyc             | valid<br>cles                                  |              |  |
| Example     |                                                                    | F32 ROH<br>UI32 ROH<br>P,                                    |                                                           | ; Delay fo:                                                                                              | -                                                                             | n instructi                                           |                                                |              |  |
| See also    | MOV32<br>MOV32<br>MOV32                                            | XARn, R                                                      |                                                           |                                                                                                          |                                                                               |                                                       |                                                |              |  |

# MOV32 ACC, RaH Move 32-bit Floating-Point Register Contents to ACC



# MOV32 loc32, \*(0:16bitAddr) Move 32-bit Value from Memory to loc32

| Operands    |                                                            |                                               |                                                 |                                                         |                                   |              |               |   |
|-------------|------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------|---------------|---|
|             | loc32                                                      | destinatio                                    | n location                                      |                                                         |                                   |              |               |   |
|             | 0:16bitAddr                                                | 16-bit add                                    | ress of the 32-                                 | bit source valu                                         | ue                                |              |               |   |
| Opcode      | LSW: 1011 111<br>MSW: IIII III                             |                                               | ſ                                               |                                                         |                                   |              |               |   |
| Description | Copy the 32-bi                                             | t value refei                                 | enced by 0                                      | :16bitAddr t                                            | to the location                   | on indicated | by loc32.     |   |
|             | [loc32] = [0:1                                             | [6bitAddr]                                    |                                                 |                                                         |                                   |              |               |   |
| Flags       | No STF flags a<br>register zero (\$                        |                                               |                                                 |                                                         | gister, then t                    | the Z and N  | flag in statu | S |
|             | Flag TF                                                    | ZI                                            | NI                                              | ZF                                                      | NF                                | LUF          | LVF           |   |
|             | Modified No                                                | No                                            | No                                              | No                                                      | No                                | No           | No            |   |
| Pipeline    | This is a 2 cyc                                            | le instructior                                | ۱.                                              |                                                         |                                   |              |               |   |
| Example     | MOV @0<br>MOV @1                                           | #0x0300<br>#0xFFFF<br>#0x1111<br>CC, *(0xC000 | ; [0x00C<br>; [0x00C<br>)) ; AL = [<br>; 1 Cycl | 000] = 0xFF<br>001] = 0x11<br>0x00C000],<br>e delay for | 111;<br>AH = [0x000<br>MOV32 to 0 | -            | 0×1111        |   |
| See also    | MOV32 RaH, I<br>MOV32 *(0:16<br>MOV32 STF, r<br>MOVD32 RaH | oitAddr), loc<br>nem32                        |                                                 |                                                         |                                   |              |               |   |



Instructions

#### www.ti.com

# MOV32 mem32, RaH Move 32-bit Floating-Point Register Contents to Memory

| Operands    |                                                                    |                                      |                                  |              |              |     |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------|--------------------------------------|----------------------------------|--------------|--------------|-----|--|--|--|--|--|--|
|             | RaH                                                                | floating-point register (R0H to R7H) |                                  |              |              |     |  |  |  |  |  |  |
|             | mem32                                                              | points to the 32-bit de              | stination memory                 |              |              |     |  |  |  |  |  |  |
|             |                                                                    |                                      |                                  |              |              |     |  |  |  |  |  |  |
| Opcode      | LSW: 1110 0010<br>MSW: 0000 0aaa                                   | 0000 0011<br>mem32                   |                                  |              |              |     |  |  |  |  |  |  |
| Description | Move from mem<br>[mem32] = RaH                                     | ory to STF.                          |                                  |              |              |     |  |  |  |  |  |  |
|             | This instruction modifies the following flags in the STF register: |                                      |                                  |              |              |     |  |  |  |  |  |  |
| Flags       |                                                                    |                                      |                                  | -            |              |     |  |  |  |  |  |  |
|             | Flag TF                                                            | ZI NI                                | ZF                               | NF           | LUF          | LVF |  |  |  |  |  |  |
|             | Modified No                                                        | No No                                | No                               | No           | No           | No  |  |  |  |  |  |  |
|             | No flags affecte                                                   | d.                                   |                                  |              |              |     |  |  |  |  |  |  |
| Pipeline    | This is a single-                                                  | cycle instruction.                   |                                  |              |              |     |  |  |  |  |  |  |
| Example     | -                                                                  | ultiply and accumu                   | late operations                  |              |              |     |  |  |  |  |  |  |
| Example     | ;                                                                  |                                      | Tate Operations                  | •            |              |     |  |  |  |  |  |  |
|             | -                                                                  | .y: A = X0 * Y0<br>.y: B = X1 * Y1   |                                  |              |              |     |  |  |  |  |  |  |
|             | <pre>; 3rd multiply: C = X2 * Y2 ; 4th multiply: D = X3 * Y3</pre> |                                      |                                  |              |              |     |  |  |  |  |  |  |
|             | -                                                                  | Y: D = X3 * Y3<br>Y: E = X3 * Y3     |                                  |              |              |     |  |  |  |  |  |  |
|             | ;<br>; Result = A                                                  | + B + C + D + E                      |                                  |              |              |     |  |  |  |  |  |  |
|             | MOV32 R0H,                                                         | *XAR4++                              | ; R0H = X0                       |              |              |     |  |  |  |  |  |  |
|             | MOV32 R1H,                                                         | *XAR5++                              | ; R1H = Y0                       |              |              |     |  |  |  |  |  |  |
|             |                                                                    | D011 D111                            | ; R6H = A = 2                    |              |              |     |  |  |  |  |  |  |
|             | MPYF32 R6H,<br>   MOV32 R0H,                                       |                                      | ; In paralle                     | L RUH = XI   |              |     |  |  |  |  |  |  |
|             | MOV32 R1H,                                                         | *XAR5++                              | ; R1H = Y1                       |              |              |     |  |  |  |  |  |  |
|             |                                                                    |                                      | ; R7H = B = X1 * Y1              |              |              |     |  |  |  |  |  |  |
|             | MPYF32 R7H,<br>   MOV32 R0H,                                       |                                      | ; In paralle                     | L ROH = X2   |              |     |  |  |  |  |  |  |
|             | MOV32 R1H,                                                         |                                      | ; R1H = Y2                       |              |              |     |  |  |  |  |  |  |
|             |                                                                    |                                      | ; R7H = A + E<br>; R6H = C = 2   |              |              |     |  |  |  |  |  |  |
|             |                                                                    | R6H, R6H, R0H, R11                   |                                  |              |              |     |  |  |  |  |  |  |
|             | MOV32 R0H,<br>MOV32 R1H,                                           |                                      | ; R1H = Y3                       |              |              |     |  |  |  |  |  |  |
|             |                                                                    |                                      | ; R3H = (A +                     |              |              |     |  |  |  |  |  |  |
|             | MACF32 R7H,                                                        | R6H, R6H, R0H, R11                   | ; R6H = D = ½<br>H ; In parallel |              |              |     |  |  |  |  |  |  |
|             | MOV32 R0H,<br>MOV32 R1H,                                           |                                      | ; R1H = Y4                       |              |              |     |  |  |  |  |  |  |
|             |                                                                    |                                      | ; R6H = E = >                    | (4 * Y4      |              |     |  |  |  |  |  |  |
|             | MPYF32 R6H,                                                        |                                      | ; in paralle                     |              | B + C) + D   |     |  |  |  |  |  |  |
|             | ADDF32 R7H,<br>NOP                                                 | R/H, RZH                             | ; Wait for MB                    | PYF32    ADD | F32 to compl | ete |  |  |  |  |  |  |
|             | ADDF32 R7H,                                                        | R7H, R6H                             | ; R7H = (A +                     | B + C + D)   | + E          |     |  |  |  |  |  |  |
|             | NOP                                                                |                                      | ; Wait for AI                    | DDF32 to com |              |     |  |  |  |  |  |  |
|             | MOV32 @Res                                                         |                                      | ; Store the r                    | result       |              |     |  |  |  |  |  |  |
| See also    | MOV32 *(0:16bi<br>MOV32 mem32                                      |                                      |                                  |              |              |     |  |  |  |  |  |  |



# MOV32 mem32, STF Move 32-bit STF Register to Memory

| Operands    |                                              |                                                                           |                    |                                                    |                                                                                      |                                         |       |     |  |  |  |
|-------------|----------------------------------------------|---------------------------------------------------------------------------|--------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|-------|-----|--|--|--|
|             | STF                                          |                                                                           | floating-po        | oint status regi                                   | ster                                                                                 |                                         |       |     |  |  |  |
|             | mem32                                        |                                                                           | points to t        | he 32-bit desti                                    | nation memory                                                                        | /                                       |       |     |  |  |  |
|             |                                              |                                                                           |                    |                                                    |                                                                                      |                                         |       |     |  |  |  |
| Opcode      |                                              | LSW: 1110 0010 0000 0000<br>MSW: 0000 0000 mem32                          |                    |                                                    |                                                                                      |                                         |       |     |  |  |  |
| Description |                                              | Copy the floating-point status register, STF, to memory.<br>[mem32] = STF |                    |                                                    |                                                                                      |                                         |       |     |  |  |  |
| Flags       | This inst                                    | This instruction modifies the following flags in the STF register:        |                    |                                                    |                                                                                      |                                         |       |     |  |  |  |
|             | Flag                                         | TF                                                                        | ZI                 | NI                                                 | ZF                                                                                   | NF                                      | LUF   | LVF |  |  |  |
|             | Modified                                     | No                                                                        | No                 | No                                                 | No                                                                                   | No                                      | No    | No  |  |  |  |
|             | No flags                                     | affecte                                                                   | d.                 |                                                    |                                                                                      |                                         |       |     |  |  |  |
| Pipeline    | This is a                                    | single-                                                                   | cycle instru       | uction.                                            |                                                                                      |                                         |       |     |  |  |  |
| Example 1   |                                              | ZF32 R<br>ZF32 R<br>732 R                                                 | OH, #2.0           | ; R1H =<br>; ZF = 0                                | 2.0 (0x4000<br>3.0 (0x4040                                                           | 00000)<br>STF = 0x0000                  | 00004 |     |  |  |  |
| Example 2   | MOV3<br>MOVE<br>MOVE<br>CMPE<br>MOV3<br>MOV3 | 732 R2<br>732 R3<br>732 R2<br>732 R3                                      | н, к3н             | ; R2H = 3<br>; R3H = 5<br>; ZF = 0,<br>T ; R3H = 3 | TF in stack<br>.0 (0x40400<br>.0 (0x40A00<br>NF = 1, ST<br>.0 (0x40400<br>STF from s | 0000)<br>0000)<br>TF = 0x00000<br>0000) | 0004  |     |  |  |  |
| See also    | MOV32<br>MOV32<br>MOVST                      | *(0:16bi                                                                  | RaH<br>tAddr), loc | 32                                                 |                                                                                      |                                         |       |     |  |  |  |



| MOV32 P, RaH | Move 32-bit Floating-Point Register Contents to P                                                                                                                                                                                                                                                                                                                                                             |                             |                        |                                      |                                                                     |                                                                        |               |                 |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------|-----------------|--|
| Operands     |                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                        |                                      |                                                                     |                                                                        |               |                 |  |
|              | P<br>RaH                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                        | uct register P<br>point source reg   | ister (R0H to F                                                     | R7H)                                                                   |               |                 |  |
| Opcode       | LSW: 1011 1111 loc32<br>MSW: IIII IIII IIII                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                                      |                                                                     |                                                                        |               |                 |  |
| Description  | Move th                                                                                                                                                                                                                                                                                                                                                                                                       | e 32-bit                    | value in F             | RaH to the 28                        | 3x product r                                                        | egister P.                                                             |               |                 |  |
| Flags        | No flags                                                                                                                                                                                                                                                                                                                                                                                                      | affecte                     | d in floatir           | ng-point unit.                       |                                                                     |                                                                        |               |                 |  |
|              | Flag                                                                                                                                                                                                                                                                                                                                                                                                          | TF                          | ZI                     | NI                                   | ZF                                                                  | NF                                                                     | LUF           | LVF             |  |
|              | Modified                                                                                                                                                                                                                                                                                                                                                                                                      | No                          | No                     | No                                   | No                                                                  | No                                                                     | No            | No              |  |
| Pipeline     | While this is a single-cycle instruction, additional pipeline alignment is required when<br>copying a floating-point register to a C28x register. If the move follows a single cycle<br>floating point instruction, a single alignment cycle must be added. For example:<br>MINF32 R0H,R1H ; Single-cycle instruction<br>NOP ; 1 alignment cycle<br>MOV32 @ACC,R0H ; Copy R0H to ACC<br>NOP ; Any instruction |                             |                        |                                      |                                                                     |                                                                        |               |                 |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                               |                             | ws a 2 pip<br>or examp |                                      | loating poir                                                        | nt instruction                                                         | i, then two a | lignment cycles |  |
|              | NOP<br>NOP                                                                                                                                                                                                                                                                                                                                                                                                    | 32 R2H,<br>2 ACC,           |                        | ; < ADDF<br>; 1 alignm<br>; copy R2H | delay for A<br>32 complete<br>ent cycle<br>into ACC,<br>2 completes | tion (2p)<br>ADDF32 to co<br>es, R2H is<br>takes 1 cyo<br>s, ACC is va | valid<br>cle  |                 |  |
| Example      |                                                                                                                                                                                                                                                                                                                                                                                                               | ZF32 R0<br>DUI32 R0<br>2 P, |                        | ; Delay fo                           | ersion comp<br>t cycle                                              | 0000<br>on instruct:<br>plete, ROH v                                   |               |                 |  |
| See also     | MOV32<br>MOV32<br>MOV32                                                                                                                                                                                                                                                                                                                                                                                       | XARn, I                     | RaH                    |                                      |                                                                     |                                                                        |               |                 |  |



#### MOV32 RaH, ACC Move the Contents of ACC to a 32-bit Floating-Point Register

| Operands    |                        |                  |                                               |                 |               |             |     |
|-------------|------------------------|------------------|-----------------------------------------------|-----------------|---------------|-------------|-----|
|             | RaH                    |                  | floating-po                                   | int destinatior | register (R0H | to R7H)     |     |
|             | ACC                    |                  | accumulat                                     | or              |               |             |     |
|             |                        |                  |                                               |                 |               |             |     |
| Opcode      | LSW: 1011<br>MSW: III1 | 1 1101<br>I IIII |                                               |                 |               |             |     |
| Description | Move the               |                  | t value in A0                                 | CC to the fl    | oating-point  | register Ra | ιH. |
| Flags       | This instr             | uction           | does not m                                    | odify any S     | STF register  | flags.      |     |
|             | Flag                   | TF               | ZI                                            | NI              | ZF            | NF          |     |
|             | Modified               | No               | No                                            | No              | No            | No          |     |
|             |                        |                  |                                               |                 |               |             |     |
| Pipeline    | alignmen               | t cycle          | single-cycle<br>es are requir<br>egister. The | ed after an     | y copy from   | a standard  | 28  |

e-cycle instruction, additional pipeline alignment is required. Four e required after any copy from a standard 28x CPU register to a floating-point register. The four alignment cycles can be filled with any non-conflicting instructions except for the following: FRACF32, UI16TOF32, I16TOF32, F32TOUI32, and F32TOI32.

LUF

No

LVF

No

|          | MOV32 R0H,@ACC<br>NOP<br>NOP<br>NOP<br>NOP       | ; Copy ACC to R0H<br>; Wait 4 cycles<br>; Do not use FRACF32, UI16TOF32<br>; I16TOF32, F32TOUI32 or F32TOI32<br>;<br>; < R0H is valid |
|----------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Example  | MOV32 ROH, ACC<br>NOP<br>NOP<br>NOP              | ; ACC = 512<br>H ; R0H = 512.0 (0x44000000)                                                                                           |
| See also | MOV32 RaH, P<br>MOV32 RaH, XARn<br>MOV32 RaH, XT |                                                                                                                                       |



#### Instructions

### MOV32 RaH, mem32 {, CNDF} Conditional 32-bit Move

#### Operands

| RaH   | floating-point destination register (R0H to R7H) |
|-------|--------------------------------------------------|
| mem32 | pointer to the 32-bit source memory location     |
| CNDF  | optional condition.                              |

#### Opcode

LSW: 1110 0010 1010 CNDF MSW: 0000 0aaa mem32

Description

If the condition is true, then move the 32-bit value referenced by mem32 to the floating-point register indicated by RaH.

if (CNDF == TRUE) RaH = [mem32]

#### CNDF is one of the following conditions:

| Encode (1) | CNDF                | Description                          | STF Flags Tested    |
|------------|---------------------|--------------------------------------|---------------------|
| 0000       | NEQ                 | Not equal to zero                    | ZF == 0             |
| 0001       | EQ                  | Equal to zero                        | ZF == 1             |
| 0010       | GT                  | Greater than zero                    | ZF == 0 AND NF == 0 |
| 0011       | GEQ                 | Greater than or equal to zero        | NF == 0             |
| 0100       | LT                  | Less than zero                       | NF == 1             |
| 0101       | LEQ                 | Less than or equal to zero           | ZF == 1 AND NF == 1 |
| 1010       | TF                  | Test flag set                        | TF == 1             |
| 1011       | NTF                 | Test flag not set                    | TF == 0             |
| 1100       | LU                  | Latched underflow                    | LUF == 1            |
| 1101       | LV                  | Latched overflow                     | LVF == 1            |
| 1110       | UNC                 | Unconditional                        | None                |
| 1111       | UNCF <sup>(2)</sup> | Unconditional with flag modification | None                |

<sup>(1)</sup> Values not shown are reserved.

<sup>(2)</sup> This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

This instruction modifies the following flags in the STF register:

| Flag     | TF | ZI  | NI  | ZF  | NF  | LUF | LVF |  |
|----------|----|-----|-----|-----|-----|-----|-----|--|
| Modified | No | Yes | Yes | Yes | Yes | No  | No  |  |

if(CNDF == UNCF)
{
 NF = RaH(31);
 ZF = 0;
 if(RaH[30:23] == 0) { ZF = 1; NF = 0; }
 NI = RaH[31];
 ZI = 0;
 if(RaH[31:0] == 0) ZI = 1;
}
else No flags modified;

Pipeline

Flags

This is a single-cycle instruction.



| Example  | MOV         @0, #0x5555           MOV         @1, #0x5555           MOVIZF32         R3H, #7.0           MOVIZF32         R4H, #7.0           MAXF32         R3H, R4H | <pre>; DP = 0x0300<br/>; [0x00C000] = 0x5555<br/>; [0x00C001] = 0x5555<br/>; R3H = 7.0 (0x40E00000)<br/>; R4H = 7.0 (0x40E00000)<br/>; ZF = 1, NF = 0<br/>; R1H = 0x55555555</pre> |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See also | MOV32 RaH, RbH{, CNDF}                                                                                                                                                |                                                                                                                                                                                    |

MOVD32 RaH, mem32



Instructions

| Operands            |                                                                                                                                                          |                                              |                                                                             |                                                                                                               |                                                                                                                                  |                                                                                                      |                                          |                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|
|                     | RaH                                                                                                                                                      |                                              | floating-po                                                                 | int register (R                                                                                               | 0H to R7H)                                                                                                                       |                                                                                                      |                                          |                                                              |
|                     | Р                                                                                                                                                        |                                              | product ree                                                                 | gister                                                                                                        |                                                                                                                                  |                                                                                                      |                                          |                                                              |
| pcode               | LSW: 101<br>MSW: III                                                                                                                                     |                                              | loc32<br>IIII IIII                                                          |                                                                                                               |                                                                                                                                  |                                                                                                      |                                          |                                                              |
| escription          | Move the<br>RaH = P                                                                                                                                      | e 32-bit                                     | value in the                                                                | e product r                                                                                                   | egister, P, t                                                                                                                    | o the floatin                                                                                        | g-point regis                            | ster RaH.                                                    |
| lags                | This inst                                                                                                                                                | ruction of                                   | does not m                                                                  | odify any S                                                                                                   | STF register                                                                                                                     | flags.                                                                                               |                                          |                                                              |
|                     | Flag                                                                                                                                                     | TF                                           | ZI                                                                          | NI                                                                                                            | ZF                                                                                                                               | NF                                                                                                   | LUF                                      | LVF                                                          |
|                     | Modified                                                                                                                                                 | No                                           | No                                                                          | No                                                                                                            | No                                                                                                                               | No                                                                                                   | No                                       | No                                                           |
| lipeline            | alignmer<br>floating-j<br>instructio                                                                                                                     | nt cycles<br>point reg<br>ons exce           | s are requir<br>gister. The                                                 | ed after an four alignm                                                                                       | y copy from                                                                                                                      | h a standard<br>can be filled                                                                        | 28x CPU re<br>with any no                | quired. Four<br>egister to a<br>on-conflicting<br>F32TOUI32, |
| ipeline             | alignmer<br>floating-j<br>instructio<br>and F32                                                                                                          | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | ed after an<br>four alignm<br>ollowing: F                                                                     | y copy from<br>lent cycles (<br>RACF32, U                                                                                        | h a standard<br>can be filled                                                                        | 28x CPU re<br>with any no                | egister to a<br>on-conflicting                               |
| ipeline             | alignmer<br>floating-j<br>instructio                                                                                                                     | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | ed after an<br>four alignm<br>following: F                                                                    | y copy from<br>ent cycles o<br>RACF32, U                                                                                         | a standard<br>can be filled<br>II16TOF32,                                                            | 28x CPU re<br>with any no                | egister to a<br>on-conflicting                               |
| ipeline             | alignmer<br>floating-p<br>instructio<br>and F32<br><sup>MOV32</sup><br>NOP<br>NOP                                                                        | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n                                     | y copy from<br>ent cycles (<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAC                                                | h a standard<br>can be filled<br>II16TOF32,<br>nt cycles<br>CF32, UI16TO                             | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |
| ipeline             | alignmer<br>floating-r<br>instructio<br>and F32<br><sup>MOV32</sup><br>NOP                                                                               | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n                                     | y copy from<br>ent cycles (<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAC                                                | n a standard<br>can be filled<br>II16TOF32,<br>nt cycles                                             | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |
| ipeline             | alignmer<br>floating-p<br>instructio<br>and F32<br>MOV32<br>NOP<br>NOP<br>NOP                                                                            | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; I16T<br>;<br>; <               | y copy from<br>ent cycles of<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAG<br>OF32, F32TC<br>R0H is vali                 | n a standard<br>can be filled<br>II16TOF32,<br>nt cycles<br>CF32, UI16TC<br>DUI32 or F3:<br>id       | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |
| ipeline             | alignmer<br>floating-p<br>instructio<br>and F32<br>MOV32<br>NOP<br>NOP<br>NOP                                                                            | nt cycles<br>point reg<br>ons exce<br>TOI32. | s are requir<br>gister. The<br>ept for the f                                | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; I16T<br>;<br>; <               | y copy from<br>ent cycles of<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAG<br>OF32, F32TC<br>R0H is vali                 | n a standard<br>can be filled<br>l16TOF32,<br>nt cycles<br>CF32, UI16TC<br>DUI32 or F33              | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |
|                     | alignmer<br>floating-j<br>instructio<br>and F32<br>NOP<br>NOP<br>NOP<br>NOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOP<br>NOP                      | PH, #<br>PL, #                               | s are requir<br>gister. The<br>ept for the f<br>@P<br>0x0000<br>0x0200      | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; I16T<br>;<br>; <               | y copy from<br>eent cycles of<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAG<br>OF32, F32TC<br>R0H is vali<br>ruction car | n a standard<br>can be filled<br>II16TOF32,<br>nt cycles<br>CF32, UI16TC<br>DUI32 or F3:<br>id       | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |
| Pipeline<br>Example | alignmer<br>floating-j<br>instructio<br>and F32<br>NOP<br>NOP<br>NOP<br>NOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOP<br>NOP<br>NOP | PH, #<br>PL, #                               | s are requir<br>gister. The<br>ept for the f<br>@P<br>0x0000<br>0x0200<br>P | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; Il6T<br>; <<br>; Inst<br>; P = | y copy from<br>eent cycles of<br>RACF32, U<br>P to R0H<br>4 alignmer<br>ot use FRAG<br>OF32, F32TC<br>R0H is vali<br>ruction car | h a standard<br>can be filled<br>U16TOF32,<br>D16TOF32, U116TC<br>DUI32 or F32<br>id<br>h use R0H as | 28x CPU re<br>with any no<br>I16TOF32, I | egister to a<br>on-conflicting                               |

# MOV32 RaH, P Move the Contents of P to a 32-bit Floating-Point Register



# MOV32 RaH, RbH {, CNDF} Conditional 32-bit Move

#### Operands

Flags

|             | RaH                    | floating-point des                                                      | stination register (R0H to R7H)          |                     |
|-------------|------------------------|-------------------------------------------------------------------------|------------------------------------------|---------------------|
|             | RbH                    | floating-point sou                                                      | urce register (R0H to R7H)               |                     |
|             | CNDF                   | optional conditio                                                       | n.                                       |                     |
| Opcode      | LSW: 1110<br>MSW: 0000 |                                                                         |                                          |                     |
| Description | floating-poi           | ition is true, then move<br>int register indicated<br>= TRUE) RaH = RbH | ve the 32-bit value reference<br>by RaH. | ced by mem32 to the |
|             | CNDF is o              | ne of the following co                                                  | onditions:                               |                     |
|             | Encode <sup>(1)</sup>  | CNDF                                                                    | Description                              | STF Flags Tested    |
|             | 0000                   | NEQ                                                                     | Not equal to zero                        | ZF == 0             |
|             | 0001                   | EQ                                                                      | Equal to zero                            | ZF == 1             |
|             | 0010                   | GT                                                                      | Greater than zero                        | ZF == 0 AND NF == 0 |
|             | 0011                   | GEQ                                                                     | Greater than or equal to zero            | NF == 0             |
|             | 0100                   | LT                                                                      | Less than zero                           | NF == 1             |
|             | 0101                   | LEQ                                                                     | Less than or equal to zero               | ZF == 1 AND NF == 1 |
|             | 1010                   | TF                                                                      | Test flag set                            | TF == 1             |
|             | 1011                   | NTF                                                                     | Test flag not set                        | TF == 0             |
|             | 1100                   | LU                                                                      | Latched underflow                        | LUF == 1            |
|             | 1101                   | LV                                                                      | Latched overflow                         | LVF == 1            |
|             | 1110                   | UNC                                                                     | Unconditional                            | None                |
|             | 1111                   | UNCF <sup>(2)</sup>                                                     | Unconditional with flag modification     | None                |

<sup>(1)</sup> Values not shown are reserved.

<sup>(2)</sup> This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

This instruction modifies the following flags in the STF register:

| Flag     | TF | ZI  | NI  | ZF  | NF  | LUF | LVF |  |
|----------|----|-----|-----|-----|-----|-----|-----|--|
| Modified | No | Yes | Yes | Yes | Yes | No  | No  |  |

if(CNDF == UNCF)

{

}

NF = RaH(31); ZF = 0; if(RaH[30:23] == 0) {ZF = 1; NF = 0;} NI = RaH(31); ZI = 0; if(RaH[31:0] == 0) ZI = 1;

else No flags modified;

| Pipeline | This is a single-cycle instruction.                                                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example  | MOVIZF32R3H, #8.0; R3H = 8.0 (0x41000000)MOVIZF32R4H, #7.0; R4H = 7.0 (0x40E00000)MAXF32R3H, R4H; ZF = 0, NF = 0MOV32R1H, R3H, GT; R1H = 8.0 (0x41000000) |
| See also | MOV32 RaH, mem32{, CNDF}                                                                                                                                  |



# MOV32 RaH, XARn Move the Contents of XARn to a 32-bit Floating-Point Register

| Operands    |                                     |                                                                                |                                        |                             |                                                 |                           |              |
|-------------|-------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|-----------------------------|-------------------------------------------------|---------------------------|--------------|
|             | RaH                                 | floating-po                                                                    | oint register (R                       | 0H to R7H)                  |                                                 |                           |              |
|             | XARn                                | auxiliary r                                                                    | egister (XAR0                          | - XAR7)                     |                                                 |                           |              |
|             |                                     |                                                                                |                                        |                             |                                                 |                           |              |
| Opcode      | LSW: 1011 1<br>MSW: IIII I          |                                                                                | Ľ                                      |                             |                                                 |                           |              |
| Description | Move the 32<br>RaH = XARn           | 2-bit value in th                                                              | e auxiliary i                          | egister XAF                 | Rn to the flo                                   | ating point r             | egister RaH. |
| Flags       | This instruct                       | tion does not m                                                                | nodify any S                           | TF register                 | flags.                                          |                           |              |
|             | Flag TF                             | ZI                                                                             | NI                                     | ZF                          | NF                                              | LUF                       | LVF          |
|             | Modified No                         | No                                                                             | No                                     | No                          | No                                              | No                        | No           |
| Pipeline    | alignment c<br>floating-poir        | a single-cycle<br>ycles are requi<br>nt register. The<br>except for the<br>32. | red after an four alignm               | y copy from<br>ent cycles o | a standard<br>can be filled                     | 28x CPU re<br>with any no | egister to a |
|             | NOP<br>NOP<br>NOP<br>NOP            | ROH,@XAR7                                                                      | ; Wait<br>; Do n<br>; I16T<br>;<br>; < | OF32, F32TC<br>ROH is vali  | nt cycles<br>CF32, UI16TC<br>DUI32 or F32<br>Ld | 2TOI32                    |              |
|             | ADDF32                              | R2H,R1H,R0H                                                                    | ; Inst                                 | ruction car                 | n use ROH as                                    | s a source                |              |
| Example     | MOV32<br>NOP<br>NOP<br>NOP<br>NOP   | XAR1, #0x0200<br>ROH, XAR1<br>32 ROH, ROH                                      |                                        |                             | 0000)                                           |                           |              |
| See also    | MOV32 Rał<br>MOV32 Rał<br>MOV32 Rał | I, P                                                                           |                                        |                             |                                                 |                           |              |



| perands    |                                                                                                 |                                                  |                                                                                          |                                                                                                                                                     |                                                                                                                                                |                                                                                                            |                                          |                               |
|------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|
| peranus    |                                                                                                 |                                                  |                                                                                          |                                                                                                                                                     |                                                                                                                                                |                                                                                                            |                                          |                               |
|            | RaH                                                                                             |                                                  | floating-po                                                                              | int register (R                                                                                                                                     | OH to R7H)                                                                                                                                     |                                                                                                            |                                          |                               |
|            | ХТ                                                                                              |                                                  | auxiliary re                                                                             | egister (XAR0                                                                                                                                       | - XAR7)                                                                                                                                        |                                                                                                            |                                          |                               |
| pcode      | LSW: 101<br>MSW: III                                                                            |                                                  | loc32<br>IIII IIII                                                                       | :                                                                                                                                                   |                                                                                                                                                |                                                                                                            |                                          |                               |
| escription | Move the                                                                                        | e 32-bit                                         | value in ter                                                                             | mporary reg                                                                                                                                         | gister, XT, to                                                                                                                                 | o the floatin                                                                                              | g-point regis                            | ster RaH.                     |
| •          | RaH = XI                                                                                        |                                                  |                                                                                          |                                                                                                                                                     |                                                                                                                                                |                                                                                                            | 01 0                                     |                               |
| ags        | This inst                                                                                       | ruction                                          | does not m                                                                               | odify any S                                                                                                                                         | TF register                                                                                                                                    | flags.                                                                                                     |                                          |                               |
|            | Flag                                                                                            | TF                                               | ZI                                                                                       | NI                                                                                                                                                  | ZF                                                                                                                                             | NF                                                                                                         | LUF                                      | LVF                           |
|            | Modified                                                                                        | No                                               | No                                                                                       | No                                                                                                                                                  | No                                                                                                                                             | No                                                                                                         | No                                       | No                            |
| ipeline    | alignmer<br>floating-p                                                                          | nt cycle<br>point re                             | s are requir<br>gister. The                                                              | red after an<br>four alignm                                                                                                                         | y copy from<br>ent cycles c                                                                                                                    | a standard<br>an be filled                                                                                 |                                          | egister to a<br>n-conflicting |
|            | alignmer<br>floating-j<br>instructio                                                            | nt cycle<br>point re<br>pns exc                  | s are requir<br>gister. The                                                              | red after an<br>four alignm                                                                                                                         | y copy from<br>ent cycles c                                                                                                                    | a standard<br>an be filled                                                                                 | 28x CPU re                               | egister to a<br>n-conflicting |
|            | alignmer<br>floating-j<br>instructio<br>and F32<br><sup>MOV32</sup><br>NOP<br>NOP<br>NOP<br>NOP | nt cycle<br>point re<br>pns exc<br>TOI32.<br>R0H | s are requir<br>gister. The<br>ept for the f                                             | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; I16T<br>;<br>; <                                                     | y copy from<br>ent cycles c<br>RACF32, UI<br>XT to R0H<br>4 alignmen<br>ot use FRAC<br>DF32, F32TO<br>R0H is vali                              | a standard<br>an be filled<br>16TOF32,<br>t cycles<br>F32, UI16TC<br>UI32 or F32<br>d                      | 28x CPU re<br>with any no<br>I16TOF32, F | egister to a<br>n-conflicting |
| xample     | alignmer<br>floating-<br>instructio<br>and F32<br>MOV32<br>NOP<br>NOP<br>NOP<br>NOP             | 2 R2H<br>ZF32 F<br>2 2 2                         | s are requir<br>gister. The<br>ept for the f<br>, xT<br>,R1H,R0H<br>R6H, #5.0<br>KT, R6H | red after an<br>four alignm<br>following: F<br>; Copy<br>; Wait<br>; Do n<br>; I16T<br>;<br>; <<br>; Inst<br>; R6H = 5.<br>; 1 Alignm<br>; XT = 5.0 | y copy from<br>ent cycles c<br>RACF32, U<br>XT to ROH<br>4 alignmen<br>ot use FRAC<br>DF32, F32TO<br>ROH is vali<br>ruction can<br>0 (0x40A000 | a standard<br>an be filled<br>16TOF32,<br>t cycles<br>F32, UI16TC<br>UI32 or F32<br>d<br>use R0H as<br>00) | 28x CPU re<br>with any no<br>I16TOF32, F | egister to a<br>n-conflicting |

# MOV32 RaH, XT Move the Contents of XT to a 32-bit Floating-Point Register



Instructions

www.ti.com

# MOV32 STF, mem32 Move 32-bit Value from Memory to the STF Register

| Operands    |                                                 |                                      |                                                                      |                                                              |                                                                                      |                             |      |     |
|-------------|-------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|------|-----|
|             | STF                                             |                                      | floating-po                                                          | pint unit status                                             | register                                                                             |                             |      |     |
|             | mem32                                           |                                      | pointer to                                                           | the 32-bit sour                                              | ce memory loc                                                                        | ation                       |      |     |
|             |                                                 |                                      |                                                                      |                                                              |                                                                                      |                             |      |     |
| Opcode      | LSW: 111<br>MSW: 000                            |                                      | 1000 0000<br>mem32                                                   | 0                                                            |                                                                                      |                             |      |     |
| Description | Move fro                                        | m mem                                | ory to the                                                           | floating-poir                                                | it unit's state                                                                      | us register S               | STF. |     |
|             | STF = [m                                        | em32]                                |                                                                      |                                                              |                                                                                      |                             |      |     |
| Flags       | This inst                                       | ruction                              | modifies th                                                          | ne following                                                 | flags in the                                                                         | STF registe                 | r:   |     |
|             | Flag                                            | TF                                   | ZI                                                                   | NI                                                           | ZF                                                                                   | NF                          | LUF  | LVF |
|             | Modified                                        | Yes                                  | Yes                                                                  | Yes                                                          | Yes                                                                                  | Yes                         | Yes  | Yes |
|             | Restorin                                        | g status                             | s register w                                                         | vill overwrite                                               | all flags.                                                                           |                             |      |     |
| Pipeline    | This is a                                       | single-                              | cycle instru                                                         | uction.                                                      |                                                                                      |                             |      |     |
| Example 1   | MOVW<br>MOV<br>MOV<br>MOV3                      | @2,<br>@3,                           | #0x020C<br>#0x0000                                                   | ; DP = 0x030<br>; [0x00C002]<br>; [0x00C003]<br>; STF = 0x00 | = 0x020C<br>= 0x0000                                                                 |                             |      |     |
| Example 2   | MOV 3<br>MOVF<br>MOVF<br>CMPF<br>MOV 3<br>MOV 3 | 232 R2<br>232 R3<br>232 R2<br>232 R3 | 2P++, STF<br>2H, #3.0<br>H, #5.0<br>2H, R3H<br>H, R2H, L7<br>2F, *SP | ; R2H = 3.<br>; R3H = 5.<br>; ZF = 0,<br>T ; R3H = 3.        | TF in stack<br>0 (0x40400)<br>0 (0x40A00)<br>NF = 1, ST<br>0 (0x40400)<br>STF from s | 000)<br>F = 0x00000<br>000) | 004  |     |
| See also    | MOV32<br>MOVST                                  |                                      | , STF                                                                |                                                              |                                                                                      |                             |      |     |



# MOV32 XARn, RaH Move 32-bit Floating-Point Register Contents to XARn

| Operands    | VAD-                                |           | 00, 0,                          | ion register (V)                                                                                          |                                                                     |                                                                      |               |                 |
|-------------|-------------------------------------|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-----------------|
|             | XARn                                |           |                                 | iary register (XA                                                                                         |                                                                     |                                                                      |               |                 |
|             | RaH                                 |           | floating-p                      | oint source reg                                                                                           | Ister (RUH to F                                                     | (7H)                                                                 |               |                 |
| Opcode      | LSW: 101<br>MSW: III                |           | loc32<br>IIII III               | I                                                                                                         |                                                                     |                                                                      |               |                 |
| Description | Move the                            | e 32-bit  | value fror                      | n the floating                                                                                            | g-point regis                                                       | ter RaH to                                                           | the auxiliary | register XARn.  |
|             | XARn = F                            | RaH       |                                 |                                                                                                           |                                                                     |                                                                      |               |                 |
| Flags       | No flags                            | affecte   | d in floatir                    | ng-point unit.                                                                                            |                                                                     |                                                                      |               |                 |
|             | Flag                                | TF        | ZI                              | NI                                                                                                        | ZF                                                                  | NF                                                                   | LUF           | LVF             |
|             | Modified                            | No        | No                              | No                                                                                                        | No                                                                  | No                                                                   | No            | No              |
| Pipeline    | Copying<br>floating<br>MINF3<br>NOP | a floatir | ng-point restruction, a         | e instruction,<br>gister to a C<br>a single align<br>; Single-c<br>; 1 alignm<br>; Copy ROH<br>; Any inst | 28x registe<br>ment cycle<br>ycle instru<br>ent cycle<br>to ACC     | r. If the mov<br>must be ad                                          | e follows a   | single cycle    |
|             |                                     |           | ows a 2 pip<br>For examp        |                                                                                                           | loating poin                                                        | t instructior                                                        | n, then two a | lignment cycles |
|             | ADDF3<br>NOP<br>MOV32<br>NOP        |           |                                 | ; < ADDF<br>; 1 alignm<br>; copy R2H                                                                      | delay for A<br>32 complete<br>ent cycle<br>into ACC,<br>2 completes | ion (2p)<br>DDF32 to co<br>s, R2H is v<br>takes 1 cyc<br>, ACC is va | valid<br>cle  |                 |
| Example     |                                     | DUI32 R(  | ОН, #2.5<br>ОН, ROH<br>АRO, ROH | ; Delay fo<br>; < Conv<br>; Alignmen                                                                      | ersion comp                                                         | n instruct:<br>Dete, ROH v                                           |               |                 |
| See also    | MOV32<br>MOV32<br>MOV32             | P, RaH    |                                 |                                                                                                           |                                                                     |                                                                      |               |                 |



| Operands    |                         |                     |                     |                                                                 |                                                                     |                                                                      |               |                 |
|-------------|-------------------------|---------------------|---------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-----------------|
|             | XT<br>RaH               |                     | •                   | ry register                                                     | ictor (POH to F                                                     | )7U\                                                                 |               |                 |
|             | Kali                    |                     | noating-p           | point source reg                                                |                                                                     | ((1))                                                                |               |                 |
| Opcode      | LSW: 101<br>MSW: III    |                     | loc32<br>IIII III   | II                                                              |                                                                     |                                                                      |               |                 |
| Description | Move th                 |                     | value in F          | RaH to the te                                                   | mporary re                                                          | gister XT.                                                           |               |                 |
| Flags       | No flags                | affecte             | d in floatir        | ng-point unit.                                                  |                                                                     |                                                                      |               |                 |
|             | Flag                    | TF                  | ZI                  | NI                                                              | ZF                                                                  | NF                                                                   | LUF           | LVF             |
|             | Modified                | No                  | No                  | No                                                              | No                                                                  | No                                                                   | No            | No              |
|             |                         | ove follo           |                     |                                                                 | to ACC<br>ruction                                                   | t instruction                                                        | i, then two a | lignment cycles |
|             | ADDF3<br>NOP<br>NOP     |                     | R1H, R0H            | ; 2 pipeli<br>; 1 cycle<br>; < ADDF<br>; 1 alignm<br>; copy R2H | delay for A<br>32 complete<br>ent cycle<br>into ACC,<br>2 completes | ion (2p)<br>DDF32 to co<br>s, R2H is v<br>takes 1 cyc<br>, ACC is va | valid<br>cle  |                 |
| Example     | MOVIZ                   | ZF32 RC<br>DUI32 RC | )H, #2.5<br>)H, ROH | ; R0H = 2.<br>; Delay fo                                        | 5 = 0x40200<br>r conversic<br>ersion comp                           | 000<br>n instructi<br>lete, ROH W                                    |               |                 |
|             | MOV32                   | 2 XI                | 7, R0H              | -                                                               | 0x00000002                                                          |                                                                      |               |                 |
| See also    | MOV32<br>MOV32<br>MOV32 | P, RaH              |                     |                                                                 |                                                                     |                                                                      |               |                 |

94



# MOVD32 RaH, mem32 Move 32-bit Value from Memory with Data Copy

| Operatius   |                            |                   |                            |                            |                            |               |                 |             |
|-------------|----------------------------|-------------------|----------------------------|----------------------------|----------------------------|---------------|-----------------|-------------|
|             | RaH                        |                   | floating-poi               | nt register (R             | )H to R7H)                 |               |                 |             |
|             | mem32                      |                   | pointer to t               | he 32-bit sour             | ce memory loca             | ation         |                 |             |
|             |                            |                   |                            |                            |                            |               |                 |             |
| Opcode      | LSW: 111<br>MSW: 000       |                   | 0010 0011<br>mem32         |                            |                            |               |                 |             |
| Description | Move the<br>RaH.           | 32-bit            | value refere               | enced by m                 | em32 to the                | e floating-po | int register ir | ndicated by |
|             | RaH = [m<br>[mem32+2       |                   | m32]                       |                            |                            |               |                 |             |
| Flags       | This instr                 | uction r          | modifies the               | e following                | flags in the S             | STF register  |                 |             |
|             | Flag                       | TF                | ZI                         | NI                         | ZF                         | NF            | LUF             | LVF         |
|             | Modified                   | No                | Yes                        | Yes                        | Yes                        | Yes           | No              | No          |
|             | NI = RaH<br>ZI = 0;        | D:23] =:<br>[31]; | = 0){ ZF =<br>0) ZI = 1    | 1; NF = 0                  | ; }                        |               |                 |             |
| Pipeline    | This is a                  | single-c          | cycle instru               | ction.                     |                            |               |                 |             |
| Example     | MOVW<br>MOV<br>MOV<br>MOVD | @2,<br>@3,        | #0x0000<br>#0x4110<br>, @2 | ; [0x00B00]<br>; R7H = 0x4 | 2] = 0x0000<br>3] = 0x4110 | , [0x00B005   | ] = 0x4110      |             |
| See also    | MOV32 F                    | RaH, me           | em32 {,CNI                 | DF}                        |                            |               |                 |             |



Instructions

| MOVF32 RaH, #32F | Load the                                | e 32-bits                        | s of a 32-bit                | t Floating-P                                  | oint Regis                  | ster                   |                           |                                     |
|------------------|-----------------------------------------|----------------------------------|------------------------------|-----------------------------------------------|-----------------------------|------------------------|---------------------------|-------------------------------------|
| Operands         | translate<br>MOVI                       | d by the<br>z RaH, #             |                              | r MOVIZ and<br>such that the                  |                             |                        |                           | d operand is                        |
|                  | RaH                                     |                                  | floating-point               | t destination reg                             | gister (R0H to              | R7H)                   |                           |                                     |
|                  | #32F                                    |                                  | immediate flo                | oat value repre                               | sented in floa              | ting-point repre       | esentation                |                                     |
| Opcode           | LSW: 111<br>MSW: III                    |                                  |                              | opcode of MC                                  | OVIZ RaH, a                 | #16FHiHex)             |                           |                                     |
|                  | LSW: 111<br>MSW: III                    |                                  |                              | opcode of MO                                  | OVXI RaH, :                 | <pre>#16FLoHex)</pre>  |                           |                                     |
| Description      | represen                                | tation. T                        | o specify th                 | s the immed<br>e immediate<br>2 RaH, #32I     | e value as a                | a hex value            |                           |                                     |
|                  | Load the                                | 32-bits                          | of RaH with                  | the immedi                                    | ate float va                | lue represe            | nted by #3                | 2F.                                 |
|                  | accept a                                | float val<br>ted as #            | ue represer                  |                                               | ng-point re                 | presentation           |                           | embler will only<br>3.0 can only be |
| Flags            | This inst                               | ruction m                        | nodifies the                 | following fla                                 | gs in the S                 | TF register:           |                           |                                     |
|                  | Flag                                    | TF                               | ZI                           | NI                                            | ZF                          | NF                     | LUF                       | LVF                                 |
|                  | Modified                                | No                               | No                           | No                                            | No                          | No                     | No                        | No                                  |
| Pipeline         | of the IEI<br>convert M<br>floating-p   | EE 32-bi<br>MOVF32<br>point forr | t floating-po<br>into only M | oint format o<br>OVIZ instrue<br>are not zero | f #32F are<br>ction. If the | zeros, then lower 16-b | the assem<br>ts of the IE |                                     |
| Example          | MOVF                                    | 32 R1H                           | 1, #3.0                      | ; Assemble                                    |                             | s this inst            | ruction as                |                                     |
|                  | MOVF                                    | 32 R2H                           | 1, #0.0                      | ; R2H = 0.<br>; Assemble                      |                             |                        | ruction as                |                                     |
|                  | MOVF                                    | 32 R3H                           | 1, #12.265                   | ; Assemble<br>; MOVIZ R3                      | 2.625 (0x4)                 | s this inst<br>4       | ruction as                |                                     |
| See also         | Moviz F<br>Movxi F<br>Movi32<br>Movizf: | RaH, #16<br>RaH, #3              | FLoHex<br>2FHex              |                                               |                             |                        |                           |                                     |

# MOVF32 RaH, #32F Load the 32-bits of a 32-bit Floating-Point Register



# MOVI32 RaH, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

|             |                                 |                                                                 |                              | •                                                                     | •                          |                    |                |
|-------------|---------------------------------|-----------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|----------------------------|--------------------|----------------|
| Operands    |                                 | ion is an alias<br>y the assembl                                |                              |                                                                       |                            |                    | l operand is   |
|             |                                 | aH, #16FHiHex<br>aH, #16FLoHex                                  |                              |                                                                       |                            |                    |                |
|             | RaH                             | floating-p                                                      | oint register (R0            | H to R7H)                                                             |                            |                    |                |
|             | #32FHex                         | A 32-bit i                                                      | mmediate value               | that represents                                                       | an IEEE 32-b               | oit floating-point | value.         |
| Opcode      | LSW: 1110 1                     | 000 0000 0III                                                   | (opcode of                   | MOVIZ RaH, ‡                                                          | 16FHiHex)                  |                    |                |
|             |                                 | III IIII Iaaa<br>000 0000 1III                                  |                              | MOVXI RaH, ‡                                                          | 16FLoHex)                  |                    |                |
|             | MSW: IIII I                     | III IIII Iaaa                                                   |                              |                                                                       |                            |                    |                |
| Description |                                 | nstruction only<br>alue with a flo                              |                              |                                                                       |                            |                    |                |
|             | Load the 32                     | -bits of RaH w                                                  | vith the imme                | diate 32-bit h                                                        | nex value r                | epresented I       | by #32Fhex.    |
|             | value of a flo                  | can only be re                                                  | umber. The a                 | ssembler wil                                                          | l only acce                | pt a hex imr       | nediate value. |
| lags        | This instruct                   | ion modifies t                                                  | ne following t               | lags in the S                                                         | TE register                | ··                 |                |
|             | Flag TF                         | ZI                                                              | NI                           | ZF                                                                    | NF                         | LUF                | LVF            |
|             | Modified No                     |                                                                 | No                           | No                                                                    | No                         | No                 | No             |
|             |                                 |                                                                 |                              |                                                                       |                            |                    |                |
| Pipeline    | 16-bits of #3<br>instruction. I | on #32FHex, t<br>82FHex are ze<br>f the lower 16<br>a MOVIZ and | ros, then as<br>bits of #32F | sembler will o<br>Hex are not z                                       | onvert MO                  | VI32 to the        | MOVIZ          |
| Example     | MOVI32                          | R1H, #0x404                                                     | ; As                         | H = 0x404000<br>sembler conv<br>VIZ R1H, #02                          | verts this                 | instruction        | n as           |
|             | MOVI32                          | R2H, #0x000                                                     | 00000 ; R2<br>; As           | $2H = 0 \times 000000$<br>sembler conv<br>VIZ R2H, #02                | )00<br>verts this          | instruction        | 1 as           |
|             | MOVI32                          | R3H, #0x400                                                     | 04001 ; R3<br>; As<br>; M0   | BH = 0x400040<br>sembler conv<br>VIZ R3H, $\#0_2$<br>VXI R3H, $\#0_3$ | 001<br>verts this<br>4000  | instruction        | 1 as           |
|             | MOVI32                          | R4H, #0x000                                                     | 04040 ; R4<br>; As<br>; M0   | H = 0x000040<br>sembler conv<br>VIZ R4H, #02<br>VXI R4H, #03          | 040<br>verts this<br>00000 | instruction        | n as           |
| See also    | MOVIZ RaH<br>MOVXI RaH          | , #16FHiHex                                                     |                              |                                                                       |                            |                    |                |



# MOVIZ RaH, #16FHiHex Load the Upper 16-bits of a 32-bit Floating-Point Register

| Operatios   |                         |                                                  |                                            |                             |                               |                              |                                     |                                             |   |
|-------------|-------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------|-------------------------------|------------------------------|-------------------------------------|---------------------------------------------|---|
|             | RaH                     |                                                  | floating-po                                | int register (R             | OH to R7H)                    |                              |                                     |                                             |   |
|             | #16FHiHe>               | K                                                |                                            |                             |                               |                              | er 16-bits of an<br>re assumed to b |                                             |   |
|             |                         |                                                  |                                            |                             |                               |                              |                                     |                                             |   |
| Opcode      | LSW: 1110<br>MSW: IIII  |                                                  | 0000 0III<br>IIII Iaaa                     |                             |                               |                              |                                     |                                             |   |
| Description |                         | e value                                          |                                            |                             |                               |                              | ate operand<br>IOVIZF32 ps          | . To specify the<br>seudo                   | Э |
|             | Load the<br>16-bits of  |                                                  | 16-bits of F                               | RaH with the                | e immediate                   | value #16F                   | HiHex and c                         | lear the low                                |   |
|             | 32-bit floa<br>assemble | ating-po<br>er will o                            | bint value.<br>nly accept                  | The low 16-                 | bits of the m<br>diate value. | nantissa are                 |                                     | f an IEEE<br>be all 0. The<br>e represented |   |
|             | lowest 16<br>(0x40800   | 6-bits of<br>000), 0<br>a float<br>n.<br>5] = #1 | the mantis<br>1.5 (0x3F00)<br>ing-point re | ssa are 0. S<br>00000), and | ome examp<br>-1.5 (0xBFC      | les are 2.0<br>200000). If a | (0x4000000)<br>a constant re        |                                             |   |
| Flags       | This instr              | uction i                                         | modifies the                               | e following                 | flags in the                  | STF registe                  | r:                                  |                                             |   |
|             | Flag                    | TF                                               | ZI                                         | NI                          | ZF                            | NF                           | LUF                                 | LVF                                         | - |
|             | Modified                | No                                               | No                                         | No                          | No                            | No                           | No                                  | No                                          | _ |
| Pipeline    | This is a               | single-                                          | cycle instru                               | ction.                      |                               |                              |                                     |                                             |   |
| Example     | ; Load RC<br>MOVI2      |                                                  | -1.5 (0xB<br>0H, #0xBFC                    |                             | = 0xBFC0000                   | 00                           |                                     |                                             |   |
|             |                         | )H with<br>Z R                                   |                                            | 1593 (0x40<br>9 ; ROH       |                               | 00                           |                                     |                                             |   |
| See also    | MOVIZF3<br>MOVXI R      |                                                  |                                            |                             |                               |                              |                                     |                                             |   |



# MOVIZF32 RaH, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

| Operands          | _                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                            |                                                                                                                                 |                                                                                                                                                                                  |                                          |                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|
|                   | RaH                                                                                                                              |                                                                                                                                                                                                      | floating-point                                                                                                                                               | register (R                                                                                                | )H to R7H)                                                                                                                      |                                                                                                                                                                                  |                                          |                                            |
|                   | #16FHi                                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                            |                                                                                                                                 | ts the upper 16-b<br>the mantissa are                                                                                                                                            |                                          |                                            |
|                   |                                                                                                                                  |                                                                                                                                                                                                      | 01                                                                                                                                                           |                                                                                                            |                                                                                                                                 |                                                                                                                                                                                  |                                          |                                            |
| Opcode            | LSW: 111<br>MSW: III                                                                                                             |                                                                                                                                                                                                      | 0000 0III<br>IIII Iaaa                                                                                                                                       |                                                                                                            |                                                                                                                                 |                                                                                                                                                                                  |                                          |                                            |
| Description       | Load the<br>16-bits o                                                                                                            |                                                                                                                                                                                                      | 6-bits of Ra                                                                                                                                                 | H with the                                                                                                 | e value repr                                                                                                                    | esented by #                                                                                                                                                                     | 16FHi and                                | clear the low                              |
|                   | floating-µ<br>addressi<br>are 0. So<br>-1.5 (0xE                                                                                 | point val<br>ing mode<br>ome exa<br>3FC0000                                                                                                                                                          | ue. The low<br>e is most use<br>mples are 2.                                                                                                                 | 16-bits of<br>eful for co<br>0 (0x400<br>can be sp                                                         | the mantise<br>nstants whe<br>00000), 4.0                                                                                       | s the upper 1<br>sa are assum<br>ere the lowest<br>(0x40800000<br>ex or float. Th                                                                                                | ed to be al<br>16-bits of<br>), 0.5 (0x3 | l 0. This<br>the mantissa<br>F000000), and |
|                   | MOVIZF<br>encodes                                                                                                                | 32 the a<br>it into a<br>as MOV                                                                                                                                                                      | ssembler wi<br>MOVIZ instr<br>/IZ RaH, 0xB                                                                                                                   | Il accept e<br>ruction. F                                                                                  | either a hex                                                                                                                    | iHex instructi<br>or float as the<br>MOVIZF32 F                                                                                                                                  | e immediat                               | e value and                                |
|                   |                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                            |                                                                                                                                 |                                                                                                                                                                                  |                                          |                                            |
| Flags             | This inst                                                                                                                        | ruction r                                                                                                                                                                                            |                                                                                                                                                              | following                                                                                                  | 0                                                                                                                               | STF register:                                                                                                                                                                    |                                          |                                            |
| Flags             | Flag                                                                                                                             | ruction r                                                                                                                                                                                            | ZI                                                                                                                                                           | NI                                                                                                         | ZF                                                                                                                              | NF                                                                                                                                                                               | LUF                                      | LVF                                        |
| Flags             |                                                                                                                                  | ruction r                                                                                                                                                                                            |                                                                                                                                                              | •                                                                                                          | 0                                                                                                                               | 0                                                                                                                                                                                | LUF<br>No                                | LVF<br>No                                  |
| Flags<br>Pipeline | Flag<br>Modified                                                                                                                 | TF<br>No                                                                                                                                                                                             | ZI                                                                                                                                                           | NI<br>No                                                                                                   | ZF                                                                                                                              | NF                                                                                                                                                                               |                                          |                                            |
| -                 | Flag<br>Modified<br>This is a<br>MOVI<br>MOVI<br>MOVI<br>;<br>; Load R<br>;<br>; Load R<br>;<br>;<br>; Load R                    | <b>TF</b><br>No<br><b>Single-C</b><br>ZF32 R01<br>ZF32 R11<br>ZF32 R11<br>ZF32 R31<br>ZF32 R31<br>ZF32 R41<br>R5H with<br>ZF32 R51<br>R0H with<br>ZF32 R51                                           | <b>ZI</b><br>No<br>cycle instruct<br>H, #3.0<br>H, #1.0<br>H, #2.5<br>H, #-5.5<br>H, #0xC0B0<br>pi = 3.1415<br>H, #3.141593<br>a more accu<br>DH, #0x4049    | NI<br>No<br>ion.<br>; R0H<br>; R1H<br>; R1H<br>; R2H<br>; R3H<br>; R4H<br>; R4H<br>; R5H<br>; R5H<br>; R5H | ZF<br>No<br>= 3.0 = 0<br>= 1.0 = 0<br>= 2.5 = 0<br>= -5.5 = 0<br>= -5.5 = 0<br>490000)<br>= 3.14062<br>= 3.141593<br>= 0x404900 | NF           No           x40400000           x3F800000           x40200000           xC0B00000           xC0B00000           5 (0x40490000)           (0x40490FDB)           00 | No                                       |                                            |
| Pipeline          | Flag<br>Modified<br>This is a<br>MOVI<br>MOVI<br>MOVI<br>MOVI<br>;<br>; Load R<br>;<br>MOVI<br>;<br>Load R<br>;<br>MOVI<br>MOVIZ | TF         No         2ZF32         2ZF32         2ZF32         2ZF32         2ZF32         2ZF32         2ZF32         R5H         R5H         R0H         R1         R2F32         R3H         R4H | <b>ZI</b><br>No<br>cycle instruct<br>H, #3.0<br>H, #1.0<br>H, #2.5<br>H, #0xC0B0<br>pi = 3.1415<br>H, #3.141593<br>a more accu<br>DH, #0x4049<br>DH, #0x0FDB | NI<br>No<br>ion.<br>; R0H<br>; R1H<br>; R1H<br>; R2H<br>; R3H<br>; R4H<br>; R4H<br>; R5H<br>; R5H<br>; R5H | ZF<br>No<br>= 3.0 = 0<br>= 1.0 = 0<br>= 2.5 = 0<br>= -5.5 = 0<br>= -5.5 = 0<br>1900000)<br>= 3.14062<br>= 3.141593              | NF           No           x40400000           x3F800000           x40200000           xC0B00000           xC0B00000           5 (0x40490000)           (0x40490FDB)           00 | No                                       |                                            |



MOVST0 FLAG Load Selected STF Flags into ST0 Operands FLAG Selected flag Opcode LSW: 1010 1101 FFFF FFFF Load selected flags from the STF register into the ST0 register of the 28x CPU where Description FLAG is one or more of TF, CI, ZI, ZF, NI, NF, LUF or LVF. The specified flag maps to the ST0 register as follows: Set OV = 1 if LVF or LUF is set. Otherwise clear OV. Set N = 1 if NF or NI is set. Otherwise clear N. . Set Z = 1 if ZF or ZI is set. Otherwise clear Z. Set C = 1 if TF is set. Otherwise clear C. Set TC = 1 if TF is set. Otherwise clear TF. If any STF flag is not specified, then the corresponding ST0 register bit is not modified. Restrictions Do not use the MOVST0 instruction in the delay slots for pipelined operations. Doing so can yield invalid results. To avoid this, the proper number of NOPs or non-pipelined instructions must be inserted before the MOVST0 operation. The following is INVALID MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p) MOVSTO TF ; INVALID, do not use MOVSTO in a delay slot ; The following is VALID MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p) NOP 1 delay cycle, R2H updated after this instruction ; MOVSTO TF ; VALID This instruction modifies the following flags in the STF register: Flags TF ΖI NI ZF NF LUF LVF Flag Modified No No No No No Yes Yes When the flags are moved to the C28x ST0 register, the LUF or LVF flags are automatically cleared if selected. This is a single-cycle instruction. Pipeline Example Program flow is controlled by C28x instructions that read status flags in the status register 0 (ST0). If a decision needs to be made based on a floating-point operation, the information in the STF register needs to be loaded into ST0 flags (Z,N,OV,TC,C) so that the appropriate branch conditional instruction can be executed. The MOVST0 FLAG instruction is used to load the current value of specified STF flags into the respective bits of ST0. When this instruction executes, it will also clear the latched overflow and underflow flags if those flags are specified. Loop: MOV32 R0H, \*XAR4++ MOV32 R1H, \*XAR3++ CMPF32 R1H, R0H MOVSTO ZF, NF Loop, GT ; Loop if (R1H > R0H) BF See also MOV32 mem32, STF MOV32 STF, mem32



# MOVXI RaH, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

| operands    |                          |                     |                                           |                           |                                     |                               |                                           |                |    |
|-------------|--------------------------|---------------------|-------------------------------------------|---------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------|----|
|             | Ra                       |                     | floating-po                               | oint register (R          | 0H to R7H)                          |                               |                                           |                |    |
|             | #16FLoHe                 | ex                  |                                           |                           | value that repre<br>upper 16-bits v |                               | er 16-bits of an I<br>ified.              | EEE 32-bit     |    |
| Opcode      | LSW: 111<br>MSW: III     |                     | 0000 1III<br>IIII Iaaa                    | _                         |                                     |                               |                                           |                |    |
| Description | represer<br>RaH will     | nts the l<br>not be | ower 16-bi<br>modified. I                 | ts of an IEE<br>MOVXI can | E 32-bit floa                       | ting-point va<br>d with the M | Hex. #16FL<br>alue. The up<br>IOVIZ or MC | per 16-bits of | of |
|             | RaH[15:0<br>RaH[31:1     |                     |                                           |                           |                                     |                               |                                           |                |    |
| Flags       |                          |                     |                                           |                           |                                     |                               |                                           |                |    |
|             | Flag                     | TF                  | ZI                                        | NI                        | ZF                                  | NF                            | LUF                                       | LVF            |    |
|             | Modified                 | No                  | No                                        | No                        | No                                  | No                            | No                                        | No             |    |
| Pipeline    | This is a                | single-             | cycle instru                              | uction.                   |                                     |                               |                                           |                |    |
| Example     | ; Load R<br>MOVI<br>MOVX | Z I                 | n pi = 3.14<br>ROH,#0x4049<br>ROH,#0x0FDH |                           | 490FDB)<br>= 0x404900<br>= 0x40490F |                               |                                           |                |    |
| See also    |                          |                     | l6FHiHex<br>I, #16FHi                     |                           |                                     |                               |                                           |                |    |



# MPYF32 RaH, RbH, RcH 32-bit Floating-Point Multiply

| Operands    |                                                                     |                                                              |                                                                 |                                                                                                                                   |                                                                           |                                                    |     |                           |  |  |
|-------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|-----|---------------------------|--|--|
|             | RaH                                                                 |                                                              | floating-p                                                      | oint destinatior                                                                                                                  | register (R0H                                                             | to R7H)                                            |     |                           |  |  |
|             | RbH                                                                 |                                                              | floating-p                                                      | oint source reg                                                                                                                   | ister (R0H to F                                                           | R7H)                                               |     |                           |  |  |
|             | RcH                                                                 |                                                              | floating-p                                                      | oint source reg                                                                                                                   | ister (R0H to F                                                           | R7H)                                               |     |                           |  |  |
| Opcode      | LSW: 1110<br>MSW: 0000                                              |                                                              | 0000 000<br>ccbb baa                                            |                                                                                                                                   |                                                                           |                                                    |     |                           |  |  |
| Description | Multiply t<br><sub>RaH</sub> = RbI                                  |                                                              |                                                                 | o floating-po                                                                                                                     | oint register                                                             | 6.                                                 |     |                           |  |  |
| Flags       | This instruction modifies the following flags in the STF register:. |                                                              |                                                                 |                                                                                                                                   |                                                                           |                                                    |     |                           |  |  |
|             | Flag                                                                | TF                                                           | ZI                                                              | NI                                                                                                                                | ZF                                                                        | NF                                                 | LUF | LVF                       |  |  |
|             | Modified                                                            | No                                                           | No                                                              | No                                                                                                                                | No                                                                        | No                                                 | Yes | Yes                       |  |  |
| Pipeline    | • LVF =<br>This is a<br>MPYF:<br>NOP                                | = 1 if M<br>2 pipel<br>32 Raf<br>uction i                    | PYF32 ge<br>ine cycle (<br><sup>I, RbH, Rc</sup><br>in the dela | ; 1 cy<br>; <                                                                                                                     | overflow cor<br>on. That is:<br>peline cycl<br>cle delay c<br>MPYF32 comp | ndition.<br>es (2p)<br>or non-confi<br>oletes, RaH | -   | eruction<br>er or use RaH |  |  |
| Example     | Calculate<br>MOVL<br>MOV32<br>MOVL<br>MOV32<br>MPYF32<br>MOVL       | Y = A<br>XAR4,<br>R0H,<br>XAR4,<br>R1H,<br>2 R0H, F<br>XAR4, | * B:<br>#A<br>*XAR4 ;<br># B<br>*XAR4 ;<br>21H,R0H ;<br>#Y<br>; | Load ROH w<br>Load R1H w<br>Multiply A<br><mpyf32< th=""><th>ith B<br/>* B<br/>complete</th><th></th><th></th><th></th></mpyf32<> | ith B<br>* B<br>complete                                                  |                                                    |     |                           |  |  |
| See also    | MPYF32<br>MPYF32<br>MPYF32<br>MPYF32                                | RaH, #<br>RaH, F<br>RdH, F<br>RdH, F<br>RaH, F               | #16FHi, Rt<br>RbH, RcH<br>ReH, RfH  <br>ReH, RfH  <br>RbH, RcH  | Save the r<br>H<br>   ADDF32 F<br>  MOV32 Ra<br>  MOV32 m<br>   SUBF32 F<br>, ReH, RfH                                            | RdH, ReH, I<br>aH, mem32<br>em32, RaH<br>RdH, ReH, F                      | RfH                                                |     |                           |  |  |



# MPYF32 RaH, #16FHi, RbH 32-bit Floating-Point Multiply

| Operands    |                                                                                                       |                                                                                                                                                                     |                                                                                                             |                                                                            |                                                                     |                                                    |
|-------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
|             | RaH                                                                                                   | floating-point des                                                                                                                                                  | stination register (R0H                                                                                     | to R7H)                                                                    |                                                                     |                                                    |
|             | #16FHi                                                                                                |                                                                                                                                                                     | te value that represen<br>ue. The low 16-bits of                                                            |                                                                            |                                                                     |                                                    |
|             | RcH                                                                                                   | floating-point sou                                                                                                                                                  | irce register (R0H to R                                                                                     | 7H)                                                                        |                                                                     |                                                    |
| Opcode      | LSW: 1110 100<br>MSW: IIII III                                                                        |                                                                                                                                                                     |                                                                                                             |                                                                            |                                                                     |                                                    |
| Description |                                                                                                       | with the floating-pone addition in RaH                                                                                                                              |                                                                                                             | nted by the                                                                | immediate c                                                         | perand. Store                                      |
|             | floating-point of<br>most useful fo<br>Some exampl<br>(0xBFC00000<br>That is, the va<br>RaH = RbH * # | 6-bit immediate va<br>value. The low 16-<br>or representing cor<br>es are 2.0 (0x4000<br>). The assembler<br>alue -1.5 can be re<br>el6FHi:0<br>on can also be writ | bits of the mantise<br>istants where the<br>00000), 4.0 (0x408<br>will accept either a<br>presented as #-1. | sa are assu<br>lowest 16-b<br>300000), 0.5<br>a hex or floa<br>5 or #0xBF0 | med to be a<br>its of the ma<br>5 (0x3F0000<br>it as the imn<br>C0. | ll 0. #16FHi is<br>antissa are 0.<br>00), and -1.5 |
| Flags       |                                                                                                       | n modifies the foll                                                                                                                                                 |                                                                                                             |                                                                            |                                                                     |                                                    |
| Tidgs       | Flag TF                                                                                               |                                                                                                                                                                     |                                                                                                             | NF                                                                         | LUF                                                                 | LVF                                                |
|             | Modified No                                                                                           | No N                                                                                                                                                                | lo No                                                                                                       | No                                                                         | Yes                                                                 | Yes                                                |
| Pipeline    | <ul> <li>LVF = 1 if</li> <li>This is a 2 pip</li> </ul>                                               |                                                                                                                                                                     | es an overflow con<br>struction. That is:                                                                   | <b>dition.</b><br>es (2p)<br>r non-confl                                   |                                                                     | ruction                                            |
|             | NOP                                                                                                   |                                                                                                                                                                     |                                                                                                             | icces, itali                                                               | apaacca                                                             |                                                    |
|             | Any instruction as a source o                                                                         | n in the delay slot<br>perand.                                                                                                                                      | must not use Ra⊢                                                                                            | l as a destir                                                              | nation regist                                                       | er or use RaH                                      |
| Example 1   | MOVIZF32<br>MPYF32<br>MOVL                                                                            | R3H, #2.0<br>R4H, #3.0, R3H<br>XAR1, #0xB006                                                                                                                        | <pre>; R3H = 2.0 (0x4 ; R4H = 3.0 * R3 ; &lt; Non confli ; &lt; MPYF32 com</pre>                            | H<br>cting instr                                                           |                                                                     | 000000)                                            |
|             | MOV32                                                                                                 | *XAR1, R4H                                                                                                                                                          | ; Save the resul                                                                                            | t in memory                                                                | / location (                                                        | xB006                                              |
| Example 2   |                                                                                                       | re example but #16<br>R3H, #2.0<br>R4H, #0x4040, R3                                                                                                                 | 5FHi is represent<br>; R3H = 2.0 (<br>3H ; R4H = 0x404<br>; 3.0 is repr<br>; IEEE 754 32                    | 0x40000000)<br>0 * R3H<br>esented as                                       | 0x40400000                                                          | in                                                 |
|             | MOVL                                                                                                  | XAR1, #0xB006                                                                                                                                                       | ; < Non con<br>; < MPYF32                                                                                   | flicting in<br>complete, R                                                 | struction<br>24H = 6.0 (0                                           |                                                    |
|             | MOV32                                                                                                 | *XAR1, R4H                                                                                                                                                          | ; Save the re                                                                                               | sult in mem                                                                | ory locatio                                                         | on 0xB006                                          |
| See also    | MPYF32 RaH                                                                                            | , RbH, #16FHi<br> , RbH, RcH<br> , RbH, RcH    ADI                                                                                                                  | DF32 RdH, ReH, F                                                                                            | RfH                                                                        |                                                                     |                                                    |
|             |                                                                                                       |                                                                                                                                                                     |                                                                                                             |                                                                            |                                                                     |                                                    |

# MPYF32 RaH, RbH, #16FHi 32-bit Floating-Point Multiply

| Operands   |                                                                     |                                                                                                                         |                                                                                                                        |                                                                                                |                                                               |                                                    |  |  |
|------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|
|            | RaH                                                                 | floating-point dest                                                                                                     | nation register (R0H                                                                                                   | ster (R0H to R7H)                                                                              |                                                               |                                                    |  |  |
|            | RbH                                                                 | floating-point sour                                                                                                     | ce register (R0H to F                                                                                                  | R7H)                                                                                           |                                                               |                                                    |  |  |
|            | #16FHi                                                              |                                                                                                                         | e value that represer<br>e. The low 16-bits of                                                                         |                                                                                                |                                                               |                                                    |  |  |
| Incodo     | TON: 1110 1000                                                      | 0177 7777                                                                                                               |                                                                                                                        |                                                                                                |                                                               |                                                    |  |  |
| pcode      | LSW: 1110 1000<br>MSW: IIII IIII                                    |                                                                                                                         |                                                                                                                        |                                                                                                |                                                               |                                                    |  |  |
| escription |                                                                     | rith the floating-poi<br>e addition in RaH.                                                                             | nt value represe                                                                                                       | nted by the                                                                                    | immediate o                                                   | perand. Store                                      |  |  |
|            | floating-point v<br>most useful for<br>Some example<br>(0xBFC00000) | -bit immediate valuation alue. The low 16-bit representing consets are 2.0 (0x4000). The assembler ware -1.5 can be rep | its of the mantis<br>stants where the<br>0000), 4.0 (0x40<br>ill accept either a                                       | sa are assu<br>lowest 16-b<br>800000), 0.5<br>a hex or floa                                    | med to be a<br>hits of the ma<br>5 (0x3F0000<br>at as the imm | ll 0. #16FHi is<br>Intissa are 0.<br>00), and -1.5 |  |  |
|            |                                                                     | n can also be write                                                                                                     |                                                                                                                        |                                                                                                |                                                               |                                                    |  |  |
| lags       |                                                                     | modifies the follo                                                                                                      |                                                                                                                        | •                                                                                              |                                                               |                                                    |  |  |
|            | Flag TF<br>Modified No                                              | ZI NI<br>No No                                                                                                          | ZF<br>No                                                                                                               | NF<br>No                                                                                       | LUF<br>Yes                                                    | LVF<br>Yes                                         |  |  |
| Pipeline   | This is a 2 pipe                                                    | /IPYF32 generates<br>eline cycle (2p) ins<br>h, rbh, #16Fhi ;                                                           | truction. That is:                                                                                                     |                                                                                                |                                                               |                                                    |  |  |
|            | NOP                                                                 |                                                                                                                         | 1 cycle delay c<br>< MPYF32 comp                                                                                       |                                                                                                |                                                               | ruction                                            |  |  |
|            | Any instruction as a source op                                      | in the delay slot n<br>erand.                                                                                           | nust not use Rał                                                                                                       | l as a destir                                                                                  | nation registe                                                | er or use RaH                                      |  |  |
| Example 1  |                                                                     | R4H, R3H, #3.0<br>XAR1, #0xB008                                                                                         |                                                                                                                        | 0<br>.cting instr                                                                              |                                                               | C00000)                                            |  |  |
|            | MOLIZO                                                              |                                                                                                                         |                                                                                                                        | -                                                                                              |                                                               |                                                    |  |  |
|            | MOV32                                                               | *XAR1, R4H                                                                                                              | Save the resul                                                                                                         | .c III memory                                                                                  | y location U                                                  | xB008                                              |  |  |
| xample 2   | ;Same as above<br>MOVIZF32                                          | e example but #16B                                                                                                      | THI IS REPRESENT<br>; R3H = 2.0 (<br>) ; R4H = R3H *<br>; 3.0 IS REPR                                                  | ed in Hex<br>0x40000000)<br>0x4040<br>cesented as                                              | )<br>0x40400000                                               |                                                    |  |  |
| xample 2   | ;Same as above<br>MOVIZF32<br>MPYF32                                | e example but #16E<br>R3H, #2.0                                                                                         | 'Hi is represent<br>; R3H = 2.0 (<br>) ; R4H = R3H *                                                                   | ed in Hex<br>0x40000000)<br>0x4040<br>esented as<br>2-bit format<br>flicting ir                | )<br>0x40400000<br>c<br>istruction                            | in                                                 |  |  |
| xample 2   | ;Same as above<br>MOVIZF32<br>MPYF32                                | e example but #16F<br>R3H, #2.0<br>R4H, R3H, #0x404(                                                                    | <pre>Hi is represent     ; R3H = 2.0 (     ; R4H = R3H *     ; 3.0 is repr     ; IEEE 754 32     ; &lt; Non cor </pre> | ed in Hex<br>0x40000000)<br>0x4040<br>esented as<br>2-bit format<br>flicting in<br>complete, F | )<br>0x40400000<br>-<br>struction<br>R4H = 6.0 (0             | in<br>x40C00000)                                   |  |  |



### MPYF32 RaH, RbH, RcH ADDF32 RdH, ReH, RfH 32-bit Floating-Point Multiply with Parallel Add

| Operands     |                                                                                                                                      |                                                          |                                                      |                                                                                           |                                                                                                  |                                       |                                           |     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----|
|              | RaH                                                                                                                                  |                                                          |                                                      | t destination rebeat the same in                                                          |                                                                                                  | YF32 (R0H to<br>H                     | R7H)                                      |     |
|              | RbH                                                                                                                                  |                                                          | floating-poin                                        | t source regist                                                                           | er for MPYF3                                                                                     | 2 (R0H to R7H                         | I)                                        |     |
|              | RcH                                                                                                                                  |                                                          | floating-poin                                        | t source regist                                                                           | er for MPYF3                                                                                     | 2 (R0H to R7H                         | I)                                        |     |
|              | RdH                                                                                                                                  |                                                          |                                                      | t destination robe the same i                                                             |                                                                                                  | DF32 (R0H to<br>H                     | R7H)                                      |     |
|              | ReH                                                                                                                                  |                                                          | floating-poin                                        | t source regist                                                                           | er for ADDF3                                                                                     | 2 (R0H to R7H                         | )                                         |     |
|              | RfH                                                                                                                                  |                                                          | floating-poin                                        | t source regist                                                                           | er for ADDF3                                                                                     | 2 (R0H to R7H                         | )                                         |     |
| Opcode       | LSW: 111<br>MSW: fee                                                                                                                 |                                                          | 0100 00ff<br>ccbb baaa                               |                                                                                           |                                                                                                  |                                       |                                           |     |
| Description  | Multiply the contents of two floating-point registers with parallel addition of two registers.<br>RaH = RbH * RcH<br>RdH = ReH + RfH |                                                          |                                                      |                                                                                           |                                                                                                  |                                       |                                           |     |
|              | This inst                                                                                                                            | ruction o                                                | an also be                                           | written as:                                                                               |                                                                                                  |                                       |                                           |     |
|              | MACF32 F                                                                                                                             | RaH, RbH                                                 | , RcH, RdH,                                          | ReH, RfH                                                                                  |                                                                                                  |                                       |                                           |     |
| Restrictions | The destination register for the MPYF32 and the ADDF32 must be unique. That is, RaH cannot be the same register as RdH.              |                                                          |                                                      |                                                                                           |                                                                                                  |                                       | e. That is, RaH                           |     |
| Flags        | This instruction modifies the following flags in the STF register:.                                                                  |                                                          |                                                      |                                                                                           |                                                                                                  |                                       |                                           |     |
|              | Flag                                                                                                                                 | TF                                                       | ZI                                                   | NI                                                                                        | ZF                                                                                               | NF                                    | LUF                                       | LVF |
|              | Modified                                                                                                                             | No                                                       | No                                                   | No                                                                                        | No                                                                                               | No                                    | Yes                                       | Yes |
| Pipeline     | LUF     LVF     Doth MF     MPYH     I ADDE     NOP     NOP     NOP                                                                  | = 1 if MF<br>= 1 if MF<br>PYF32 ar<br>732 RaH<br>732 RdH | PYF32 or AE<br>ad ADDF32<br>, RbH, RcH<br>, ReH, RfH | DDF32 geno<br>DDF32 geno<br>take 2 pipe<br>; 2 pipel<br>; 2 pipel<br>; 1 cycle<br>; < MPY | erates an u<br>erates an o<br>line cycles<br>line cycles<br>ine cycles<br>delay or<br>F32, ADDF3 | s (2p)<br>non-conflic<br>32 complete, | dition.<br>:<br>cting instr<br>, RaH, RdH |     |

a source operand.



| Evenue   |                                                                     |  |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
| Example  | ; Perform 5 multiply and accumulate operations:                     |  |  |  |  |  |  |  |
|          | ; 1st multiply: A = X0 * Y0                                         |  |  |  |  |  |  |  |
|          | ; 2nd multiply: B = X1 * Y1                                         |  |  |  |  |  |  |  |
|          | ; 3rd multiply: C = X2 * Y2                                         |  |  |  |  |  |  |  |
|          | ; 4th multiply: D = X3 * Y3                                         |  |  |  |  |  |  |  |
|          | ; 5th multiply: $E = X3 * Y3$ .                                     |  |  |  |  |  |  |  |
|          | ; Result = A + B + C + D + E                                        |  |  |  |  |  |  |  |
|          | MOV32 R0H, *XAR4++ ; R0H = X0                                       |  |  |  |  |  |  |  |
|          | MOV32 R1H, *XAR5++ ; R1H = Y0                                       |  |  |  |  |  |  |  |
|          | ; R2H = A = X0 * Y0                                                 |  |  |  |  |  |  |  |
|          | MPYF32 R2H, R0H, R1H ; In parallel R0H = X1                         |  |  |  |  |  |  |  |
|          | MOV32 R0H, *XAR4++<br>MOV32 R1H, *XAR5++ ; R1H = Y1                 |  |  |  |  |  |  |  |
|          | ; R3H = B = X1 * Y1                                                 |  |  |  |  |  |  |  |
|          | MPYF32 R3H, R0H, R1H ; In parallel R0H = X2                         |  |  |  |  |  |  |  |
|          | MOV32 R0H, *XAR4++                                                  |  |  |  |  |  |  |  |
|          | MOV32 R1H, *XAR5++ ; R1H = Y2                                       |  |  |  |  |  |  |  |
|          | ; R3H = A + B                                                       |  |  |  |  |  |  |  |
|          | ; R2H = C = X2 * Y2                                                 |  |  |  |  |  |  |  |
|          | MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X3               |  |  |  |  |  |  |  |
|          | MOV32 R0H, *XAR4++                                                  |  |  |  |  |  |  |  |
|          | MOV32 R1H, *XAR5++ ; R1H = Y3                                       |  |  |  |  |  |  |  |
|          | ; R3H = (A + B) + C                                                 |  |  |  |  |  |  |  |
|          | ; R2H = D = X3 * Y3                                                 |  |  |  |  |  |  |  |
|          | MACF32 R3H, R2H, R2H, R0H, R1H ; In parallel R0H = X4               |  |  |  |  |  |  |  |
|          | MOV32 R1H, *XAR5 ; R1H = Y4                                         |  |  |  |  |  |  |  |
|          | ; R2H = E = X4 * Y4                                                 |  |  |  |  |  |  |  |
|          | MPYF32 R2H, R0H, R1H ; in parallel R3H = $(A + B + C) + D$          |  |  |  |  |  |  |  |
|          | ADDF32 R3H, R3H, R2H<br>NOP ; Wait for MPYF32    ADDF32 to complete |  |  |  |  |  |  |  |
|          | ADDF32 R3H, R3H, R2H ; $R3H = (A + B + C + D) + E$                  |  |  |  |  |  |  |  |
|          | NOP ; Wait for ADDF32 to complete                                   |  |  |  |  |  |  |  |
|          | MOV32 @Result, R3H ; Store the result                               |  |  |  |  |  |  |  |
| See also | MACF32 R3H, R2H, RdH, ReH, RfH                                      |  |  |  |  |  |  |  |
|          | MACF32 R3H, R2H, RdH, ReH, RfH    MOV32 RaH, mem32                  |  |  |  |  |  |  |  |
|          | MACF32 R7H, R3H, mem32, *XAR7++                                     |  |  |  |  |  |  |  |
|          | MACF32 R7H, R6H, RdH, ReH, RfH                                      |  |  |  |  |  |  |  |
|          | MACF32 R7H, R6H, RdH, ReH, RfH    MOV32 RaH, mem32                  |  |  |  |  |  |  |  |



### MPYF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Multiply with Parallel Move

| Operands     |                                                                                                                                                                                              |                                                                                     |               |                                   |                  |                 |         |   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|-----------------------------------|------------------|-----------------|---------|---|
|              | RdH                                                                                                                                                                                          |                                                                                     |               | egister for the<br>egister as Ral |                  | H to R7H)       |         | _ |
|              | ReH                                                                                                                                                                                          | floating-point                                                                      | source regist | er for the MP                     | YF32 (R0H to     | R7H)            |         |   |
|              | RfH                                                                                                                                                                                          | floating-point source register for the MPYF32 (R0H to R7H)                          |               |                                   |                  |                 |         |   |
|              | RaH floating-point destination register for the MOV32 (R0H to R7H)<br>RaH cannot be the same register as RdH                                                                                 |                                                                                     |               |                                   |                  |                 |         |   |
|              | mem32                                                                                                                                                                                        | pointer to a 3                                                                      | 32-bit memory | location. This                    | s will be the so | ource of the MC | DV32.   |   |
| Opcode       | LSW: 1110 0011<br>MSW: eedd daaa                                                                                                                                                             |                                                                                     |               |                                   |                  |                 |         |   |
| Description  | Multiply the cor<br>RdH = ReH * Rf<br>RaH = [mem32]                                                                                                                                          |                                                                                     | loating-poir  | nt registers                      | and load a       | nother.         |         |   |
| Restrictions | The destination register for the MPYF32 and the MOV32 must be unique. That is, RaH cannot be the same register as RdH.                                                                       |                                                                                     |               |                                   |                  |                 |         |   |
| Flags        | This instruction modifies the following flags in the STF register:.                                                                                                                          |                                                                                     |               |                                   |                  |                 |         |   |
|              | Flag TF                                                                                                                                                                                      | ZI                                                                                  | NI            | ZF                                | NF               | LUF             | LVF     |   |
|              | Modified No                                                                                                                                                                                  | Yes                                                                                 | Yes           | Yes                               | Yes              | Yes             | Yes     |   |
|              | <ul> <li>The STF register flags are modified as follows:</li> <li>LUF = 1 if MPYF32 generates an underflow condition.</li> <li>LVF = 1 if MPYF32 generates an overflow condition.</li> </ul> |                                                                                     |               |                                   |                  |                 |         |   |
|              | The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows:                                                                                                                       |                                                                                     |               |                                   |                  |                 |         |   |
|              | <pre>NF = RaH(31);<br/>ZF = 0;<br/>if(RaH(30:23) == 0) { ZF = 1; NF = 0; }<br/>NI = RaH(31);<br/>ZI = 0;<br/>if(RaH(31:0) == 0) ZI = 1;</pre>                                                |                                                                                     |               |                                   |                  |                 |         |   |
| Pipeline     | MPYF32 takes 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:                                                                                                                 |                                                                                     |               |                                   |                  |                 |         |   |
|              | MPYF32 RdH, ReH, RfH ; 2 pipeline cycles (2p)<br>   MOV32 RaH, mem32 ; 1 cycle<br>; < MOV32 completes, RaH updated                                                                           |                                                                                     |               |                                   |                  |                 |         |   |
|              | NOP                                                                                                                                                                                          | ; 1 cycle delay or non-conflicting instruction<br>; < MPYF32 completes, RdH updated |               |                                   |                  |                 | ruction |   |
|              | 1101                                                                                                                                                                                         |                                                                                     |               |                                   |                  |                 |         |   |

Any instruction in the delay slot must not use RdH as a destination register or as a source operand.



| Example  | Calculate $Y = M1^*X1 + B1$ . This example assumes that M1, X1, B1 and Y1 are all on the same data page.                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|          | MOVW       DP, #M1       ; Load the data page         MOV32       R0H,@M1       ; Load R0H with M1         MOV32       R1H,@X1       ; Load R1H with X1         MPYF32       R1H,R1H,R0H       ; Multiply M1*X1            MOV32       R0H,@B1       ; and in parallel load R0H with B1         ; <       MOV32 complete         NOP       ; Wait 1 cycle for MPYF32 to complete                                            |  |  |  |  |  |  |
|          | ; < MPYF32 complete<br>ADDF32 R1H,R1H,R0H ; Add M*X1 to B1 and store in R1H<br>NOP ; Wait 1 cycle for ADDF32 to complete<br>; < ADDF32 complete<br>; Store the recent                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|          | MOV32 @Y1,R1H ; Store the result<br>Calculate Y = (A * B) * C:                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|          | <pre>MOVL XAR4, #A<br/>MOV22 ROH, *XAR4 ; Load ROH with A<br/>MOVL XAR4, #B<br/>MOV22 R1H, *XAR4 ; Load R1H with B<br/>MOVL XAR4, #C<br/>MPYF32 R1H,R1H,R0H ; Calculate R1H = A * B<br/>   MOV32 ROH, *XAR4 ; and in parallel load R2H with C<br/>; &lt; MOV32 complete<br/>MOVL XAR4, #Y<br/>; &lt; MPYF32 complete<br/>MPYF32 R2H,R1H,R0H ; Calculate Y = (A * B) * C<br/>NOP ; Wait 1 cycle for MPYF32 to complete</pre> |  |  |  |  |  |  |
|          | MOV32 *XAR4,R2H                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| See also | MPYF32 RdH, ReH, RfH    MOV32 mem32, RaH<br>MACF32 R3H, R2H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MACF32 R7H, R6H, RdH, ReH, RfH    MOV32 RaH, mem32<br>MACF32 R7H, R3H, mem32, *XAR7++                                                                                                                                                                                                                                     |  |  |  |  |  |  |



### MPYF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Multiply with Parallel Move

| Operands    |                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|-------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|------------------|-----------------|---|--|--|--|
|             | RdH                                                                | RdH floating-point destination register for the MPYF32 (R0H to R7H)                                                                                                                                                                                                                                                              |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|             | ReH                                                                | ReH floating-point source register for the MPYF32 (R0H to R7H)                                                                                                                                                                                                                                                                   |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|             | RfH floating-point source register for the MPYF32 (R0H to R7H)     |                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|             | mem32                                                              | pointer to a 32                                                                                                                                                                                                                                                                                                                  | 2-bit memory l                                                 | ocation. Th                                                          | is will be the d                 | estination of th | e MOV32.        |   |  |  |  |
|             | RaH                                                                | floating-point s                                                                                                                                                                                                                                                                                                                 | source registe                                                 | er for the MC                                                        | DV32 (R0H to                     | R7H)             |                 |   |  |  |  |
|             |                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                  |                  |                 | - |  |  |  |
| Opcode      | LSW: 1110 000<br>MSW: eedd daa                                     |                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
| Description | Multiply the constraints RdH = ReH * F<br>[mem32] = Raf            |                                                                                                                                                                                                                                                                                                                                  | pating-point                                                   | t registers                                                          | s and move                       | from memo        | ry to register. |   |  |  |  |
| Flags       | This instruction modifies the following flags in the STF register: |                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|             | Flag TF                                                            | ZI                                                                                                                                                                                                                                                                                                                               | NI                                                             | ZF                                                                   | NF                               | LUF              | LVF             | _ |  |  |  |
|             | Modified No                                                        | No                                                                                                                                                                                                                                                                                                                               | No                                                             | No                                                                   | No                               | Yes              | Yes             | _ |  |  |  |
| Pipeline    | MPYF32 take<br>MPYF32 F                                            | <pre>MPYF32 generates an overflow condition.<br/>s 2 pipeline-cycles (2p) and MOV32 takes a single cycle. That is:<br/>dH, ReH, RfH ; 2 pipeline cycles (2p)<br/>em32, RaH ; 1 cycle<br/>; &lt; MOV32 completes, mem32 updated<br/>; 1 cycle delay or non-conflicting instruction<br/>; &lt; MPYF32 completes, RdH updated</pre> |                                                                |                                                                      |                                  |                  |                 |   |  |  |  |
|             | Any instructio<br>source opera                                     | n in the delay slond.                                                                                                                                                                                                                                                                                                            | ot must not                                                    | use Rd⊦                                                              | l as a desti                     | nation regist    | er or as a      |   |  |  |  |
| Example     | MPYF32                                                             | XAR1, #0xC003<br>R3H, #2.0<br>R3H, R3H, #5.0<br>R1H, #5.0<br>R3H, R1H, R3H<br>*XAR1, R3H                                                                                                                                                                                                                                         | ; R3H =<br>; R3H =<br>; R1H =<br>; < ME<br>; R3H =<br>; and ir | 2.0 (0x4<br>R3H * 5.<br>5.0 (0x4<br>PYF32 com<br>R1H * R3<br>paralle | 0<br>0A00000)<br>plete, R3H<br>H |                  |                 |   |  |  |  |
|             | NOP                                                                |                                                                                                                                                                                                                                                                                                                                  | -                                                              | -                                                                    | for MPYF32                       | to complete      |                 |   |  |  |  |
| See also    | MACF32 R3F<br>MACF32 R7F                                           | I, ReH, RfH    M0<br>I, R2H, RdH, Re<br>I, R6H, RdH, Re<br>I, R3H, mem32,                                                                                                                                                                                                                                                        | H, RfH    M<br>H, RfH    M                                     | 10V32 Ra                                                             |                                  |                  |                 |   |  |  |  |

| MPYF32 RaH, RbH, RcH |                                                       |
|----------------------|-------------------------------------------------------|
| SUBF32 RdH, ReH, RfH | 32-bit Floating-Point Multiply with Parallel Subtract |

| Operands                                                                  |                                                                         |                                     |                                                                                    |                                                                          |                                                                         |                              |             |                  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|-------------|------------------|--|--|
|                                                                           | RaH                                                                     |                                     | floating-point of RaH cannot be                                                    |                                                                          |                                                                         | 32 (R0H to R                 | 7H)         |                  |  |  |
|                                                                           | RbH                                                                     |                                     | floating-point source register for MPYF32 (R0H to R7H)                             |                                                                          |                                                                         |                              |             |                  |  |  |
|                                                                           | RcH                                                                     |                                     | floating-point source register for MPYF32 (R0H to R7H)                             |                                                                          |                                                                         |                              |             |                  |  |  |
|                                                                           | RdH                                                                     |                                     | floating-point of RdH cannot be                                                    |                                                                          |                                                                         | 32 (R0H to R7                | 7H)         |                  |  |  |
|                                                                           | ReH                                                                     |                                     | floating-point s                                                                   | source register                                                          | for SUBF32 (                                                            | R0H to R7H)                  |             |                  |  |  |
|                                                                           | RfH                                                                     |                                     | floating-point s                                                                   | source register                                                          | for SUBF32 (                                                            | R0H to R7H)                  |             |                  |  |  |
| Opcode                                                                    | LSW: 1110<br>MSW: feee                                                  |                                     |                                                                                    |                                                                          |                                                                         |                              |             |                  |  |  |
| Description                                                               | Multiply the registers.                                                 |                                     | contents of two floating-point registers with parallel subtraction of two          |                                                                          |                                                                         |                              |             |                  |  |  |
|                                                                           | RdH = ReH                                                               | H - RfH                             |                                                                                    |                                                                          |                                                                         |                              |             |                  |  |  |
| Restrictions                                                              |                                                                         |                                     | egister for the                                                                    |                                                                          | and the SUI                                                             | BF32 must                    | be unique   | . That is, RaH   |  |  |
| Flags This instruction modifies the following flags in the STF register:. |                                                                         |                                     |                                                                                    |                                                                          |                                                                         |                              |             |                  |  |  |
|                                                                           | Flag                                                                    | TF                                  | ZI                                                                                 | NI                                                                       | ZF                                                                      | NF                           | LUF         | LVF              |  |  |
|                                                                           | Modified                                                                | No                                  | No                                                                                 | No                                                                       | No                                                                      | No                           | Yes         | Yes              |  |  |
| Pipeline                                                                  | <ul> <li>LUF =</li> <li>LVF =</li> <li>MPYF32</li> <li>MPYF3</li> </ul> | = 1 if MP'<br>= 1 if MP'<br>and SUE | flags are mo<br>YF32 or SUE<br>YF32 or SUE<br>BF32 both ta<br>RbH, RcH<br>ReH, RfH | 3F32 genera<br>3F32 genera<br>ke 2 pipelin<br>; 2 pipelin<br>; 2 pipelin | ates an unc<br>ates an ove<br>e-cycles (2<br>ne cycles (<br>ne cycles ( | rflow condit<br>p). That is: | tion.       | uction           |  |  |
|                                                                           | NOD                                                                     |                                     |                                                                                    | -                                                                        | -                                                                       | complete.                    |             |                  |  |  |
|                                                                           | NOP<br>Any instru<br>a source                                           |                                     | •                                                                                  | ot must not                                                              | use RaH or                                                              | RdH as a                     | destinatior | n register or as |  |  |
| Example                                                                   |                                                                         | ZF32 R51<br>32 R61                  | H, #5.0<br>H, #3.0<br>H, R4H, R5H<br>H, R4H, R5H                                   | ; R5H = 3<br>; R6H = R<br>; R7H = R<br>; 1 cycle<br>; < MPY              | .0 (0x40400<br>4H * R5H<br>4H - R5H<br>delay for<br>F32    SUBB         |                              | e,          | -                |  |  |
| See also                                                                  |                                                                         | RdH, Re                             | H, RcH<br>H, RfH    M0<br>H, RfH    M0                                             |                                                                          |                                                                         |                              |             |                  |  |  |



#### Operands

| RaH  | floating-point destination register (R0H to R7H) |
|------|--------------------------------------------------|
| RbH  | floating-point source register (R0H to R7H)      |
| CNDF | condition tested                                 |

#### Opcode

Description

|              | <br>0110<br>0000 | <br>             |  |
|--------------|------------------|------------------|--|
| if (<br>else | == tru           | aH = -<br>aH = R |  |

#### CNDF is one of the following conditions:

| Encode (1) | CNDF                | Description                          | STF Flags Tested    |
|------------|---------------------|--------------------------------------|---------------------|
| 0000       | NEQ                 | Not equal to zero                    | ZF == 0             |
| 0001       | EQ                  | Equal to zero                        | ZF == 1             |
| 0010       | GT                  | Greater than zero                    | ZF == 0 AND NF == 0 |
| 0011       | GEQ                 | Greater than or equal to zero        | NF == 0             |
| 0100       | LT                  | Less than zero                       | NF == 1             |
| 0101       | LEQ                 | Less than or equal to zero           | ZF == 1 AND NF == 1 |
| 1010       | TF                  | Test flag set                        | TF == 1             |
| 1011       | NTF                 | Test flag not set                    | TF == 0             |
| 1100       | LU                  | Latched underflow                    | LUF == 1            |
| 1101       | LV                  | Latched overflow                     | LVF == 1            |
| 1110       | UNC                 | Unconditional                        | None                |
| 1111       | UNCF <sup>(2)</sup> | Unconditional with flag modification | None                |

<sup>(1)</sup> Values not shown are reserved.

<sup>(2)</sup> This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.
 This instruction modifies the following flags in the STF register:

### Flags

| Flag     | TF | ZI | NI | ZF  | NF  | LUF | LVF |
|----------|----|----|----|-----|-----|-----|-----|
| Modified | No | No | No | Yes | Yes | No  | No  |

| Pipeline | This is a single-cycle instruction.                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
| Example  | MOVIZF32R0H, #5.0; R0H = 5.0 (0x40A00000)MOVIZF32R1H, #4.0; R1H = 4.0 (0x40800000)MOVIZF32R2H, #-1.5; R2H = -1.5 (0xBFC00000) |
|          | MPYF32 R4H, R1H, R2H ; R4H = -6.0<br>MPYF32 R5H, R0H, R1H ; R5H = 20.0<br>; < R4H valid                                       |
|          | CMPF32 R4H, #0.0 ; NF = 1<br>; < R5H valid<br>NEGF32 R4H, R4H, LT ; if NF = 1, R4H = 6.0<br>CMPF32 R5H, #0.0 ; NF = 0         |
|          | NEGF32 R5H, R5H, GEQ ; if NF = 0, R4H = -20.0                                                                                 |

See also

ABSF32 RaH, RbH



POP RB Pop the RB Register from the Stack Operands RΒ repeat block register Opcode LSW: 1111 1111 1111 0001 Restore the RB register from stack. If a high-priority interrupt contains a RPTB Description instruction, then the RB register must be stored on the stack before the RPTB block and restored after the RTPB block. In a low-priority interrupt RB must always be saved and restored. This save and restore must occur when interrupts are disabled. Flags This instruction does not affect any flags floating-point Unit: Flag TF ΖI NI ZF NF LUF LVF Modified No No No No No No No This is a single-cycle instruction. **Pipeline** Example A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a high priority interrupt, the RB register must be saved if a RPTB block is used within the interrupt. If the interrupt service routine does not include a RPTB block, then you do not have to save the RB register. ; Repeat Block within a High-Priority Interrupt (Non-Interruptible) \_Interrupt: ; RAS = RA, RA = 0PUSH RB ; Save RB register only if a RPTB block is used in the ISR . . . RPTB #BlockEnd, AL ; Execute the block AL+1 times . . . . . . BlockEnd ; End of block to be repeated . . . ; Restore RB register POP RB IRET ; RA = RAS, RAS = 0A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The RB register must always be saved and restored in a low-priority interrupt. The RB register must stored before interrupts are enabled. Likewise before restoring the RB register interrupts must first be disabled. ; Repeat Block within a Low-Priority Interrupt (Interruptible) \_Interrupt: ; RAS = RA, RA = 0. . . PUSH RB ; Always save RB register . . . CLRC INTM ; Enable interrupts only after saving RB . . . ; ISR may or may not include a RPTB block . . . . . . SETC INTM ; Disable interrupts before restoring RB POP RB ; Always restore RB register . . . IRET ; RA = RAS, RAS = 0See also **PUSH RB RPTB #RSIZE. RC** RPTB #RSIZE, loc16



| PUSH RB     | B Push the RB Register onto the Stack                                                                                                                                                                                                                                                                                                  |                              |                 |                          |                 |             |              |               |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|--------------------------|-----------------|-------------|--------------|---------------|--|--|--|
| Operands    |                                                                                                                                                                                                                                                                                                                                        |                              |                 |                          |                 |             |              |               |  |  |  |
|             | RB                                                                                                                                                                                                                                                                                                                                     |                              | repeat block    | register                 |                 |             |              |               |  |  |  |
| Opcode      | LSW: 111                                                                                                                                                                                                                                                                                                                               | 11 1111                      | 1111 0000       |                          |                 |             |              |               |  |  |  |
| Description | Save the RB register on the stack. If a high-priority interrupt contains a RPTB instruction then the RB register must be stored on the stack before the RPTB block and restored after the RTPB block. In a low-priority interrupt RB must always be saved and restored. This save and restore must occur when interrupts are disabled. |                              |                 |                          |                 |             |              |               |  |  |  |
| Flags       | This instruction does not affect any flags floating-point Unit:                                                                                                                                                                                                                                                                        |                              |                 |                          |                 |             |              |               |  |  |  |
|             | <b>Flag</b><br>Modified                                                                                                                                                                                                                                                                                                                | TF<br>No                     | <b>ZI</b><br>No | NI<br>No                 | <b>ZF</b><br>No | NF<br>No    | LUF<br>No    | LVF<br>No     |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        |                              |                 |                          |                 |             |              |               |  |  |  |
| Pipeline    | This is a                                                                                                                                                                                                                                                                                                                              | a single-c                   | cycle instruc   | tion for the             | first iteratio  | n, and zero | o cycles the | eafter.       |  |  |  |
| Example     | A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a high priority interrupt, the RB register must be saved if a RPTB block is used within the interrupt. If the interrupt service routine does not include a RPTB block, then you do not have to save the RB register.                        |                              |                 |                          |                 |             |              |               |  |  |  |
|             | <pre>; Repeat Block within a High-Priority Interrupt (Non-Interruptible) _Interrupt: ; RAS = RA, RA = 0</pre>                                                                                                                                                                                                                          |                              |                 |                          |                 |             |              |               |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        | <br>PUSH RB                  |                 | ; Save RB                | register o      | nly if a R  | PTB block i  | s used in the |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        |                              | ockEnd, AL      | ; Execute                | the block i     | AL+1 times  |              |               |  |  |  |
|             | BlockEnd ; End of block to be repeated                                                                                                                                                                                                                                                                                                 |                              |                 |                          |                 |             |              |               |  |  |  |
|             | <br>POP RB ; Restore RB register                                                                                                                                                                                                                                                                                                       |                              |                 |                          |                 |             |              |               |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        | ::: IRET ; RA = RAS, RAS = 0 |                 |                          |                 |             |              |               |  |  |  |
|             | A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The RB register must always be saved and restored in a low-priority interrupt. The RB register must stored before interrupts are enabled. Likewise before restoring the RB register interrupts must first be disabled.                       |                              |                 |                          |                 |             |              |               |  |  |  |
|             | _Interr                                                                                                                                                                                                                                                                                                                                | upt:                         | within a Lo     | w-Priority<br>; RAS = RA | -               | (Interrupt  | ible)        |               |  |  |  |
|             | ]                                                                                                                                                                                                                                                                                                                                      | <br>PUSH RB<br>              |                 | ; Always s               | ave RB reg      | ister       |              |               |  |  |  |
|             | (                                                                                                                                                                                                                                                                                                                                      | CLRC INTN                    | M               | ; Enable i               | nterrupts       | only after  | saving RB    |               |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        | · · · ·<br>· · ·             |                 | ; ISR may                | or may not      | include a   | RPTB block   | :             |  |  |  |
|             | :                                                                                                                                                                                                                                                                                                                                      | SETC INTN                    | M               | ; Disable                | interrupts      | before re   | storing RB   |               |  |  |  |
|             | ]                                                                                                                                                                                                                                                                                                                                      | POP RB                       |                 | ; Always r               | restore RB :    | register    |              |               |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                        | <br>IRET                     |                 | ; RA = RAS               | S, RAS = 0      |             |              |               |  |  |  |
| See also    |                                                                                                                                                                                                                                                                                                                                        | 3<br>RSIZE, F<br>RSIZE, Id   |                 |                          |                 |             |              |               |  |  |  |





|              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                            | pating-Point         | v            |                 |       |     |               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------------|-------|-----|---------------|
| Operands     |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                            |                      |              |                 |       |     |               |
|              | none                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            | This instruct        | ion does not | have any ope    | rands |     |               |
| Opcode       | LSW: 111                                                                                                                                                                                                                                             | .0 0101                                                                                                                                                                                                                                                                                                                                    | 0110 0010            |              |                 |       |     |               |
| Description  | The SA\<br>interrupt                                                                                                                                                                                                                                 | Restore the floating-point register set (R0H - R7H and STF) from their shadow registers.<br>The SAVE and RESTORE instructions should be used in high-priority interrupts. That is<br>interrupts that cannot themselves be interrupted. In low-priority interrupt routines the<br>floating-point registers should be pushed onto the stack. |                      |              |                 |       |     |               |
| Restrictions | The RESTORE instruction cannot be used in any delay slots for pipelined operations.<br>Doing so will yield invalid results. To avoid this, the proper number of NOPs or<br>non-pipelined instructions must be inserted before the RESTORE operation. |                                                                                                                                                                                                                                                                                                                                            |                      |              |                 |       |     |               |
|              | MPYF3                                                                                                                                                                                                                                                | <pre>; The following is INVALID     MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)     RESTORE ; INVALID, do not use RESTORE in a delay slot</pre>                                                                                                                                                                               |                      |              |                 |       |     | ay slot       |
|              |                                                                                                                                                                                                                                                      | 2 R2H,                                                                                                                                                                                                                                                                                                                                     | is VALID<br>R1H, R0H |              |                 |       |     | s instruction |
| Flags        | Restorin                                                                                                                                                                                                                                             | g the st                                                                                                                                                                                                                                                                                                                                   | atus register        | will overv   | vrite all flags | 8:    |     |               |
|              | Flag                                                                                                                                                                                                                                                 | TF                                                                                                                                                                                                                                                                                                                                         | ZI                   | NI           | ZF              | NF    | LUF | LVF           |
|              | Modified                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                        | Yes                  | Yes          | Yes             | Yes   | Yes | Yes           |



| www.ti.com |                                                                                                                                                                                                                                                                                                                                                                                         | Instruction                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Example    | The following example shows a complete context save and restore for a high-priority interrupt. Note that the CPU automatically stores the following registers: ACC, P, XT, ST0, ST1, IER, DP, AR0, AR1 and PC. If an interrupt is low priority (that is it can be interrupted), then push the floating point registers onto the stack instead of using the SAVE and RESTORE operations. |                                                                                                                                                                                                                 |  |  |  |  |  |  |
|            | ; Interrupt Save<br>_HighestPriorityISR:<br>ASP<br>PUSH RB<br>PUSH AR1H:AR0H<br>PUSH XAR2<br>PUSH XAR3<br>PUSH XAR4<br>PUSH XAR5<br>PUSH XAR6<br>PUSH XAR7<br>PUSH XT<br>SPM 0<br>CLRC AMODE<br>CLRC PAGE0,OVM<br>SAVE RNDF32=1                                                                                                                                                         | <pre>; Uninterruptable ; Align stack ; Save RB register if used in the ISR ; Save other registers if used ; Save other registers ; Set default C28 modes ; Save all FPU registers ; set default FPU modes</pre> |  |  |  |  |  |  |
|            | ; Interrupt Restore                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                 |  |  |  |  |  |  |
|            | RESTORE<br>POP XT<br>POP XAR7<br>POP XAR6<br>POP XAR5<br>POP XAR4<br>POP XAR3<br>POP XAR2<br>POP AR1H:AR0H<br>POP RB                                                                                                                                                                                                                                                                    | <pre>; Restore all FPU registers ; restore other registers ; restore RB register</pre>                                                                                                                          |  |  |  |  |  |  |
|            | NASP<br>IRET                                                                                                                                                                                                                                                                                                                                                                            | ; un-align stack<br>; return from interrupt                                                                                                                                                                     |  |  |  |  |  |  |

See also

SAVE FLAG, VALUE



| RPTB label, loc16                                            | PTB label, loc16 Repeat A Block of Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|--------------------------|------------------------------------|-------------------------|-------------------------------|---------------------------------------|--|--|
| Operands                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
|                                                              | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | calculate RSI                | ZE.                      | ssembler to det<br>d immediately a |                         |                               | at block and to<br>uded in the repeat |  |  |
|                                                              | loc16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | 16-bit location              | n for the repe           | at count value.                    |                         |                               |                                       |  |  |
| Opcode                                                       | LSW: 1011<br>MSW: 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 0bbb bbbb<br>loc16           |                          |                                    |                         |                               |                                       |  |  |
| Description                                                  | Initialize re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | epeat b                         | lock loop, re                | peat coun                | from [loc16                        | ]                       |                               |                                       |  |  |
| Restrictions                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
|                                                              | The ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aximum                          | n block size                 | is ≤127 16               | bit words.                         |                         |                               |                                       |  |  |
|                                                              | <ul> <li>An eve</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n align                         | ed block mu                  | st be $\geq$ 9 1         | 6-bit words.                       |                         |                               |                                       |  |  |
|                                                              | <ul> <li>An odd</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l aligne                        | d block mus                  | t be ≥ 8 16              | bit words.                         |                         |                               |                                       |  |  |
|                                                              | <ul> <li>Interrup</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pts mus                         | st be disable                | d when sa                | ving or resto                      | oring the F             | RB register.                  |                                       |  |  |
|                                                              | Repeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t blocks                        | s cannot be                  | nested.                  | -                                  | -                       | -                             |                                       |  |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                              |                          | ot allowed in<br>terrupts are      |                         | beat block. T                 | his includes all                      |  |  |
|                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | ecution ope                  |                          | •                                  | anoweu.                 |                               |                                       |  |  |
| Flags                                                        | This instruction does not affect any flags in the floating-point unit:                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
|                                                              | Flag T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ſF                              | ZI                           | NI                       | ZF                                 | NF                      | LUF                           | LVF                                   |  |  |
|                                                              | Modified N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                              | No                           | No                       | No                                 | No                      | No                            | No                                    |  |  |
| Pipeline<br>Example                                          | <ul><li>This instruction takes four cycles on the first iteration and zero cycles thereafter. No special pipeline alignment is required.</li><li>The minimum size for the repeat block is 8 words if the block is even aligned and 9 words if the block is odd aligned. If you have a block of 8 words, as in the following example, you can make sure the block is odd aligned by proceeding it by a .align 2 directive and a NOP instruction. The .align 2 directive will make sure the NOP is even</li></ul> |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
|                                                              | aligned. Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ince a l                        |                              | -bit instruc             |                                    |                         |                               | For blocks of                         |  |  |
|                                                              | ; Repeat Block of 8 Words (Interruptible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                              |                          |                                    |                         |                               |                                       |  |  |
| ;<br>; find the largest element and put its addr<br>.align 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                              |                          |                                    | n XAR6                  |                               |                                       |  |  |
|                                                              | NOP<br>RPTB<br>MOVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                              | AR7 a                    | Execute th                         | e block A               | R7+1 times                    |                                       |  |  |
|                                                              | MOV32<br>MAXF32<br>MOVST0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R1H,*<br>R0H,R<br>NF,ZF         | XAR0++<br>1H                 |                          | min size =<br>max size =           |                         |                               |                                       |  |  |
|                                                              | MOVL<br>VECTOR_MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | ACC, LT                      |                          | label indi<br>RA is clea           |                         | end                           |                                       |  |  |
|                                                              | copied to t<br>automatica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the repo<br>ally cop<br>p was a | eat active sh<br>ied back to | hadow (RA<br>the RA bit. |                                    | the interi<br>the hardv | upt exits, th<br>vare to keep |                                       |  |  |
|                                                              | A high pric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ority inte                      | errupt is defi               | ined as an               | interrupt tha                      | it cannot i             | tself be inter                | rupted. In a                          |  |  |

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a high priority interrupt, the RB register must be saved if a RPTB block is used within the interrupt. If the interrupt service routine does not include a RPTB block, then you do not



#### have to save the RB register.

```
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt:
                             ; RAS = RA, RA = 0
       PUSH RB
                             ; Save RB register only if a RPTB block is used in the
ISR
       . . .
        . . .
       RPTB #BlockEnd, AL ; Execute the block AL+1 times
       . . .
       . . .
       . . .
BlockEnd
                             ; End of block to be repeated
       . . .
        . . .
                             ; Restore RB register
       POP RB
       . . .
       IRET
                             ; RA = RAS, RAS = 0
```

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The RB register must always be saved and restored in a low-priority interrupt. The RB register must stored before interrupts are enabled. Likewise before restoring the RB register interrupts must first be disabled.

| ; Repeat Block within a | Low-Priority Interrupt (Interruptible)    |
|-------------------------|-------------------------------------------|
| ;                       |                                           |
| ; Interrupt:            | ; RAS = RA, RA = $0$                      |
|                         |                                           |
| PUSH RB                 | ; Always save RB register                 |
|                         |                                           |
| CLRC INTM               | ; Enable interrupts only after saving RB  |
|                         |                                           |
|                         |                                           |
|                         | ; ISR may or may not include a RPTB block |
|                         |                                           |
|                         |                                           |
| SETC INTM               | ; Disable interrupts before restoring RB  |
|                         |                                           |
| POP RB                  | ; Always restore RB register              |
|                         |                                           |
| IRET                    | ; $RA = RAS$ , $RAS = 0$                  |
| POP RB                  |                                           |
| PUSH RB                 |                                           |
|                         |                                           |
| RPTB label, RC          |                                           |

See also



| RPTB label, #RC | Repeat a Block of Code                                                                                                                                                                           |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------|--|--|
| Operands        |                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 | label                                                                                                                                                                                            |                                        | This label is used by the assembler to determine the end of the repeat block and to calculate RSIZE.<br>This label should be placed immediately after the last instruction included in the repeat block. |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 | #RC                                                                                                                                                                                              |                                        | 16-bit immed                                                                                                                                                                                             | liate value for                                       | the repeat cou                                                    | nt.                                     |                                                |                   |  |  |
| Opcode          | LSW: 1011 0101 1bbb bbbb<br>MSW: cccc cccc cccc                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
| Description     | Repeat a b                                                                                                                                                                                       | olock o                                | f code. The                                                                                                                                                                                              | repeat cou                                            | int is specifie                                                   | ed as a im                              | mediate val                                    | ue.               |  |  |
| Restrictions    |                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 | The ma                                                                                                                                                                                           | aximun                                 | n block size                                                                                                                                                                                             | is ≤127 16                                            | -bit words.                                                       |                                         |                                                |                   |  |  |
|                 |                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       | 16-bit words.                                                     |                                         |                                                |                   |  |  |
|                 |                                                                                                                                                                                                  | -                                      | d block mus                                                                                                                                                                                              |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 |                                                                                                                                                                                                  | •                                      |                                                                                                                                                                                                          |                                                       | aving or resto                                                    | orina the F                             | R register                                     |                   |  |  |
|                 |                                                                                                                                                                                                  |                                        | s cannot be                                                                                                                                                                                              |                                                       | aving of resid                                                    |                                         | CD register.                                   |                   |  |  |
|                 | •                                                                                                                                                                                                |                                        |                                                                                                                                                                                                          |                                                       | ot allowed ir                                                     | nside a rep                             | beat block. T                                  | This includes all |  |  |
|                 |                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       | terrupts are                                                      | allowed.                                |                                                |                   |  |  |
|                 |                                                                                                                                                                                                  |                                        | xecution ope                                                                                                                                                                                             |                                                       |                                                                   |                                         |                                                |                   |  |  |
| Flags           | This instruction does not affect any flags int the floating-point unit:                                                                                                                          |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 | Flag T                                                                                                                                                                                           | F                                      | ZI                                                                                                                                                                                                       | NI                                                    | ZF                                                                | NF                                      | LUF                                            | LVF               |  |  |
|                 | Modified N                                                                                                                                                                                       | lo                                     | No                                                                                                                                                                                                       | No                                                    | No                                                                | No                                      | No                                             | No                |  |  |
| Pipeline        | special pip                                                                                                                                                                                      | eline a                                | alignment is                                                                                                                                                                                             | required.                                             | first iteration                                                   |                                         |                                                |                   |  |  |
| Example         | words if th<br>example, y<br>directive a<br>aligned. Si                                                                                                                                          | e blocł<br>/ou cai<br>nd a N<br>ince a | k is odd aligi<br>n make sure<br>OP instructi                                                                                                                                                            | hed. If you<br>the block<br>on. The .a<br>bit instruc |                                                                   | k of 8 wor<br>ed by proc<br>ve will mal | ds, as in the<br>eeding it by<br>ke sure the l | following         |  |  |
|                 | _                                                                                                                                                                                                | Block (                                | Interruptik                                                                                                                                                                                              | ole)                                                  |                                                                   |                                         |                                                |                   |  |  |
|                 | ;<br>; find the<br>.align 2                                                                                                                                                                      |                                        | est element                                                                                                                                                                                              | and put i                                             | ts address i                                                      | n XAR6                                  |                                                |                   |  |  |
|                 | NOP<br>RPTB VECTOR_MAX_END, $\#(4-1)$ ; Execute the block 4 times<br>MOVL ACC, XAR0<br>MOV32 R1H, $*XAR0++$ ; 8 or 9 words $\leq$ block size $\leq$ 127 word<br>MAXF32 R0H, R1H<br>MOVST0 NF, ZF |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                |                   |  |  |
|                 |                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                          |                                                       |                                                                   |                                         |                                                | 7 words           |  |  |
|                 | MOVL<br>VECTOR_MAX                                                                                                                                                                               |                                        | ACC, LT                                                                                                                                                                                                  |                                                       | ; RE indicat<br>; RA is clea                                      |                                         | d address                                      |                   |  |  |
|                 | copied to t<br>automatica                                                                                                                                                                        | he rep<br>ally cop<br>p was            | eat active sl<br>bied back to                                                                                                                                                                            | hadow (RA<br>the RA bit                               | ctive (RA) bi<br>.S) bit. Wher<br>. This allows<br>errupt is take | the interi<br>the hardv                 | rupt exits, th<br>vare to keep                 | track if a        |  |  |
|                 |                                                                                                                                                                                                  |                                        | errupt is def                                                                                                                                                                                            | ined as an                                            | interrupt tha                                                     | at cannot i                             | tself be inte                                  | rrupted. In a     |  |  |

A high priority interrupt is defined as an interrupt that cannot itself be interrupted. In a high priority interrupt, the RB register must be saved if a RPTB block is used within the interrupt. If the interrupt service routine does not include a RPTB block, then you do not



#### have to save the RB register.

```
; Repeat Block within a High-Priority Interrupt (Non-Interruptible)
;
; Interrupt:
                             ; RAS = RA, RA = 0
       PUSH RB
                             ; Save RB register only if a RPTB block is used in the
ISR
       . . .
        . . .
       RPTB #BlockEnd, #5 ; Execute the block 5+1 times
       . . .
       . . .
       . . .
BlockEnd
                             ; End of block to be repeated
       . . .
        . . .
                             ; Restore RB register
       POP RB
       . . .
       IRET
                             ; RA = RAS, RAS = 0
```

A low-priority interrupt is defined as an interrupt that allows itself to be interrupted. The RB register must always be saved and restored in a low-priority interrupt. The RB register must stored before interrupts are enabled. Likewise before restoring the RB register interrupts must first be disabled.

| ; Repeat Block within a | Low-Priority Interrupt (Interruptible)    |
|-------------------------|-------------------------------------------|
| i                       |                                           |
| ; Interrupt:            | ; $RAS = RA$ , $RA = 0$                   |
|                         |                                           |
| PUSH RB                 | ; Always save RB register                 |
|                         |                                           |
| CLRC INTM               | ; Enable interrupts only after saving RB  |
|                         |                                           |
|                         |                                           |
| • • •                   | ; ISR may or may not include a RPTB block |
| •••                     |                                           |
| •••                     |                                           |
| SETC INTM               | ; Disable interrupts before restoring RB  |
| •••                     |                                           |
| POP RB                  | ; Always restore RB register              |
| • • •                   |                                           |
| IRET                    | ; $RA = RAS$ , $RAS = 0$                  |
| POP RB                  |                                           |
|                         |                                           |
| PUSH RB                 |                                           |

See also

**RPTB #RSIZE**, loc16



### SAVE FLAG, VALUE Save Register Set to Shadow Registers and Execute SETFLG

| Operands            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                                         |                                                                                                          |                                                                                                            |                                                                     |                                                                          |                                                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                     | FLAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        | 11 bit mask i                                                           | ndicating wh                                                                                             | ch floating-poi                                                                                            | nt status flags                                                     | to change.                                                               |                                                                          |
|                     | VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | 11 bit mask i                                                           | ndicating the                                                                                            | flag value; 0 c                                                                                            | or 1.                                                               |                                                                          |                                                                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                                         |                                                                                                          |                                                                                                            |                                                                     |                                                                          |                                                                          |
| Opcode              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 0110<br>FF FVVV                                                                                     | 01FF FFFF<br>VVVV VVVV                                                  |                                                                                                          |                                                                                                            |                                                                     |                                                                          |                                                                          |
| Description         | STF) to<br>a single<br>are chai<br>execute<br>interrup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the shad<br>cycle. T<br>nged. Th<br>d. The S<br>ts. That i                                             |                                                                         | set and co<br>gister is co<br>VM] flag is<br>STORE ir<br>hat canno                                       | mbines the<br>pied to the<br>set to 1 wh<br>structions s<br>t themselves                                   | SETFLG F<br>shadow reg<br>en the SA<br>hould be u<br>s be interru   | LAG, VALU<br>gister before<br>VE comman<br>sed in high-<br>ipted. In low | E operation in<br>the flag values<br>d has been<br>priority<br>-priority |
| Restrictions        | Do not use the SAVE instruction in the delay slots for pipelined operations. Doing so of<br>yield invalid results. To avoid this, the proper number of NOPs or non-pipelined<br>instructions must be inserted before the SAVE operation.<br>; The following is INVALID<br>MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)<br>SAVE RNDF32=1 ; INVALID, do not use SAVE in a delay slot<br>; The following is VALID<br>MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)<br>NOP ; 1 delay cycle, R2H updated after this instruction |                                                                                                        |                                                                         |                                                                                                          |                                                                                                            |                                                                     |                                                                          | elined                                                                   |
|                     | SAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RNDF32                                                                                                 | =1                                                                      | ; VALID                                                                                                  |                                                                                                            | _                                                                   |                                                                          |                                                                          |
| Flags               | This ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | truction I                                                                                             | modifies the                                                            | following f                                                                                              | lags in the S                                                                                              | STF registe                                                         | r:                                                                       |                                                                          |
|                     | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TF                                                                                                     | ZI                                                                      | NI                                                                                                       | ZF                                                                                                         | NF                                                                  | LUF                                                                      | LVF                                                                      |
|                     | Modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                    | Yes                                                                     | Yes                                                                                                      | Yes                                                                                                        | Yes                                                                 | Yes                                                                      | Yes                                                                      |
| Pipeline<br>Example | This is a<br>To make<br>the STF<br>SAVE<br>MOVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a single-o<br>e it easie<br>LG oper<br><sup>RNDF</sup><br>T <sup>0</sup> TF,<br>owing ex<br>t. Note th | ation as show<br>32=0, TF=1,<br>ZF, LUF<br>ample shows<br>nat the CPU a | ion.<br>egible, the<br>wn below:<br><sup>ZF=0</sup> ; F<br>; C<br>; N<br>; T<br>s a comple<br>automatica | A assembler<br>LAG = 01001<br>opy the ind<br>ote: X mean<br>he assemble<br>ete context s<br>ally stores th | 000100, VA<br>icated fla<br>s this fla<br>r will set<br>cave and re | LUE = X0XX0<br>gs to ST0<br>g will not<br>these X va<br>estore for a h   | be modified.<br>llues to 0.<br>high priority                             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        | DP, AR0, AR                                                             |                                                                                                          |                                                                                                            |                                                                     |                                                                          |                                                                          |



Instructions

| _HighestPriorityISR: |                                       |
|----------------------|---------------------------------------|
| ASP                  | ; Align stack                         |
| PUSH RB              | ; Save RB register if used in the ISR |
| PUSH AR1H:AR0H       | ; Save other registers if used        |
| PUSH XAR2            |                                       |
| PUSH XAR3            |                                       |
| PUSH XAR4            |                                       |
| PUSH XAR5            |                                       |
| PUSH XAR6            |                                       |
| PUSH XAR7            |                                       |
| PUSH XT              |                                       |
| SPM 0                | ; Set default C28 modes               |
| CLRC AMODE           |                                       |
| CLRC PAGE0,OVM       |                                       |
| SAVE RNDF32=0        | ; Save all FPU registers              |
|                      | ; set default FPU modes               |
|                      |                                       |
|                      |                                       |
| • • •                |                                       |
| RESTORE              | ; Restore all FPU registers           |
| POP XT               | ; restore other registers             |
| POP XAR7             |                                       |
| POP XAR6             |                                       |
| POP XAR5             |                                       |
| POP XAR4             |                                       |
| POP XAR3             |                                       |
| POP XAR2             |                                       |
| POP AR1H:AR0H        |                                       |
| POP RB               | ; restore RB register                 |
| NASP                 | ; un-align stack                      |
| IRET                 | ; return from interrupt               |
| RESTORE              |                                       |
| RESIDRE              | F                                     |

See also

SETFLG FLAG, VALUE



### SETFLG FLAG, VALUE Set or clear selected floating-point status flags

| Operands          |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                        |                                                |                                                                  |                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
|                   | FLAG                                                                                                                                                   | 11 bit mask i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndicating which floating                                                                                                                                                | ng-point statu                                                                         | us flags to cha                                | inge.                                                            |                                             |
|                   | VALUE                                                                                                                                                  | 11 bit mask i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndicating the flag valu                                                                                                                                                 | ue; 0 or 1.                                                                            |                                                |                                                                  |                                             |
|                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                        |                                                |                                                                  |                                             |
| Opcode            | LSW: 1110<br>MSW: FFFF                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                        |                                                |                                                                  |                                             |
| Description       | STF registe<br>changed. T<br>flags will no                                                                                                             | LG instruction is user.<br>The FLAG field<br>That is, if a FLAG f<br>ot be modified. Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is an 11-bit valu<br>bit is set to 1 it ind<br>e bit mapping of t                                                                                                       | e that indio<br>dicates tha<br>the FLAG                                                | cates which<br>at flag will b<br>field is show | flags will b<br>e changed;                                       | all other                                   |
| 10 9              | 8 7                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 4                                                                                                                                                                     | 3                                                                                      | 2                                              | 1                                                                | 0                                           |
| reserved RNDF32   | reserved rese                                                                                                                                          | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZI NI                                                                                                                                                                   | ZF                                                                                     | NF                                             | LUF                                                              | LVF                                         |
|                   | The VALU                                                                                                                                               | E field indicates th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e value the flag s                                                                                                                                                      | should be s                                                                            | set to; 0 or                                   | 1.                                                               |                                             |
| Restrictions      | can yield ir                                                                                                                                           | the SETFLG instruction of the SETFLG instruction of the second se | woid this, the pro                                                                                                                                                      | per numbe                                                                              | er of NOPs                                     |                                                                  |                                             |
|                   | ; The following is INVALID<br>MPYF32 R2H, R1H, R0H ; 2 pipeline-cycle instruction (2p)<br>SETFLG RNDF32=1 ; INVALID, do not use SETFLG in a delay slot |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                        |                                                |                                                                  |                                             |
|                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                        |                                                |                                                                  |                                             |
| Flags             | MPYF32<br>NOP<br>SETFLG                                                                                                                                | owing is VALID<br>R2H, R1H, R0H<br>RNDF32=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; 2 pipeline-<br>; 1 delay cyc<br>; VALID                                                                                                                               | le, R2H up                                                                             | dated afte                                     |                                                                  | truction                                    |
| Flags             | MPYF32<br>NOP<br>SETFLG<br>This instruc                                                                                                                | R2H, R1H, R0H<br>RNDF32=1<br>ction modifies the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; 1 delay cycl<br>; VALID<br>following flags in                                                                                                                         | the STF re                                                                             | egister:                                       | r this ins                                                       |                                             |
| Flags             | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag T                                                                                                     | R2H, R1H, R0H<br>RNDF32=1<br>Ction modifies the<br>F ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ; 1 delay cycl<br>; VALID<br>following flags in<br>NI ZF                                                                                                                | the STF re                                                                             | egister:                                       | r this ins                                                       | .VF                                         |
| Flags             | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag T                                                                                                     | R2H, R1H, R0H<br>RNDF32=1<br>ction modifies the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; 1 delay cycl<br>; VALID<br>following flags in                                                                                                                         | the STF re                                                                             | egister:                                       | r this ins                                                       |                                             |
| Flags             | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag T<br>Modified Y                                                                                       | R2H, R1H, R0H<br>RNDF32=1<br>Ction modifies the<br>F ZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ; 1 delay cycl<br>; VALID<br>following flags in<br><u>NI ZF</u><br>Yes Yes                                                                                              | the STF re                                                                             | egister:                                       | r this ins                                                       | .VF                                         |
| Flags<br>Pipeline | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag T<br>Modified Y<br>Any flag ca                                                                        | R2H, R1H, R0H<br>RNDF32=1<br>Ction modifies the<br>F ZI<br>es Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; 1 delay cycl<br>; VALID<br>following flags in<br><u>NI ZF</u><br>Yes Yes<br>this instruction.                                                                         | the STF re                                                                             | egister:                                       | r this ins                                                       | .VF                                         |
| -                 | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag Ti<br>Modified Y<br>Any flag ca<br>This is a si<br>To make it                                         | R2H, R1H, R0H<br>RNDF32=1<br>ction modifies the<br>F ZI<br>es Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i 1 delay cycl<br>i VALID<br>following flags in<br>NI ZF<br>Yes Yes<br>this instruction.<br>ion.                                                                        | the STF re                                                                             | edated afte<br>egister:<br>= L<br>es Y         | r this ins<br>UF I<br>es N                                       | _VF<br>(es                                  |
| Pipeline          | MPYF32<br>NOP<br>SETFLG<br>This instruct<br>Flag Ti<br>Modified Y<br>Any flag ca<br>This is a si<br>To make it                                         | R2H, R1H, R0H         RNDF32=1         ction modifies the         F       ZI         es       Yes         an be modified by angle-cycle instruct         easier and legible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; 1 delay cycl<br>; VALID<br>following flags in<br><u>NI ZF</u><br>Yes Yes<br>this instruction.<br>ion.<br>e, the assembler wo<br>below:<br>., ZF=0 ; FI<br>; Cd<br>; X | the STF re<br>the STF re<br>Ye<br>will accept<br>LAG = 0100<br>opy the in<br>means thi | edated afte<br>egister:<br>= L<br>es Y         | r this ins UF I es N ALUE synta ALUE = X0X ags to ST0 not modifi | _VF<br>(es<br>ax for the<br>x1xx0xxx<br>ed. |



## SUBF32 RaH, RbH, RcH 32-bit Floating-Point Subtraction

#### Operands

| Operands    |                                                                                                      |                                 |           |                            |               |             |     |     |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------|---------------------------------|-----------|----------------------------|---------------|-------------|-----|-----|--|--|--|
|             | RaH                                                                                                  | f                               | loating-  | point destination i        | egister (R0H  | to R1)      |     |     |  |  |  |
|             | RbH                                                                                                  | 1                               | loating-  | point source regis         | ter (R0H to R | R1)         |     |     |  |  |  |
|             | RcH                                                                                                  | 1                               | loating-  | point source regis         | ter (R0H to R | 81)         |     |     |  |  |  |
| <b>.</b> .  |                                                                                                      |                                 |           |                            |               |             |     |     |  |  |  |
| Opcode      | LSW: 1110 0111 0010 0000<br>MSW: 0000 000c ccbb baaa                                                 |                                 |           |                            |               |             |     |     |  |  |  |
| Description | Subtract the contents of two floating-point registers<br>RaH = RbH - RcH                             |                                 |           |                            |               |             |     |     |  |  |  |
| Flags       | This inst                                                                                            | ruction mo                      | difies    | the following f            | ags in the    | STF registe | r:  |     |  |  |  |
|             | Flag                                                                                                 | TF                              | ZI        | NI                         | ZF            | NF          | LUF | LVF |  |  |  |
|             | Modified                                                                                             | No                              | No        | No                         | No            | No          | Yes | Yes |  |  |  |
|             | The STF                                                                                              | -<br>register fl                | ags ar    | e modified as              | follows:      |             |     |     |  |  |  |
|             | • LUF                                                                                                | = 1 if MPY                      | F32 ge    | enerates an u              | nderflow co   |             |     |     |  |  |  |
|             | <ul> <li>LVF</li> </ul>                                                                              | = 1 if MPY                      | F32 ge    | enerates an ov             | verflow con   | dition.     |     |     |  |  |  |
| Pipeline    | This is a 2 pipeline cycle (2p) instruction. That is:                                                |                                 |           |                            |               |             |     |     |  |  |  |
|             | SUBF32 RaH, RbH, RcH ; 2 pipeline cycles (2p)<br>NOP ; 1 cycle delay or non-conflicting instruction  |                                 |           |                            |               |             |     |     |  |  |  |
|             | ; < SUBF32 completes, RaH updated NOP                                                                |                                 |           |                            |               |             |     |     |  |  |  |
|             | Any instruction in the delay slot must not use RaH as a destination register or as a source operand. |                                 |           |                            |               |             |     |     |  |  |  |
| Example     | Calculat                                                                                             | e Y - A + E                     | 3 - C:    |                            |               |             |     |     |  |  |  |
|             | MOVL<br>MOV32<br>MOVL                                                                                | XAR4, #2<br>ROH, *2<br>XAR4, #1 | KAR4      | ; Load ROH w               | ith A         |             |     |     |  |  |  |
|             | MOV32<br>MOVL                                                                                        | R1H, *2<br>XAR4, #0             | KAR4<br>C | ; Load R1H w               | ith B         |             |     |     |  |  |  |
|             |                                                                                                      | 2 ROH,R1H                       |           | ; Add A + B                | -             | allel       |     |     |  |  |  |
|             | MOV32                                                                                                | R2H,*XA                         | ₹4        | ; Load R2H w<br>; < MOV32  |               |             |     |     |  |  |  |
|             | MOVL                                                                                                 | XAR4,#                          | ĸt        | · 300E22                   | aomplete      |             |     |     |  |  |  |
|             | SUBF3<br>NOP                                                                                         | 2 ROH,ROH                       | ,R2H      | ; < ADDF32<br>; Subtract C | -             | в)          |     |     |  |  |  |
|             | MOV32                                                                                                | *XAR4,R                         | ЭH        | ; < SUBF32<br>; Store the  | -             |             |     |     |  |  |  |
| See also    | SUBF32                                                                                               | RaH, #16                        | FHi, R    | bH                         |               |             |     |     |  |  |  |
|             | SUBF32                                                                                               | RdH, ReF                        | I, RfH    | MOV32 Ral                  |               |             |     |     |  |  |  |
|             | SUBF32                                                                                               | : RdH, ReF                      | i, RfH    | MOV32 mei                  | m32, RaH      |             |     |     |  |  |  |

SUBF32 RdH, ReH, RfH || MOV32 mem32, RaH MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH

### SUBF32 RaH, #16FHi, RbH 32-bit Floating Point Subtraction

| Operands    |                                                                                                                         |                                                                                  |                                                          |                                                              |                                                              |                                                              |                                                     |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|--|--|--|
|             | RaH                                                                                                                     | floating-po                                                                      | int destination                                          | register (R0H                                                | to R1)                                                       |                                                              |                                                     |  |  |  |
|             | #16FHi                                                                                                                  |                                                                                  |                                                          | e that represent<br>low 16-bits of t                         |                                                              |                                                              |                                                     |  |  |  |
|             | RbH                                                                                                                     | floating-po                                                                      | int source reg                                           | ister (R0H to R                                              | 1)                                                           |                                                              |                                                     |  |  |  |
|             |                                                                                                                         |                                                                                  |                                                          |                                                              |                                                              |                                                              |                                                     |  |  |  |
| Opcode      |                                                                                                                         | LSW: 1110 1000 11II IIII<br>MSW: IIII IIII IIbb baaa                             |                                                          |                                                              |                                                              |                                                              |                                                     |  |  |  |
| Description | Subtract RbH<br>the result of th                                                                                        |                                                                                  |                                                          | alue represe                                                 | ented by the                                                 | e immediate                                                  | operand. Store                                      |  |  |  |
|             | #16FHi is a 16<br>floating-point w<br>most useful fo<br>Some example<br>(0xBFC00000<br>That is, the va<br>RaH = #16FHi: | value. The lov<br>r representin<br>es are 2.0 (0)<br>. The assem<br>lue -1.5 can | w 16-bits of<br>g constants<br>x40000000<br>bler will ac | f the mantise<br>where the<br>), 4.0 (0x408<br>cept either a | sa are assur<br>lowest 16-b<br>300000), 0.5<br>a hex or floa | med to be a<br>its of the ma<br>5 (0x3F0000<br>it as the imn | ll 0. #16FHi is<br>antissa are 0.<br>000), and -1.5 |  |  |  |
| Flags       | This instructio                                                                                                         | n modifies th                                                                    | e following                                              | flags in the                                                 | STF registe                                                  | er:                                                          |                                                     |  |  |  |
|             | Flag TF                                                                                                                 | ZI                                                                               | NI                                                       | ZF                                                           | NF                                                           | LUF                                                          | LVF                                                 |  |  |  |
|             | Modified No                                                                                                             | No                                                                               | No                                                       | No                                                           | No                                                           | Yes                                                          | Yes                                                 |  |  |  |
| Pipeline    | <ul> <li>LVF = 1 if</li> <li>This is a 2 pip</li> </ul>                                                                 | MPYF32 gen<br>MPYF32 gen<br>eline cycle (2<br>ан, #16FHi,                        | erates an c<br>2p) instructi<br>RbH ; 2 pi<br>; 1 cy     | overflow con<br>on. That is:                                 | dition.<br>es (2p)<br>r non-confl                            |                                                              | ruction                                             |  |  |  |
|             | Any instruction source operar                                                                                           |                                                                                  | slot must i                                              | not use RaH                                                  | l as a destir                                                | nation regist                                                | er or as a                                          |  |  |  |
| Example     | Calculate Y =                                                                                                           |                                                                                  | :                                                        |                                                              |                                                              |                                                              |                                                     |  |  |  |
|             | MOV32 R0H<br>MOVL XAR<br>MOV32 R1H                                                                                      |                                                                                  |                                                          | with B                                                       | allel                                                        |                                                              |                                                     |  |  |  |
|             | SUBF32 R0H<br>NOP                                                                                                       | ,#2.0,R2H ;                                                                      |                                                          | (A + B) fro                                                  | m 2.0                                                        |                                                              |                                                     |  |  |  |
|             | MOV32 *XA                                                                                                               |                                                                                  | Store the                                                | 2 completes<br>result                                        |                                                              |                                                              |                                                     |  |  |  |
| See also    | SUBF32 RaH,<br>SUBF32 RdH,<br>SUBF32 RdH,<br>MPYF32 RaH                                                                 | ReH, RfH   <br>ReH, RfH                                                          | MOV32 me                                                 | em32, RaH                                                    | RfH                                                          |                                                              |                                                     |  |  |  |



### SUBF32 RdH, ReH, RfH MOV32 RaH, mem32 32-bit Floating-Point Subtraction with Parallel Move

| Operands                                                                 |                                                                                                                                                                                                  |                                                                      |                                 |                                                  |                                           |                                   |                   |                |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------|----------------|--|--|
|                                                                          | RdH floating-point destination register (R0H to R7H) for the SUBF32 operation<br>RdH cannot be the same register as RaH                                                                          |                                                                      |                                 |                                                  |                                           |                                   |                   |                |  |  |
|                                                                          | ReH                                                                                                                                                                                              | floating-point source register (R0H to R7H) for the SUBF32 operation |                                 |                                                  |                                           |                                   |                   |                |  |  |
|                                                                          | RfH                                                                                                                                                                                              |                                                                      | floating-point                  | source register                                  | r (R0H to R7H)                            | for the SUBF                      | 32 operation      |                |  |  |
|                                                                          | RaH                                                                                                                                                                                              |                                                                      |                                 | destination reg                                  | ister (R0H to F<br>gister as RdH          | R7H) for the M                    | OV32 operati      | on             |  |  |
|                                                                          | mem32                                                                                                                                                                                            |                                                                      | pointer to 32-                  | bit source men                                   | nory location fo                          | r the MOV32 of                    | operation         |                |  |  |
| Opcode                                                                   | LSW: 111<br>MSW: eed                                                                                                                                                                             |                                                                      | 0010 fffe<br>mem32              |                                                  |                                           |                                   |                   |                |  |  |
| Description                                                              | Subtract the contents of two floating-point registers and move from memory to a floating-point register.<br>RdH = ReH - RfH,<br>RaH = [mem32]                                                    |                                                                      |                                 |                                                  |                                           |                                   |                   |                |  |  |
| Restrictions                                                             |                                                                                                                                                                                                  |                                                                      | egister for th<br>me register a |                                                  | and the MO                                | V32 must b                        | e unique. T       | Гhat is, RaH   |  |  |
| Flags                                                                    | This instruction modifies the following flags in the STF register:                                                                                                                               |                                                                      |                                 |                                                  |                                           |                                   |                   |                |  |  |
|                                                                          | Flag                                                                                                                                                                                             | TF                                                                   | ZI                              | NI                                               | ZF                                        | NF                                | LUF               | LVF            |  |  |
|                                                                          | Modified                                                                                                                                                                                         | No                                                                   | Yes                             | Yes                                              | Yes                                       | Yes                               | Yes               | Yes            |  |  |
|                                                                          |                                                                                                                                                                                                  | -                                                                    | flags are mo<br>BF32 genera     |                                                  |                                           | tion.                             |                   |                |  |  |
|                                                                          | • LVF =                                                                                                                                                                                          | = 1 if SU                                                            | BF32 genera                     | ates an ovei                                     | flow conditi                              | on.                               |                   |                |  |  |
|                                                                          | The MO                                                                                                                                                                                           | /32 Instr                                                            | uction will se                  | et the NF. Z                                     | F. NI and ZI                              | flags as fo                       | llows:            |                |  |  |
|                                                                          | <pre>The MOV32 Instruction will set the NF, ZF, NI and ZI flags as follows: NF = RaH(31); ZF = 0; if(RaH(30:23) == 0) { ZF = 1; NF = 0; } NI = RaH(31); ZI = 0; if(RaH(31:0) == 0) ZI = 1;</pre> |                                                                      |                                 |                                                  |                                           |                                   |                   |                |  |  |
| Pipeline                                                                 |                                                                                                                                                                                                  |                                                                      | peline-cycle                    | instruction (                                    | (2n) and MC                               | )\/32 takas                       | a sinala cv       | rcla. That is: |  |  |
| ripenne                                                                  |                                                                                                                                                                                                  | 32 RdH,                                                              | ReH, RfH<br>mem32               | ; 2 pipeli<br>; 1 cycle<br>; < MOV3<br>; 1 cycle | ne cycles (<br>2 completes<br>delay or nc | 2p)<br>, RaH updat<br>m-conflict: | ted<br>ing instru |                |  |  |
|                                                                          | NOP                                                                                                                                                                                              |                                                                      |                                 | ; < SUBF                                         | 32 complete                               | s, RdH upda                       | ated              |                |  |  |
| Any instruction in the delay slot must not use RdH as a destination regi |                                                                                                                                                                                                  |                                                                      |                                 |                                                  |                                           |                                   | on reaister       | r or as a      |  |  |

Any instruction in the delay slot must not use RdH as a destination register or as a source operand.



| 1.000  |         |  |
|--------|---------|--|
| Instri | ictions |  |
|        |         |  |

| Example  | <pre>MOVL XAR1, #0xC000 ; XAR1 = 0xC000<br/>SUBF32 R0H, R1H, R2H ; (A) R0H = R1H - R2H<br/>   MOV32 R3H, *XAR1 ;</pre> |
|----------|------------------------------------------------------------------------------------------------------------------------|
|          | ADDF32 R5H, R4H, R3H ; (B) R5H = R4H + R3H<br>   MOV32 *+XAR1[4], R0H ;<br>; < R0H stored<br>MOVL XAR2, #0xE000 ;      |
|          | ; < (B) completes, R5H valid<br>MOV32 *XAR2, R5H ;<br>; < R5H stored                                                   |
| See also | SUBF32 RaH, RbH, RcH<br>SUBF32 RaH, #16FHi, RbH                                                                        |

MPYF32 RaH, RbH, RcH || SUBF32 RdH, ReH, RfH



### SUBF32 RdH, ReH, RfH MOV32 mem32, RaH 32-bit Floating-Point Subtraction with Parallel Move

| Operands    |                                                                                                          |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------------------------------------------|---------------|-----------------|--|--|--|
| epolaliao   | RdH                                                                                                      | floating-point                                                                                                                                 | t destination r                | aister (ROH +c      | R7H) for the                                               | SUBE32 oper   | ation           |  |  |  |
|             | ReH                                                                                                      | floating-point destination register (R0H to R7H) for the SUBF32 operation floating-point source register (R0H to R7H) for the SUBF32 operation |                                |                     |                                                            |               |                 |  |  |  |
|             | RfH                                                                                                      | floating-point source register (R0H to R7H) for the SUBF32 operation                                                                           |                                |                     |                                                            |               |                 |  |  |  |
|             | mem32                                                                                                    | • •                                                                                                                                            | •                              | n memory loca       | ,                                                          | •             |                 |  |  |  |
|             | RaH                                                                                                      |                                                                                                                                                |                                | er (R0H to R7       |                                                            | •             |                 |  |  |  |
|             |                                                                                                          |                                                                                                                                                |                                |                     | ,                                                          | •             |                 |  |  |  |
| Opcode      | LSW: 1110 000<br>MSW: eedd daa                                                                           |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
| Description | Subtract the contents of two floating-point registers and move from a floating-point register to memory. |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
|             | RdH = ReH - 1<br>[mem32] = Ral                                                                           |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
| Flags       | This instruction                                                                                         | on modifies the H, mem32                                                                                                                       | following fla                  | ags in the S        | TF register                                                | :SUBF32 R     | dH, ReH, RfH    |  |  |  |
|             | Flag TF                                                                                                  | ZI                                                                                                                                             | NI                             | ZF                  | NF                                                         | LUF           | LVF             |  |  |  |
|             | Modified No                                                                                              | No                                                                                                                                             | No                             | No                  | No                                                         | Yes           | Yes             |  |  |  |
|             |                                                                                                          |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
| Pipeline    | • LVF = 1 if                                                                                             | SUBF32 gener<br>SUBF32 gener<br>2 pipeline-cycle                                                                                               | rates an ov                    | erflow cond         | ition.                                                     | s a single c  | cycle. That is: |  |  |  |
|             | SUBF32                                                                                                   | RdH, ReH, RfH<br>nem32, RaH                                                                                                                    | , RfH ; 2 pipeline cycles (2p) |                     |                                                            |               |                 |  |  |  |
|             | NOP                                                                                                      |                                                                                                                                                |                                | -                   | mpletes, mem32 updated<br>y or non-conflicting instruction |               |                 |  |  |  |
|             | ; < ADDF32 completes, RdH updated                                                                        |                                                                                                                                                |                                |                     |                                                            |               |                 |  |  |  |
|             | Any instruction source opera                                                                             | n in the delay s                                                                                                                               | slot must no                   | ot use RdH :        | as a destina                                               | ation registe | er or as a      |  |  |  |
| Example     | ADDF32                                                                                                   | R3H, R6H, R4<br>R7H, *-SP[2                                                                                                                    |                                | ; (A) R31<br>;      | H = R6H + F                                                | AH and R7H    | I = I3          |  |  |  |
|             | GUDE20                                                                                                   |                                                                                                                                                | 4 TT                           | ; < R71             |                                                            | 411           |                 |  |  |  |
|             | SUBF32                                                                                                   | R6H, R6H, R4                                                                                                                                   | 4H                             |                     | H = R6H - F<br>DF32 (A) cc                                 |               | .3H valid       |  |  |  |
|             | SUBF32                                                                                                   | R3H, R1H, R'<br>*+XAR5[2], I                                                                                                                   |                                | ; (C) R31<br>:      | H = R1H - F                                                | R7H and sto   | re R3H (A)      |  |  |  |
|             | 110132                                                                                                   | TARCEZ,                                                                                                                                        |                                | ; < SU              | BF32 (B) cc                                                | ompletes, R   | 6H valid        |  |  |  |
|             | ADDF32                                                                                                   | R4H, R7H, R1                                                                                                                                   | 14                             |                     | V32 complet<br>D = R7H + F                                 |               |                 |  |  |  |
|             | MOV32                                                                                                    | *+XAR5[6], I                                                                                                                                   |                                | ;                   |                                                            |               |                 |  |  |  |
|             |                                                                                                          |                                                                                                                                                |                                |                     | BF32 (C) co<br>V32 complet                                 | -             | -               |  |  |  |
|             | MOV32                                                                                                    | *+XAR5[0], H                                                                                                                                   | R3H                            | ; store ]           | -                                                          |               |                 |  |  |  |
|             |                                                                                                          |                                                                                                                                                |                                |                     | DF32 (D) cc                                                | -             |                 |  |  |  |
|             | MOV32                                                                                                    | *+XAR5[4], I                                                                                                                                   | R4H                            | ; store ]<br>; < MO | R4H (D)<br>V32 complet                                     | es, (D) st    | ored            |  |  |  |
| See also    | SUBF32 RaH                                                                                               |                                                                                                                                                |                                |                     |                                                            | ,             |                 |  |  |  |
| 000 aigu    |                                                                                                          | I, #16FHi, RbH                                                                                                                                 |                                |                     |                                                            |               |                 |  |  |  |
|             | SUBF32 RdF                                                                                               | I, ReH, RfH    N                                                                                                                               |                                |                     |                                                            |               |                 |  |  |  |
|             | MPYF32 RaH                                                                                               | I, RbH, RcH    S                                                                                                                               | SUBF32 Ro                      | IH, ReH, Rf         | Н                                                          |               |                 |  |  |  |



### SWAPF RaH, RbH{, CNDF} Conditional Swap

#### Operands

| erands    |                                                           |                                                                                                                                   |                                                       |                                                                                       |                                             |                                |      |
|-----------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|------|
|           | RaH                                                       | • •                                                                                                                               | oint register (R                                      | ,                                                                                     |                                             |                                |      |
|           | RbH                                                       | • •                                                                                                                               | oint register (R                                      | 0H to R7H)                                                                            |                                             |                                |      |
|           | CNDF                                                      | condition                                                                                                                         | tested                                                |                                                                                       |                                             |                                |      |
| code      | LSW: 1110<br>MSW: 0000                                    |                                                                                                                                   |                                                       |                                                                                       |                                             |                                |      |
| scription | Conditional                                               | swap of RaH a                                                                                                                     | and RbH.                                              |                                                                                       |                                             |                                |      |
|           |                                                           | = true) swap R                                                                                                                    |                                                       |                                                                                       |                                             |                                |      |
|           | CNDF is or                                                | ne of the follow                                                                                                                  | na conditio                                           | ns:                                                                                   |                                             |                                |      |
|           | Encode <sup>(1)</sup>                                     | CNDF                                                                                                                              | -                                                     | ription                                                                               |                                             | STF Flags Teste                | d    |
|           | 0000                                                      | NEQ                                                                                                                               | Not e                                                 | equal to zero                                                                         |                                             | ZF == 0                        |      |
|           | 0001                                                      | EQ                                                                                                                                | Equa                                                  | l to zero                                                                             |                                             | ZF == 1                        |      |
|           | 0010                                                      | GT                                                                                                                                | Grea                                                  | ter than zero                                                                         |                                             | ZF == 0 AND NF                 | == 0 |
|           | 0011                                                      | GEQ                                                                                                                               | Grea                                                  | ter than or equ                                                                       | al to zero                                  | NF == 0                        |      |
|           | 0100                                                      | LT                                                                                                                                | Less                                                  | than zero                                                                             |                                             | NF == 1                        |      |
|           | 0101                                                      | LEQ                                                                                                                               | Less                                                  | than or equal t                                                                       | o zero                                      | ZF == 1 AND NF                 | == 1 |
|           | 1010                                                      | TF                                                                                                                                | Test                                                  | flag set                                                                              |                                             | TF == 1                        |      |
|           | 1011                                                      | NTF                                                                                                                               | Test                                                  | flag not set                                                                          |                                             | TF == 0                        |      |
|           | 1100                                                      | LU                                                                                                                                | Latch                                                 | ed underflow                                                                          |                                             | LUF == 1                       |      |
|           | 1101                                                      | LV                                                                                                                                | Latch                                                 | ed overflow                                                                           |                                             | LVF == 1                       |      |
|           | 1110                                                      | UNC                                                                                                                               | Unco                                                  | nditional                                                                             |                                             | None                           |      |
|           | 1111                                                      | UNCF <sup>(2)</sup>                                                                                                               |                                                       | nditional with f                                                                      | lag                                         | None                           |      |
| js        | (2) This is the<br>condition<br>a condition<br>modify the | ot shown are reserved default operation<br>will allow the ZF, I<br>onal operation is expesse flags.<br>Stion modifies the<br>E ZI | if no CNDF find<br>NF, ZI, and NI<br>Accuted. All oth | flags to be mod<br>er conditions v                                                    | dified wher<br>vill not                     |                                | LVF  |
|           | Modified N                                                | o No                                                                                                                              | No                                                    | No                                                                                    | No                                          | No                             | No   |
| peline    | No flags af                                               |                                                                                                                                   |                                                       |                                                                                       |                                             |                                |      |
| mple      | ;find the                                                 | largest elemen                                                                                                                    | t and put i                                           | t in R1H                                                                              |                                             |                                |      |
|           | MOVL<br>MOV32<br>.align                                   | XAR1, #0xB<br>R1H, *XAR1<br>2                                                                                                     |                                                       | itialize Rl                                                                           | Н                                           |                                |      |
|           | NOP<br>RPTB<br>MOV32<br>CMPF32<br>SWAPF<br>NOP<br>NOP     | LOOP_END,<br>R2H, *XAR1<br>R2H, R1H<br>R1H, R2H,                                                                                  | ++ ; Up<br>; Cc<br>GT ; Sw<br>; Fc                    | ecute the k<br>date R2H wi<br>mpare R2H w<br>ap R1H and<br>r minimum r<br>r minimum r | th next<br>vith R1H<br>R2H if F<br>epeat bl | element<br>2 > R1<br>.ock size |      |

See also

LOOP\_END:



#### **TESTTF CNDF** Test STF Register Flag Condition

#### Operands

CNDF condition to test

Opcode

Description

LSW: 1110 0101 1000 CNDF

Test the floating-point condition and if true, set the TF flag. If the condition is false, clear the TF flag. This is useful for temporarily storing a condition for later use.

if (CNDF == true) TF = 1; else TF = 0;

#### CNDF is one of the following conditions:

| Encode <sup>(1)</sup> | CNDF                | Description                          | STF Flags Tested    |
|-----------------------|---------------------|--------------------------------------|---------------------|
| 0000                  | NEQ                 | Not equal to zero                    | ZF == 0             |
| 0001                  | EQ                  | Equal to zero                        | ZF == 1             |
| 0010                  | GT                  | Greater than zero                    | ZF == 0 AND NF == 0 |
| 0011                  | GEQ                 | Greater than or equal to zero        | NF == 0             |
| 0100                  | LT                  | Less than zero                       | NF == 1             |
| 0101                  | LEQ                 | Less than or equal to zero           | ZF == 1 AND NF == 1 |
| 1010                  | TF                  | Test flag set                        | TF == 1             |
| 1011                  | NTF                 | Test flag not set                    | TF == 0             |
| 1100                  | LU                  | Latched underflow                    | LUF == 1            |
| 1101                  | LV                  | Latched overflow                     | LVF == 1            |
| 1110                  | UNC                 | Unconditional                        | None                |
| 1111                  | UNCF <sup>(2)</sup> | Unconditional with flag modification | None                |

(1) Values not shown are reserved.

(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF, NF, ZI, and NI flags to be modified when a conditional operation is executed. All other conditions will not modify these flags.

#### Flags

This instruction modifies the following flags in the STF register:

| Flag     | TF  | ZI | NI | ZF | NF | LUF | LVF |  |
|----------|-----|----|----|----|----|-----|-----|--|
| Modified | Yes | No | No | No | No | No  | No  |  |

TF = 0; if (CNDF == true) TF = 1;

ROH, ROH

This is a single-cycle instruction.

NEGF32

End

Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.

**Pipeline** 

Example

CMPF32 ROH, #0.0 ; Compare ROH against 0 ; Set TF if ROH less than 0 (NF == 0) TESTTF LTABS ROH, ROH ; Get the absolute value of ROH ; Perform calculations based on ABS ROH ; Copy TF to TC in STO MOVST0 TF End, NTC SBF ; Branch to end if TF was not set

### See also



### UI16TOF32 RaH, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

| Operands    |                                          |                                        |             |                      |               |                |     |  |  |
|-------------|------------------------------------------|----------------------------------------|-------------|----------------------|---------------|----------------|-----|--|--|
|             | RaH                                      | floating-point                         | destinatior | register (R0H        | to R7H)       |                |     |  |  |
|             | mem16                                    | pointer to 16-                         | bit source  | memory locatio       | on            |                |     |  |  |
|             |                                          | •                                      |             | ,                    |               |                |     |  |  |
| Opcode      | LSW: 1110 0                              | 010 1100 0100                          |             |                      |               |                |     |  |  |
|             | MSW: 0000 0                              | aaa mem16                              |             |                      |               |                |     |  |  |
| Description |                                          | erting F32 to I16/U<br>ne F32TOI16R/UI |             |                      |               |                |     |  |  |
|             | RaH = UI16T                              | oF32[mem16]                            |             |                      |               |                |     |  |  |
| Flags       | This instruct                            | ion does not affe                      | ct any fla  | igs:                 |               |                |     |  |  |
|             | Flag TF                                  | ZI                                     | NI          | ZF                   | NF            | LUF            | LVF |  |  |
|             | Modified No                              | No                                     | No          | No                   | No            | No             | No  |  |  |
|             |                                          |                                        |             |                      |               |                |     |  |  |
| Pipeline    | This is a 2 p                            | pipeline cycle (2p)                    | instructi   | on. That is:         |               |                |     |  |  |
|             |                                          | 32 RaH, meml6                          |             | pipeline cy          |               |                |     |  |  |
|             | NOP                                      |                                        |             |                      |               | flicting in    |     |  |  |
|             | ; < UI16TOF32 completes, RaH updated NOP |                                        |             |                      |               |                |     |  |  |
|             | Any instruct                             | ion in the delay of                    |             | aat ugo Dol          | l oo o dootir | otion regist   |     |  |  |
|             | source oper                              | ion in the delay sl                    | iot must i  | lot use Kar          |               | lation registi |     |  |  |
|             | source oper                              | anu.                                   |             |                      |               |                |     |  |  |
| Example     | ; float32 y                              |                                        |             |                      |               |                |     |  |  |
|             |                                          | ESULT0 is an uns<br>: y = (float)Adc   |             |                      | + h:          |                |     |  |  |
|             | ;                                        | • y = (110ac)Auc                       | Regs.ADC    |                      | 1 07          |                |     |  |  |
|             | MOVW                                     | DP @0x01C4                             |             |                      |               |                |     |  |  |
|             |                                          | 2 ROH, @8                              |             |                      | AdcRegs.RES   | SULTO          |     |  |  |
|             | MOV32                                    | R1H, *-SP[6]                           |             | H = M<br>- Conversio | on complete,  | ROH walid      |     |  |  |
|             | MPYF32                                   | ROH, R1H, ROH                          |             | H = (float)          |               | Rom Varia      |     |  |  |
|             | MOV32                                    | R1H, *-SP[8]                           |             | H = B                |               |                |     |  |  |
|             |                                          |                                        |             |                      | mplete, ROH   |                |     |  |  |
|             | ADDF32<br>NOP                            | ROH, ROH, RIH                          | ; R0        | H = Y = (f)          | .oat)X * M +  | - В            |     |  |  |
|             |                                          |                                        |             |                      | mplete, ROH   | I valid        |     |  |  |
|             | MOV32                                    | *-[SP], ROH                            | ; St        | ore Y                |               |                |     |  |  |
| See also    | F32TOI16 R                               | aH, RbH                                |             |                      |               |                |     |  |  |
|             | F32TOI16R                                | RaH, RbH                               |             |                      |               |                |     |  |  |
|             | F32TOUI16                                | RaH, RbH                               |             |                      |               |                |     |  |  |
|             | F32TOUI16                                | R RaH, RbH                             |             |                      |               |                |     |  |  |
|             | 116TOF32 R                               | RaH, RbH                               |             |                      |               |                |     |  |  |
|             | 116TOF32 R                               | RaH, mem16                             |             |                      |               |                |     |  |  |
|             | UI16TOF32                                | RaH, RbH                               |             |                      |               |                |     |  |  |
|             |                                          |                                        |             |                      |               |                |     |  |  |



### UI16TOF32 RaH, RbH Convert unsigned 16-bit integer to 32-bit floating-point value

| Operatios   |                      |                                                       |                                 |             |                                            |              |                              |            |   |  |  |
|-------------|----------------------|-------------------------------------------------------|---------------------------------|-------------|--------------------------------------------|--------------|------------------------------|------------|---|--|--|
|             | RaH                  |                                                       | floating-point                  | destinatior | n register (R0H                            | to R7H)      |                              |            |   |  |  |
|             | RbH                  |                                                       | floating-point                  | source reg  | gister (R0H to F                           | R7H)         |                              |            |   |  |  |
|             |                      |                                                       |                                 |             |                                            |              |                              |            | _ |  |  |
| Opcode      | LSW: 111             | LO 0110                                               | 1000 1111                       |             |                                            |              |                              |            |   |  |  |
|             | MSW: 000             | 0000 000                                              | 00bb baaa                       |             |                                            |              |                              |            |   |  |  |
| Description |                      |                                                       | ng F32 to I16/L<br>F32TOI16R/UI |             |                                            |              |                              |            | 0 |  |  |
|             | RaH = UI             | [16ToF3                                               | 2[RbH]                          |             |                                            |              |                              |            |   |  |  |
| Flags       | This inst            | truction                                              | does not affe                   | ct any fla  | ags:                                       |              |                              |            |   |  |  |
|             | Flag                 | TF                                                    | ZI                              | NI          | ZF                                         | NF           | LUF                          | LVF        |   |  |  |
|             | Modified             | No                                                    | No                              | No          | No                                         | No           | No                           | No         |   |  |  |
|             |                      |                                                       |                                 |             |                                            |              |                              |            |   |  |  |
| Pipeline    | This is a            | This is a 2 pipeline cycle (2p) instruction. That is: |                                 |             |                                            |              |                              |            |   |  |  |
|             | UI16<br>NOP          | 5TOF32                                                | RaH, RbH                        | ; 1         |                                            | or non-con   | nflicting ir<br>, RaH update |            |   |  |  |
|             | NOP                  |                                                       |                                 |             |                                            | -            | -                            |            |   |  |  |
|             | Any inst<br>source o |                                                       | in the delay sl<br>d.           | lot must    | not use Ra⊦                                | l as a desti | nation regist                | er or as a |   |  |  |
| Example     | MOVX                 |                                                       | R5H, #0x800F                    |             | 15:0] = 327                                |              |                              |            |   |  |  |
|             | UI16<br>NOP          | 5TOF32                                                | R6H, R5H                        | ; 1 cy      | = UI16TOF32<br>rcle delay f<br>= 32783.0 ( | or UI16TOF   | 32 to comple                 | ete        |   |  |  |
| See also    | F32TOI               |                                                       |                                 |             |                                            |              |                              |            |   |  |  |
|             | F32TOI<br>F32TOL     |                                                       |                                 |             |                                            |              |                              |            |   |  |  |
|             |                      |                                                       | RaH, RbH                        |             |                                            |              |                              |            |   |  |  |
|             | I16TOF               |                                                       |                                 |             |                                            |              |                              |            |   |  |  |
|             |                      |                                                       | l, mem16                        |             |                                            |              |                              |            |   |  |  |
|             | 01010                | UI16TOF32 RaH, mem16                                  |                                 |             |                                            |              |                              |            |   |  |  |

### UI32TOF32 RaH, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

| Operando    |                                                                  |                                             |              |                       |                       |                              |            |  |  |  |  |
|-------------|------------------------------------------------------------------|---------------------------------------------|--------------|-----------------------|-----------------------|------------------------------|------------|--|--|--|--|
|             | RaH                                                              | 0.1                                         |              | n register (R0H       | ,                     |                              |            |  |  |  |  |
|             | mem32                                                            | pointer to 32                               | 2-bit source | memory locati         | on                    |                              |            |  |  |  |  |
| Opcode      | LSW: 1110 00<br>MSW: 0000 02                                     | 010 1000 0100<br>aaa mem32                  |              |                       |                       |                              |            |  |  |  |  |
| Description | RaH = UI32To                                                     | oF32[mem32]                                 |              |                       |                       |                              |            |  |  |  |  |
| Flags       | This instruct                                                    | This instruction does not affect any flags: |              |                       |                       |                              |            |  |  |  |  |
|             | Flag TF                                                          | ZI                                          | NI           | ZF                    | NF                    | LUF                          | LVF        |  |  |  |  |
|             | Modified No                                                      | No                                          | No           | No                    | No                    | No                           | No         |  |  |  |  |
| Pipeline    | This is a 2 p                                                    | ipeline cycle (2p                           | ) instruct   | ion. That is:         |                       |                              |            |  |  |  |  |
|             | UI32TOF<br>NOP<br>NOP                                            | 32 RaH, mem32                               | ; 1          |                       | non-conf              | licting inst<br>, RaH update |            |  |  |  |  |
|             | Any instructi<br>source oper                                     | on in the delay and.                        | slot must    | not use Ral           | H as a destir         | nation regist                | er or as a |  |  |  |  |
| Example     |                                                                  |                                             | M + B        |                       |                       |                              |            |  |  |  |  |
|             | ;<br>UI32TOF3:                                                   | 2 ROH, *-SP[2]                              | ; R0         | H = (float            | ) X                   |                              |            |  |  |  |  |
|             | MOV32                                                            | R1H, *-SP[6]                                |              | .H = M                |                       |                              |            |  |  |  |  |
|             | MPYF32                                                           | ROH, R1H, RO                                |              | H = (float            | on complete<br>)X * M | , RUH VAIIU                  |            |  |  |  |  |
|             | MOV32                                                            | R1H, *-SP[8]                                |              | .H = B<br>- MDVF32 c  | omplete, ROB          | I valid                      |            |  |  |  |  |
|             | ADDF32<br>NOP                                                    | ROH, ROH, R1                                |              |                       | loat)X * M -          |                              |            |  |  |  |  |
|             | MOV32                                                            | *-[SP], ROH                                 |              | - ADDF32 co<br>core Y | omplete, ROB          | H valid                      |            |  |  |  |  |
| See also    | F32TOI32 R<br>F32TOUI32<br>I32TOF32 R<br>I32TOF32 R<br>UI32TOF32 | RaH, RbH<br>aH, mem32<br>aH, RbH            |              |                       |                       |                              |            |  |  |  |  |



### UI32TOF32 RaH, RbH Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

| Operanus    |                                                       |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
|-------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|------------------------|-----------------------------|------------------------|------------|---|--|--|--|
|             | RaH                                                   | floating-point                                                                                    | destination  | register (R0H          | to R7H)                     |                        |            | _ |  |  |  |
|             | RbH                                                   | floating-point :                                                                                  | source regis | ster (R0H to F         | R7H)                        |                        |            |   |  |  |  |
|             |                                                       |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
| Opcode      | LSW: 1110 0110                                        | 1000 1011                                                                                         |              |                        |                             |                        |            |   |  |  |  |
|             | MSW: 0000 0000                                        | 00bb baaa                                                                                         |              |                        |                             |                        |            |   |  |  |  |
| Description | RaH = UI32ToF3                                        | 2 RbH                                                                                             |              |                        |                             |                        |            |   |  |  |  |
| Flags       | This instruction                                      | This instruction does not affect any flags:                                                       |              |                        |                             |                        |            |   |  |  |  |
|             | Flag TF                                               | ZI                                                                                                | NI           | ZF                     | NF                          | LUF                    | LVF        |   |  |  |  |
|             | Modified No                                           | No                                                                                                | No           | No                     | No                          | No                     | No         |   |  |  |  |
|             | This is a Queins                                      |                                                                                                   |              | . Thetie               |                             |                        |            |   |  |  |  |
| Pipeline    | This is a 2 pipeline cycle (2p) instruction. That is: |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
|             | UI32TOF32<br>NOP                                      | UI32TOF32 RaH, RbH ; 2 pipeline cycles (2p)<br>NOP ; 1 cycle delay or non-conflicting instruction |              |                        |                             |                        |            |   |  |  |  |
|             | NOF                                                   |                                                                                                   |              |                        |                             | , RaH update           |            |   |  |  |  |
|             | NOP                                                   |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
|             | Any instruction                                       |                                                                                                   | ot must n    | ot use RaH             | l as a desti                | nation registe         | er or as a |   |  |  |  |
|             | source operand                                        | d.                                                                                                |              |                        |                             |                        |            |   |  |  |  |
| Example     | MOVIZ                                                 | R3H, #0x8000                                                                                      | -            | -                      |                             |                        |            |   |  |  |  |
|             | MOVXI                                                 | R3H, #0x1111                                                                                      | -            | 5:0] = 0x<br>214748801 |                             |                        |            |   |  |  |  |
|             | UI32TOF32                                             | R4H, R3H                                                                                          | ; R4H =      | UI32TOF32              | 2 (R3H)                     |                        |            |   |  |  |  |
|             | NOP                                                   |                                                                                                   | -            | -                      | or UI32TOF:<br>.7.0 (0x4F0) | 32 to comple<br>00011) | te         |   |  |  |  |
| See also    | F32TOI32 RaH                                          | I. RbH                                                                                            |              |                        |                             |                        |            |   |  |  |  |
|             | F32TOUI32 Ra                                          |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
|             | I32TOF32 RaH                                          | l, mem32                                                                                          |              |                        |                             |                        |            |   |  |  |  |
|             | I32TOF32 RaH                                          |                                                                                                   |              |                        |                             |                        |            |   |  |  |  |
|             | UI32TOF32 Ra                                          | aH, mem32                                                                                         |              |                        |                             |                        |            |   |  |  |  |



| ZERO RaH    | Zero the                                                                                                                                                                    | Float                                                                                                                                                                                 | ing-Point Re                                                                                                                                                                                                                                                  | gister Ra                                                                                                                                         | aH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                      |     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| Operands    |                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                      |     |
|             | RaH                                                                                                                                                                         |                                                                                                                                                                                       | floating-point                                                                                                                                                                                                                                                | t register (R                                                                                                                                     | ROH to R7H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                      |     |
| Opcode      |                                                                                                                                                                             |                                                                                                                                                                                       | T.SM • 111                                                                                                                                                                                                                                                    | 0 0101                                                                                                                                            | 1001 0aa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                               |                      |     |
|             |                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a                                                                                                                                                                                                                               |                      |     |
| Description | Zero the                                                                                                                                                                    | indicat                                                                                                                                                                               | ted floating-po                                                                                                                                                                                                                                               | oint regist                                                                                                                                       | ter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                      |     |
|             |                                                                                                                                                                             |                                                                                                                                                                                       | RaH = 0                                                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                 |                      |     |
| Flags       | This inst                                                                                                                                                                   | ruction                                                                                                                                                                               | modifies the                                                                                                                                                                                                                                                  | following                                                                                                                                         | flags in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STF register                                                                                                                                                                                                                    |                      |     |
|             | Flag                                                                                                                                                                        | TF                                                                                                                                                                                    | ZI                                                                                                                                                                                                                                                            | NI                                                                                                                                                | ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NF                                                                                                                                                                                                                              | LUF                  | LVF |
|             | Modified                                                                                                                                                                    | No                                                                                                                                                                                    | No                                                                                                                                                                                                                                                            | No                                                                                                                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                                                                                                                                                                                                              | No                   | No  |
| _xampio     |                                                                                                                                                                             | += (x                                                                                                                                                                                 | [2*i] * y[2*:                                                                                                                                                                                                                                                 |                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                      |     |
|             | ;{<br>; real                                                                                                                                                                | += (x<br>+= (x                                                                                                                                                                        | [2*i] * y[2*:<br>[2*i] * y[2*:                                                                                                                                                                                                                                |                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                      |     |
|             | ;{<br>; real<br>; imag<br>;}                                                                                                                                                | += (x<br>+= (x<br>AR7 = :                                                                                                                                                             | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H                                                                                                                                                                                                                    | i+1]) + (<br>; F                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y[2*i]);<br>0                                                                                                                                                                                                                   |                      |     |
|             | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>ZERO<br>LOOP<br>MOV<br>MOV                                                                                               | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC                                                                                                                                   | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H<br>H<br>, AR7<br>C, AL << 2                                                                                                                                                                                        | i+1]) + (<br>; F                                                                                                                                  | x[2*i+1] *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y[2*i]);<br>0                                                                                                                                                                                                                   |                      |     |
| p.o         | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>LOOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV3<br>MOV3                                                                         | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC<br>AR<br>2 R0:<br>2 R1:                                                                                                           | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H<br>H<br>, AR7<br>C, AL << 2<br>0, ACC<br>H, *+XAR4[AR(<br>H, *+XAR5[AR(                                                                                                                                            | i+1]) + (<br>; r<br>; r<br>) ; r                                                                                                                  | x[2*i+1] *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y[2*i]);<br>0<br>0                                                                                                                                                                                                              |                      |     |
|             | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>ZERO<br>LOOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV                                       | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC<br>AR<br>2 R0:<br>2 R1:<br>AR<br>32 R6:<br>2 R2:                                                                                  | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H<br>H<br>H<br>C, AL << 2<br>0, ACC<br>H, *+XAR4[AR(<br>H, *+XAR5[AR(<br>0, #2<br>H, R0H, R1H;<br>H, *+XAR4[AR(                                                                                                      | i+1]) + (<br>; r<br>; r<br>; r<br>; r<br>0] ; r<br>0] ; r<br>0] ; r                                                                               | x[2*i+1] *<br>24H = real =<br>25H = imag =<br>20H = x[2*i<br>21H = y[2*i<br>26H = x[2*i<br>22H = x[2*i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>y[2*i]); 0 0 1 ] ] * y[2*i] +1]</pre>                                                                                                                                                                                      |                      |     |
|             | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>ZERO<br>LOOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV3<br>MOV3<br>ADD<br>MPYF<br>   MOV3<br>MPYF<br>   MOV3                    | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC<br>AR<br>2 R0:<br>2 R1:<br>AR<br>32 R6:<br>2 R2:<br>32 R1:<br>2 R3:                                                               | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H<br>H<br>H<br>H<br>C, AL << 2<br>0, ACC<br>H, *+XAR4[AR(<br>H, *+XAR5[AR(<br>0, #2<br>H, R0H, R1H;<br>H, *+XAR4[AR(<br>H, R1H, R2H<br>H, *+XAR5[AR(                                                                 | i+1]) + (<br>; r<br>; r<br>)] ; r<br>)] ; r<br>)] ; r<br>)] ; r<br>)] ; r<br>)] ; r                                                               | x[2*i+1] *<br>24H = real =<br>25H = imag =<br>26H = x[2*i<br>21H = y[2*i<br>26H = x[2*i<br>22H = x[2*i<br>22H = x[2*i<br>23H = y[2*i<br>23H = y[2*i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>y[2*i]); 0 0 1 ] ] * y[2*i] +1] ] * x[2*i+2 +1]</pre>                                                                                                                                                                      |                      |     |
|             | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>ZERO<br>LOOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV3<br>MOV3<br>MOV3<br>MOV3                                          | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC<br>AR<br>2 R0:<br>2 R1:<br>AR<br>32 R6:<br>2 R2:<br>32 R1:<br>2 R3:<br>32 R2:<br>32 R2:<br>32 R4:                                 | [2*i] * y[2*:<br>[2*i] * y[2*:<br>n-1<br>H<br>H<br>H<br>C, AL << 2<br>0, ACC<br>H, *+XAR4[AR(<br>H, *+XAR5[AR(<br>0, #2<br>H, R0H, R1H;<br>H, R1H, R2H                                                                                                        | i+1]) + (<br>; r<br>; r<br>)] ; r<br>)] ; r<br>)] ; r<br>; r<br>)] ; r<br>; r<br>; r<br>; r                                                       | x[2*i+1] *<br>24H = real = 25H = imag = 25H = imag = 25H = 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>y[2*i]); 0 0 0 ] ] 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *</pre>                                                                                                                                                               | +1]                  |     |
| Example     | ;{<br>; real<br>; imag<br>;}<br>;Assume<br>ZERO<br>ZERO<br>LOOP<br>MOV<br>MOV<br>MOV<br>MOV<br>MOV3<br>MOV3<br>ADD<br>MPYF<br>   MOV3<br>MPYF<br>   MOV3<br>MPYF<br>   MOV3 | += (x<br>+= (x<br>AR7 = :<br>R4:<br>R5:<br>AL<br>AC<br>AR<br>2 R0:<br>2 R1:<br>AR<br>32 R6:<br>32 R1:<br>32 R2:<br>32 R1:<br>32 R2:<br>32 R4:<br>32 R0:<br>32 R5:<br>32 R4:<br>32 R5: | <pre>[2*i] * y[2*:<br/>[2*i] * y[2*:<br/>n-1<br/>H<br/>H<br/>H<br/>H<br/>C, AL &lt;&lt; 2<br/>0, ACC<br/>H, *+XAR4[AR(<br/>H, *+XAR5[AR(<br/>0, #2<br/>H, R0H, R1H;<br/>H, *+XAR4[AR(<br/>H, R1H, R2H<br/>H, *+XAR5[AR(<br/>H, R2H, R3H<br/>H, R4H, R6H</pre> | i+1]) + (<br>; r<br>; r<br>; r<br>) ; r<br>) ; r<br>) ; r<br>) ; r<br>; r<br>) ; r<br>; r<br>; r<br>; r<br>; r<br>; r<br>; r<br>; r<br>; r<br>; r | x[2*i+1] *<br>24H = real = 25H = imag = 25H = imag = 25H = imag = 25H = 12*i = 22*i | <pre>y[2*i]);<br/>0<br/>0<br/>0<br/>]<br/>]<br/>* y[2*i]<br/>+1]<br/>* x[2*i+2<br/>+1]<br/>* y[2*i]<br/>] * y[2*i]<br/>] * y[2*i]<br/>] * y[2*i+1]<br/>] * y[2*i+2<br/>+1] * y[2*i+2<br/>+1] * y[2*i+2<br/>+1] * y[2*i+2]</pre> | +1]<br>]<br>;<br>+1] |     |



```
ZEROA
                       Zero All Floating-Point Registers
Operands
                        none
Opcode
                       LSW: 1110 0101 0110 0011
                       Zero all floating-point registers:
Description
                       ROH = 0
                       R1H = 0
                       R2H = 0
                       R3H = 0
                       R4H = 0
                       R5H = 0
                       R6H = 0
                       R7H = 0
                       This instruction modifies the following flags in the STF register:
Flags
                       Flag
                                TF
                                         ΖI
                                                     NI
                                                                ZF
                                                                           NF
                                                                                      LUF
                                                                                                 LVF
                       Modified
                                No
                                         No
                                                     No
                                                                No
                                                                           No
                                                                                      No
                                                                                                 No
                       No flags affected.
Pipeline
                       This is a single-cycle instruction.
Example
                       ifor(i = 0; i < n; i++)
                       ;{
                           real += (x[2*i] * y[2*i]) - (x[2*i+1] * y[2*i+1]);
                       ;
                           imag += (x[2*i] * y[2*i+1]) + (x[2*i+1] * y[2*i]);
                       ;
                       ;Assume AR7 = n-1
                           ZEROA
                                                        ; Clear all RaH registers
                       LOOP
                           MOV
                                   AL, AR7
                           MOV
                                   ACC, AL << 2
                           MOV
                                   AR0, ACC
                           MOV32
                                   ROH, *+XAR4[AR0]
                                                        ; R0H = x[2*i]
                                   R1H, *+XAR5[AR0]
                           MOV32
                                                        ; R1H = y[2*i]
                                   AR0,#2
                           ADD
                           MPYF32 R6H, R0H, R1H;
                                                        ; R6H = x[2*i] * y[2*i]
                                   R2H, *+XAR4[AR0]
                                                        ; R2H = x[2*i+1]
                        || MOV32
                           MPYF32 R1H, R1H, R2H
                                                       ; R1H = y[2*i] * x[2*i+2]
                           MOV32 R3H, *+XAR5[AR0]
MPYF32 R2H, R2H, R3H
                        || MOV32
                                                       ; R3H = y[2*i+1]
                                                       ; R2H = x[2*i+1] * y[2*i+1]
                        | ADDF32 R4H, R4H, R6H
                                                       ; R4H += x[2*i] * y[2*i]
                           MPYF32 ROH, ROH, R3H
                                                       ; ROH = x[2*i] * y[2*i+1]
                        ADDF32
                                   R5H, R5H, R1H
                                                        ; R5H += y[2*i] * x[2*i+2]
                                                       ; R4H -= x[2*i+1] * y[2*i+1]
                           SUBF32 R4H, R4H, R2H
                                                       ; R5H += x[2*i] * y[2*i+1]
                           ADDF32 R5H, R5H,R0H
                                   LOOP , AR7--
                           BANZ
                       ZERO RaH
See also
```

Instructions



# **Revision History**

### A.1 Changes

This revision history lists the technical changes made in the most recent revision.

| Location                                           | Additions, Deletions, Modifications                                                                                 |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Figure 1-1                                         | Modified the functional block diagram                                                                               |
| Section 1.2.1                                      | Added this section.                                                                                                 |
| Section 1.3.1                                      | Deleted part of the last bullet in Emulation Logic section                                                          |
| Section 1.4.1                                      | Modified bullets in Address and Data Buses section                                                                  |
| Example 2-2                                        | Modified code in The Repeat Block Instruction example                                                               |
| Example 3-8                                        | Modified text following Destination Register Conflict Resolved example                                              |
| ADDF32 RaH, #16FHi, RbH<br>ADDF32 RaH, RbH, #16FHi | Modified operand for instruction ADDF32 RaH, #16FHi, RbH. Updated the description.                                  |
| ADDF32 RdH, ReH, RfH    MOV32 RaH,<br>mem32        | Modified the instruction ADDF32 RdH, ReH, RfH    MOV32 RaH, mem32                                                   |
| CMPF32 RaH, #16FHi                                 | Modified the CMPF32 RaH, #16FHi instruction                                                                         |
| CMPF32 RaH, #0.0                                   | Modified the CMPF32 RaH, #0.0 instruction                                                                           |
| F32TOI32 RaH, RbH                                  | Modified the F32TO132 RaH, RbH instruction                                                                          |
| F32TOUI32 RaH, RbH                                 | Modified the F32TOUI32 RaH, RbH instruction                                                                         |
| I16TOF32 RaH, RbH                                  | Modified the I16TOF32 RaH, RbH instruction                                                                          |
| MACF32 R3H, R2H, RdH, ReH                          | Modified the MACF32 R3H, R2H, RdH, ReH, RfH instruction                                                             |
| MAXF32 RaH, #16FHi                                 | Modifed the syntax of the immediate operand. Modified the desciption.                                               |
| MINF32 RaH, #16FHi                                 | Modified the syntax of the immediate operand. Modified the description.                                             |
| MINF32 RaH, RbH                                    | Modified the MINF32 RaH, RbH instruction                                                                            |
| MOV16 mem16, RaH                                   | Modified the MOV16 mem16, RaH instruction                                                                           |
| MOV32 loc32, *(0:16bitAddr)                        | Modified the MOV32 loc32, #(0:16bitAddr) instruction                                                                |
| MOV32 mem32, RaH                                   | Modified the MOV32 mem32, RaH instruction                                                                           |
| MOV32 mem32, STF                                   | Modified the MOV32 mem32, STF instruction                                                                           |
| MOV32 RaH, XT                                      | Modified the MOV32 RaH, XT instruction                                                                              |
| MOVF32 RaH, #32F                                   | Added the MOV32 RaH, #32 instruction                                                                                |
| MOVI32 RaH, #32FHex                                | Added the MOVI32 RaH, #32FHex instruction                                                                           |
| MOVIZ RaH, #16FHiHex                               | Modified the syntax for the immediate operand. Modified the description. Modified the example.                      |
| MOVIZF32 RaH, #16FHi                               | Modified the syntax for the immediate operand. Modified the description.                                            |
| MOVXI RaH, #16FLo                                  | Modified the MOVXI RaH, #16FLo instruction. Modified the syntax of the immediate operand. Modified the description. |
| MPYF32 RaH, #16FHi, RbH<br>MPYF32 RaH, RbH, #16FHi | Modified the syntax of the immediate operand. Modified the instruction description.                                 |
| MPYF32 RdH, ReH, RfH                               | Modified the MPYF32 RdH, ReH, RfH   MOV32 RaH, mem32 instruction                                                    |
| SAVE FLAG, VALUE                                   | Modified the SAVE FLAG, VALUE instruction                                                                           |
| SUBF32 RaH, #16FHi, RbH                            | Modified the syntax for the immediate operand. Modified the description.                                            |

### Table A-1. Technical Changes Made in This Revision



| Location                                    | Additions, Deletions, Modifications                                                                                                                                                                                                                      |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUBF32 RdH, ReH, RfH    MOV32<br>mem32, RaH | Modified the SUBF32, RdH, ReH, RfH   MOV32 mem32, RaH instruction                                                                                                                                                                                        |
| UI16TOF32 RaH, RbH                          | Modified the UI16TOF32 RaH, RbH instruction                                                                                                                                                                                                              |
| UI32TOF32 RaH, RbH                          | Modified the UI32TOF32 RaH, RbH instruction                                                                                                                                                                                                              |
| Globally                                    | The syntax sections of the #16F, #16I and #immF32 immediate addressing modes modes were changed to #16FHi, #16FHiHex, and #16FLoHex to be more descriptive and consistent. The descriptions for instructions using these modes were updated for clarity. |
| Example 2-2                                 | Changed first instruction in example                                                                                                                                                                                                                     |
| Table 4-1                                   | Updated the operand nomenclature table                                                                                                                                                                                                                   |
| Section 2.1.2                               | Modified the register figure introduction and register figure                                                                                                                                                                                            |
| EINVF32 RaH, RbH                            | Modified the example                                                                                                                                                                                                                                     |
| EISQRTF32 RaH, RbH                          | Modified the example                                                                                                                                                                                                                                     |
| Chapter 4                                   | Added instructions to the See Also area of various instructions                                                                                                                                                                                          |

### Table A-1. Technical Changes Made in This Revision (continued)

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications       |                           |
|-----------------------------|------------------------|--------------------|---------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters             | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                         | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Clocks and Timers           | www.ti.com/clocks      | Digital Control    | www.ti.com/digitalcontrol |
| Interface                   | interface.ti.com       | Medical            | www.ti.com/medical        |
| Logic                       | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt                  | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers            | microcontroller.ti.com | Security           | www.ti.com/security       |
| RFID                        | www.ti-rfid.com        | Telephony          | www.ti.com/telephony      |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video & Imaging    | www.ti.com/video          |
|                             |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated