
Reference Guide
For

D–Bug12 Version 2.1.x
A Debug Monitor

For
The MC68HC912B32 Microcontroller

Written By
Gordon Doughman
Software Specialist

Introduction

D–Bug12 has undergone considerable revision since the introduction of version 1.0.x for the
M68HC812A4 EVB. Version 2.x.x of D–Bug12 was developed for the MC68HC912B32 EVB to
provide an economical yet powerful debugging tool that can be utilized to develop M68HC12
applications or simply to evaluate the M68HC12 architecture. Most of the improvements made to
D–Bug12 version 2.x.x since its original release are related to D–Bug12’s operation in ‘POD’
mode. In this operating mode, D–Bug12 communicates with a target M68HC12 microcontroller
through the Single–Wire Background Debug Mode (BDM) Interface to allow true emulation of an
application in the target microcontroller’s operating environment.

The BDM firmware communications primitives utilized by version 2.0.x of D–Bug12 require the
M68HC912B32 on the EVB to operate at the same clock speed as the target M68HC12. This
restriction requires developers utilizing a target clock other than 8.0 MHz (16.0 MHz crystal) to
replace the crystal on the EVB and modify D–Bug12 for operation at the alternate operating
frequency. While these modifications are not difficult, it requires the modifications to be performed
each time the EVB is connected to a target that operates at a different clock frequency. Among other
features described in this document, D–Bug12 version 2.1.x utilizes new firmware
communications primitives that allow the target M68HC12 microcontroller to operate with a crystal
frequency between 32.768 kHz and the crystal frequency of the MC68HC912B32 EVB (normally
16.0 MHz).

The remainder of this document describes the enhanced features of D–Bug12 version 2.1.x

New Features

• Supports BDM communication for target crystal frequencies less than or equal to the
EVB crystal frequency down to 32 kHz.

• Supports on-chip hardware breakpoint module providing two program only hardware
breakpoints.

• RESET command now loads program counter with the contents of the target MCU’s
reset vector ($FFFE and $FFFF).

D-Bug12 v2.1.x Reference Guide Page 1 Motorola Semiconductor
September 24, 1999

• Improved register display format - disassembles code at current program counter

• Improved FLoad, FBulk, Load, Verify and Device commands to support M68HC12
devices with greater than 64K bytes of memory.

• FBulk command supports Motorola’s newly specified erase pulse timing of 10 mS.

• Improved target memory read and write routines to support aligned word access of 16-
bit wide memory and peripherals.

• D–Bug12 utilizes the XIRQ interrupt input for a program abort function

• Command line buffer length was reduced to 50 characters from 80 characters.

• Maximum number of command line arguments increased from 10 to 11.

• Maximum S-Record code/data field length was reduced to 32 bytes from 64 bytes.

• Support for MC68HC912BC32 CAN interrupt vectors when operating in EVB mode.

Upgrading to Version 2.1.x

Previous versions of D–Bug12 allowed the D–Bug12 firmware to be upgraded using either the
serial bootloader, described in Appendix E of the M68EVB912B32 Evaluation Board Users
Manual or by erasing and reprogramming the entire 32K bytes of on-chip Flash using a BDM
programming tool such as Motorola’s SDI12 or a second MC68HC912B32 EVB. The serial
bootloader method allowed the main portion of D–Bug12, residing in the lower 30K bytes of the
Flash memory, to be completely replaced while retaining the bootloader residing in the 2K byte
erase protected boot block. Because of the additional features contained in version 2.1.x, some of
the 2K byte boot block that was previously unused by the bootloader is required by D–Bug12 for
the BDM firmware communications primitives. Therefore, upgrading to version 2.1.x
will require the use of a BDM programming tool.

To upgrade to version 2.1.x of D–Bug12, follow these steps:

1.) Connect the BDM programming tool to the target EVB as described in the programming
tool’s documentation.

2.) Erase the entire 32K byte Flash EEPROM array.

3.) Program the Flash array with the contents of the supplied S-Record file containing
D–Bug12 version 2.1.x.

4.) After successfully programming the Flash with the new version of D–Bug12, disconnect
the programming hardware and configure jumpers W3 (0) and W4 (0) for the EVB
operating mode.

5.) Connect the EVB to a suitable power source and terminal as described in Chapter 2 of the
M68EVB912B32 Evaluation Board Users Manual.

D-Bug12 v2.1.x Reference Guide Page 2 Motorola Semiconductor
September 24, 1999

6.) Applying power to the EVB should produce the following response on the terminal:

D-Bug12 v2.1.0
Copyright 1996 - 1998 Motorola Semiconductor
For Commands type "Help"

>

If the prompt does not appear, check all connections and verify that the Flash memory
was properly programmed with the new version of D–Bug12.

7.) Enter the Bulk command on the command line followed by a carriage return.

Note: Because special configuration information is stored in the on-chip EEPROM, failure to
completely erase the on-chip EEPROM before operating the EVB in POD mode for the
first time after the upgrade will result in the incorrect operation of many of D–Bug12’s
commands and/or features.

8.) The EVB may now be reconfigured for POD mode operation by reconfiguring jumpers
W3 and W4 as described in Chapter 2 of the M68EVB912B32 Evaluation Board Users
Manual.

Note: There will be a several second pause before a prompt appears the first time the EVB is
powered-up or reset in POD mode after the D–Bug12 firmware upgrade. This pause is a
result of D–Bug12 updating the on-chip EEPROM with the required configuration
information. If the pause lasts longer than several seconds, follow the trouble shooting
suggestions in Chapters 2 and 3 of the M68EVB912B32 Evaluation Board Users
Manual.

POD Mode Startup Procedure

On power-up or reset D–Bug12 attempts to establish communications with a target system
connected to the BDM OUT (W11) connector. Initially, communications is attempted without
resetting the target system. This feature allows the POD EVB to be ‘hot connected’ to a running
system without disturbing the target microcontroller. However, if communications cannot be
established, the following menu of choices is displayed:

Can't Communicate With The Target Processor

1.) Set Target Speed (16000 KHz)
2.) Reset Target
3.) Reattempt Communication
?

Entering the number ‘1’, ‘2’ or ‘3’ from the keyboard allows the developer to configure D–Bug12
for an alternate target frequency, reset the target and attempt to establish communications or attempt
to establish communications without resetting the target M68HC12. Entering a character other than

D-Bug12 v2.1.x Reference Guide Page 3 Motorola Semiconductor
September 24, 1999

the choices provided will result in the target being reset and an attempt to establish
communications. The frequency displayed in parenthesis is the current setting for the target crystal
frequency.

Entering a ‘1’ to set the target speed will cause the following prompt to be displayed:

Enter Target Crystal Frequency (KHz):

Note that the entered number must be the target’s crystal frequency and not the target’s E–clock
frequency. The entered frequency must be in kilohertz and not hertz. Valid target frequencies range
from a low of 32 KHz to a high equal to the crystal frequency of the EVB being used as the POD.
Numbers outside this range will result in an error message being displayed and cause the menu of
choices to be redisplayed. Each time a valid target crystal frequency is entered, the new value is
saved in the EVB’s on-chip EEPROM. The saved value is used to initiate communications each
time the EVB is powered-up or connected to a new target system.

Note: Because of the timing tolerance inherent in the BDM communications protocol and the
implementation of the BDM firmware communications primitives, an exact value for the
target crystal need not be specified. However, the entered value should be as accurate as
possible. For very low frequencies, such as a 32.768 KHz crystal, a value of 32 or 33
will result in proper communication. In reality, the BDM firmware communications
primitives will communicate properly with the target microcontroller even if the entered
crystal frequency is as much as ± 20% different from the actual target crystal frequency.

After a valid target crystal frequency has been entered, D–Bug12 will attempt to establish
communications with the target processor without resetting the target. If the menu of choices is
redisplayed, communication could not be established. If communication cannot be established after
several attempts, check for the following possible problems:

• The EVB’s BDM OUT connector (W11) must be properly connected to the target
systems BDM connector.If the target system is another MC68HC912B32 EVB, make
sure that the POD EVB’s BDM OUT connector (W11) is connected to the target EVB’s
BDM IN connector (W9).

• Check for the proper orientation of the BDM cable with the BDM connectors on both
the EVB and the target.

• If the target system is not another EVB, verify that its BDM connector is wired to the
proper MCU signals on each pin.

• If the target MCU does not have any firmware to execute, the CPU will most likely
“run away”, possibly executing a STOP instruction, preventing BDM communications
with the target MCU. Thus it is strongly recommended that if a target system does not
have firmware to execute at power-up or reset, that the target MCU be configured to
operate in Special Single Chip mode.

POD EVB Baud Rates and Target Memory Downloads

The operating speed of the target MCU and hence the communication speed of the BDM interface
directly affect the maximum terminal baud rate that can be used to download or verify S-Records in

D-Bug12 v2.1.x Reference Guide Page 4 Motorola Semiconductor
September 24, 1999

either the on-chip or externally connected RAM. Earlier versions of D-Bug12 would support
download baud rates as high as 38,400 with a target crystal frequency of 16.0 MHz. However,
because of the additional software overhead of the variable speed BDM primitives, version 2.1.x is
limited to a download baud rate of 19,200 with a target crystal frequency of 16.0 MHz. The
maximum usable baud rate for download into target RAM will be directly proportional to the target
crystal frequency.

The reason for this restriction is the lack of hardware or software handshaking supported by the
basic SCI routines used by D–Bug12. The FLOAD command command does not have the baud
rate restriction because of the special software handshake protocol used to control the flow of S-
Record data from the host computer.

Hardware Breakpoint Support

D–Bug12 versions 2.0.1 and earlier supported 10 software breakpoints that allowed developers to
halt program execution on instruction opcode boundaries. Unfortunately, the placement of
software breakpoints are restricted to programs that reside in alterable memory. This restriction is
not a problem for small programs placed in the on-chip RAM or EEPROM when operating the
EVB in EVB mode. However, when the EVB is utilized in POD mode to test and debug code in a
target M68HC12’s Flash, software breakpoints cannot be used.

To facilitate debugging in an M68HC12’s on-chip flash, many M68HC12 family members include
an on-chip hardware breakpoint module. D–Bug12 versions 2.0.2 and later support the hardware
breakpoint module by providing two hardware breakpoints in place of the 10 software breakpoints.
Even though the breakpoint module is capable of providing data access breakpoints, D–Bug12
only supports the module’s dual address program breakpoint operating mode. In this operating
mode, the hardware breakpoints utilize the CPU12’s instruction tagging mechanism. Much like
software breakpoints, this restricts the placement of the hardware breakpoints to the address of an
instruction opcode.

The hardware breakpoints may be used in both POD and EVB operating modes. Utilizing the
hardware breakpoints in EVB mode is especially important when developing code in the on-chip
EEPROM. The hardware breakpoints prevent D–Bug12 from erasing and reprogramming the
EEPROM each time an instruction is traced or breakpoints are placed in memory.

Each time the EVB is powered up or reset, D–Bug12 defaults to using the 10 software
breakpoints. To utilize the hardware breakpoints, the USEHBR command must be entered on the
command line.

Improved Register Display Format

Any time the CPU12 register contents are displayed, memory at the location pointed to by the
current value of the program counter is displayed in assembly source format. This change affects
not only the Register Display (RD) command but each of the register setting commands.

Additional Flash Programming Support

The FLOAD, FBULK, VERIFY and DEVICE commands have been enhanced to support on-chip
Flash programming for two additional M68HC12 family members - the MC68HC912D60 and the
MC68HC912DA/DG128. In addition, the LOAD command, which supports loading of S-Records
into RAM, supports the extended memory space of the MC68HC812A4. For details of the
S–Record format required for parts supporting greater than 64K bytes of program memory, refer
to the LOAD, FLOAD and VERIFY commands.

D-Bug12 v2.1.x Reference Guide Page 5 Motorola Semiconductor
September 24, 1999

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by these
commands for M68HC12 devices supporting more than 64K bytes of memory.

FBULK Erase Pulse Time Reduced

Motorola has recently made a change to the erase pulse timming specification, tEPULSE, reducing it
from a nominal value of 100 mS to a nominal value of 10 mS. The FLOAD command has been
modified to reflect this change.

16-bit Aligned Target Memory Access Supported

All versions of D–Bug12 prior to 2.1.x access memory a byte at a time through low–level drivers.
Because all on-chip memory modules support byte access, utilizing this method simplified the low
level driver code. However, this access method presents some potential problems for 16-bit
registers that reside in the on-chip peripherals. Because the data bus connection to the on-chip
peripherals is 16-bits wide, with a few exceptions, the peripherals are designed in such a way that
16-bit registers must be read or written with a single 16-bit access to ensure data coherency.

D–Bug12’s low level memory access drivers have been rewritten to perform aligned word reads
whenever possible. For instance, if the Memory Modify Word (MMW) command is used with an
even address, all reads and writes will be performed as aligned word accesses. However, if the
MMW command is used with an odd address, each memory access will be performed as two
individual byte read or write operations. Because the Memory Display commands (MD and MDW)
always display an even multiple of 16 bytes, all memory read operations are performed as aligned
word accesses.

XIRQ Interrupt Usable As Program Abort Input

When testing and debugging programs that reside in the internal RAM or EEPROM of the
MC68HC912B32 when operating the EVB in EVB mode, it is possible for the program to become
‘hung-up’ and never return to the D–Bug12 prompt. In these cases, it is desirable to abort the user
program execution and return control to D–Bug12. Unfortunately, pressing the reset switch, S1,
causes a complete reinitialization of D–Bug12 resulting in a complete loss of information about the
state of the executing user code. All versions of D–Bug12 utilize the XIRQ interrupt input as a
program abort function. Even though a program abort switch is not present on the
MC68HC912B32 EVB, the XIRQ interrupt input (PE0) may be utilized for a program abort
function. One side of a normally open momentary contact push button should be wired to the
XIRQ input, the other side of the push button should be wired to Vss.

Utilizing the program abort function will return control back to D–Bug12, displaying the CPU
register contents at the point where the users program was terminated.

Command Line Buffer Length

The command line buffer was reduced from 80 characters to 50 characters to make more memory
available for the additional features of version 2.1.x. This change does not affect the operation of
any of the D–Bug12 commands.

D-Bug12 v2.1.x Reference Guide Page 6 Motorola Semiconductor
September 24, 1999

Maximum Number of Command Line Arguments

The maximum number of command line arguments was increased from 10 to 11 (including the
command name itself) to accommodate the additional data required by the DEVICE command. This
change also allows all 10 software breakpoints to be set utilizing a single BR command.

Maximum S-Record Length Reduced

Previous versions of D–Bug12 permitted the use of S-Records containing a code/data field of up to
64 bytes with the LOAD, VERIFY and FLOAD commands. To make more memory available for
the additional features of version 2.1.x, this number was reduced to a maximum 32 bytes. This
should not cause any problems for most developers. If an attempt is made to utilize an S-Record
with a longer code/data field, an error message is issued.

MC68HC912BC32 CAN Interrupt Vector Support

When D-Bug12 is operated in EVB mode, it provides default interrupt handlers for all of the
on–chip peripherals. Earlier versions of D-Bug12 only supported the MC68HC912B32 as a host
CPU. Version 2.1.x now fully supports the use of the MC68HC912BC32 as a host CPU by
providing default interrupt handlers for the on–chip CAN communication module. The
MC68HC912BC32 is identical to the MC68HC912B32 except that the MC68HC912B32’s BDLC
module was replaced by the CAN module.

D-Bug12 v2.1.x Reference Guide Page 7 Motorola Semiconductor
September 24, 1999

D-Bug12 Command Set

The following list summarizes the D-Bug12 command set. Each command’s function and
command line syntax are described in detail.

• ASM - Single line assembler/disassembler.
• BAUD - Set the SCI communications BAUD rate
• BF - Block Fill user memory with data.
• BR - Set/Display user breakpoints.
• BULK - Bulk erase on-chip EEPROM
• CALL - Execute a user subroutine, return to D-Bug12 when finished.
• DEVICE - Select/define a new target MCU device.
• EEBASE - Inform D-Bug12 of the target’s EEPROM base address
• FBULK - Erase the target processor’s on-chip Flash EEPROM
• FLOAD - Program the target processor’s on-chip Flash EEPROM from S-Records
• G - Go. Begin execution of user program.
• GT - Go Till. Set a temporary breakpoint and begin execution of user program.
• HELP - Display D-Bug12 command set and command syntax.
• LOAD - Load user program in S-Record format.
• MD - Memory Display. Display memory contents in hex bytes/ASCII format.
• MDW - Memory Display Words. Display memory contents in hex words/ASCII

format.
• MM - Memory Modify. Interactively examine/change memory contents.
• MMW - Memory Modify Words. Interactively examine/change memory contents.
• MOVE - Move a block of memory.
• NOBR - Remove one/all user breakpoints.
• RD - Register Display. Display the CPU register contents.
• REGBASE - Inform D-Bug12 of the target’s I/O register’s base address
• RESET - Reset the target CPU
• RM - Register Modify. Interactively examine/change CPU register contents.
• STOP - Stop the execution of user code in the target processor and place the target

processor in background mode.
• T - Trace. Execute an instruction, disassemble it, and display the CPU registers.
• UPLOAD - Display memory contents in S-Record format.
• USEHBR - Use EVB/Target Hardware breakpoints
• VERF - Verify memory contents against S-Record Data.
• <RegisterName> <RegisterValue> - Set CPU <RegisterName> to <RegisterValue>

D-Bug12 v2.1.x Reference Guide Page 8 Motorola Semiconductor
September 24, 1999

ASM - Single Line Assembler/Disassembler Command

Command Line Format

ASM <Address>

Parameter Description

<Address> - A 16-bit hexadecimal number

Command Description

The assembler/disassembler is an interactive memory editor that allows memory contents to be
viewed and altered using assembly language mnemonics. Each entered source line is translated
into machine language code and placed into memory at the time of entry. When displaying
memory contents, each instruction is disassembled into its source mnemonic form and
displayed along with the hexadecimal machine code and any instruction operands.

Assembler mnemonics and operands may be entered in any mix of upper and lower case
letters. Any number of spaces may appear between the assembler prompt and the instruction
mnemonic or between the instruction mnemonic and the operand. Numeric values appearing in
the operand field are interpreted as signed decimal numbers with one exception. Placing a $ in
front of any number will cause the number to be interpreted as a hexadecimal number.

When an instruction has been disassembled and displayed, the D-Bug12 prompt is displayed
following the disassembled instruction. If a carriage return is entered immediately following the
prompt, the next instruction in memory is disassembled and displayed on the next line.

If a CPU12 instruction is entered following the prompt, the entered instruction is assembled
and placed into memory. The line containing the new entry is erased and the new instruction is
disassembled and displayed on the same line. The contents of the next memory location(s) is
disassembled and displayed on the screen.

The instruction mnemonics and operand formats accepted by the assembler follows the syntax
as described in the M68HC12 Family CPU12 Reference Manual.

There are a number of M68HC11 instruction mnemonics that appear in the M68HC12 Family
CPU12 Reference Manual that do not have direct equivalent CPU12 instructions. These
mnemonics, listed in the table below, are translated into functionally equivalent CPU12
instructions. To aid the current M68HC11 users that may desire continue to use the M68HC11
mnemonics, the disassembler portion of the assembler/disassembler recognizes the functionally
equivalent CPU12 instructions and disassembles those instructions into the equivalent
M68HC11 mnemonics.

When entering branch instructions, the number placed in the operand field should be the
absolute destination address of the instruction. The assembler will calculate the twos
compliment offset of the branch.

The assembly/disassembly process may be terminated by entering a period (.) following the
assembler prompt.

D-Bug12 v2.1.x Reference Guide Page 9 Motorola Semiconductor
September 24, 1999

Restrictions

None.

M68HC11 Mnemonic CPU12 Instruction

CLC ANDCC #$FE

CLI ANDCC #$EF

CLV ANDCC #$FD

SEC

SEI

SEV

ORCC #$01

ORCC #$10

ORCC #$02

ABX

ABY

DES

LEAX B,X

LEAY B,Y

LEAS -1,S

M68HC11 Mnemonic CPU12 Instruction

INS LEAS 1,S

TAP

TPA

TSX

TSY

TFR A,CC

TFR CC,A

TFR S,X

TFR S,Y

XGDX

XGDY

EXG D,X

EXG D,Y

SEX R ,R8 16 TFR R ,R8 16

M68HC11 to CPU12 Instruction Translation

Example

>ASM 700

0700 CC1000 LDD #4096
0703 1803123401FE MOVW #$1234,$01FE
0709 0EF9800001F1 BRSET -32768,PC,#$01,$0700
070F 18FF TRAP $FF
0711 183FE3 ETBL <Illegal Addr Mode> >.

>

D-Bug12 v2.1.x Reference Guide Page 10 Motorola Semiconductor
September 24, 1999

Assembly Operand Format

This section describes the operand format used by the assembler when assembling CPU12
instructions. The operand format accepted by the assembler is described separately in the
CPU12 Reference Manual. Rather that describe the numeric format accepted for each
instruction, some general rules will be used. Exceptions and complicated operand formats are
described separately.

In general, anywhere the assembler expects a numeric value in the operand field, either a
decimal or hexadecimal value may be entered. Decimal numbers are entered as signed constants
having a range of -32768..65535. A leading minus sign (-) indicates negative numbers, the
absence of a leading minus sign indicates a positive number. A leading plus sign (+) is not
allowed. Hexadecimal numbers must be entered with a leading dollar sign ($) followed by one
to four hexadecimal digits. The default number base is decimal.

For all branching instructions, (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE,
TBEQ, TBNE) the number entered in the address portion of the operand field must be the
absolute address of the branch destination. The assembler will calculate the two’s compliment
offset to be placed in the assembled object code.

The D–Bug12 assembler allows an optional # symbol to precede the 8-bit mask value in all bit
manipulation instructions (BSET, BCLR, BRSET, BRCLR).

Disassembly Operand Format

This section describes the operand format for the disassembler that is used in conjunction with
the single line assembler. The operand format used by the disassembler is described separately
in the CPU12 Reference Manual. Rather that describe the numeric format used for each
instruction, some general rules will be applied. Exceptions and complicated operand formats
will be described separately.

All numeric values disassembled as hexadecimal numbers will be preceded by a dollar sign ($)
to avoid being confused with values disassembled as signed decimal numbers.

For all branch (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE, TBEQ, TBNE)
instructions the numeric value of the address portion of the operand field will be displayed as
the hexadecimal absolute address of the branch destination.

All offsets used with indexed addressing modes will be disassembled as signed decimal
numbers.

All addresses, whether direct or extended, will be disassembled as four digit hexadecimal
numbers.

All 8-bit mask values (BRSET/BRCLR/ANDCC/ORCC) will be disassembled as two digit
hexadecimal numbers.

For bit manipulation instructions (BSET, BCLR, BRSET, BRCLR), the disassembler always
displays the # symbol preceding the 8-bit mask value.

All 8-bit immediate values will be disassembled as hexadecimal numbers.

All 16-bit immediate values will be disassembled as hexadecimal numbers.

D-Bug12 v2.1.x Reference Guide Page 11 Motorola Semiconductor
September 24, 1999

BAUD - Change The Communications BAUD Rate

Command Line Format

BAUD <BAUDRate>

Parameter Description

<BAUDRate> An unsigned 16-bit decimal number

Command Description

The BAUD command is used to change the communications rate of the SCI that is used by D-
Bug12 to communicate with the user.

Restrictions

Because the <BAUDRate> parameter supplied on the command line is a 16-bit unsigned
integer, BAUD rates greater than 65535 baud cannot be set using this command. The SCI
BAUD rate divider value for the requested BAUD rate is calculated using the M clock value that
is supplied in the Customization Data area. Because the SCI BAUD rate divider is a 13-bit
counter, certain BAUD rates may not be supported at particular MCU clock frequencies.

Example

>baud 50

Invalid BAUD Rate
>baud 38400
Change Terminal BR, Press Return
>

D-Bug12 v2.1.x Reference Guide Page 12 Motorola Semiconductor
September 24, 1999

BF - Fill memory with data

Command Line Format

BF <StartAddress> <EndAddress> [<Data>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number
<EndAddress> A 16-bit hexadecimal number
<Data> An 8-bit hexadecimal number

Command Description

The Block Fill command is used to place a single 8-bit value into a range of memory locations.
<StartAddress> is the first memory location written with data and <EndAddress> is the last
memory location written with data. If the <data> parameter is omitted the memory range is
filled with the value $00.

Restrictions

None.

Example

>bf 400 fff 0
>bf f00 fff 55
>

D-Bug12 v2.1.x Reference Guide Page 13 Motorola Semiconductor
September 24, 1999

BR - Set/Display User Breakpoints

Command Line Format

BR [<Address> <Address>…]

Parameter Description

<Address>A 16-bit hexadecimal number

Command Description

The BR command is used to set a breakpoint at a specified address or to display any previously
set breakpoints. The function of a breakpoint is to halt user program execution when the
program reaches the breakpoint address. When a breakpoint address is encountered, D-Bug12
will disassemble the instruction at the breakpoint address, print the CPU12’s register contents,
and wait for the next D-Bug12 command to be entered by the user.

Breakpoints are set by entering the breakpoint command followed by one or more breakpoint
addresses. Entering the breakpoint command without any breakpoint addresses will display all
the currently set breakpoints.

A maximum of 10 breakpoints may be set at one time when using software breakpoints
(default). A maximum of 2 breakpoints may be set when using the EVB or target CPU’s
hardware breakpoint capability. For additional information on D-Bug12’s hardware breakpoint
support, see the USEHBR command description.

Restrictions

D-Bug12 implements the software breakpoint function by replacing the opcode at the
breakpoint address with an SWI instruction when operating in the EVB mode or the BGND
instruction when operating in the POD mode. A breakpoint may not be set on a user SWI
instruction when operating in EVB mode. In either mode breakpoints may only be set at an
opcode address and breakpoints may only be placed at memory addresses implemented as
RAM.

When using the on-chip hardware breakpoints, D–Bug12 utilizes the the breakpoint module in
either SWI Dual Address (EVB) or BDM Dual Address (POD) mode. Both of these breakpoint
module modes utilize the CPU12 instruction fetch tagging mechanism which only allows
breakpoints to be set on instruction opcodes.

When operating in the POD mode, new breakpoints may not be set with the BR command
when the ‘R>’ prompt is being displayed. However, the BR command may be used to display
breakpoints that are currently set in the user’s running program.

Example

>br 35ec 2f80 c592
Breakpoints: 35ec 2f80 c592

>br
Breakpoints: 35EC 2F80 C592

>

D-Bug12 v2.1.x Reference Guide Page 14 Motorola Semiconductor
September 24, 1999

BULK - Bulk Erase on-chip EEPROM

Command Line Format

BULK

Parameter Description

No parameters are required

Command Description

The BULK command is used to erase the entire contents of the on-chip EEPROM in a single
operation. After the bulk erase operation has been performed, each on-chip EEPROM location
shall be checked for contents of $FF.

Restrictions

None.

Example

>BULK

F/EEPROM Failed To Erase
>BULK

>

D-Bug12 v2.1.x Reference Guide Page 15 Motorola Semiconductor
September 24, 1999

CALL - Execute A User Subroutine

Command Line Format

CALL [<Address>]

Parameter Description

<Address> A 16-bit hexadecimal number

Command Description

The CALL command is used to execute a subroutine and return to the D-Bug12 monitor
program when the final RTS of the subroutine is executed. When control is returned to
D–Bug12, the CPU register contents will be displayed. All CPU registers contain the values at
the time the final RTS instruction was executed with the exception of the program counter
(PC). The PC will contain the starting address of the subroutine. If a subroutine address is not
supplied on the command line, the current value of the Program Counter (PC) will be used as
the starting address.

NOTE: No breakpoints are placed in memory before execution is transferred to user code.

Restrictions

If the called subroutine modifies the value of the stack pointer during its execution, it MUST
restore the stack pointer’s original value before executing the final RTS of the called
subroutine. This restriction is required because D–Bug12 places four bytes of data on the users
stack that causes control to return to D-Bug12 when the final RTS of the subroutine is
executed. Obviously, any subroutine must obey this restriction to execute properly.

The CALL command cannot be issued when the ‘R>’ prompt is being displayed indicating that
the target system is already running a user program.

Example

>call 820
Subroutine Call Returned

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 0A00 057C 0000 0F:F9 1001 0000
0820 CCFFFF LDD #$0FFF

>

D-Bug12 v2.1.x Reference Guide Page 16 Motorola Semiconductor
September 24, 1999

DEVICE - Specify a target MCU device type

Command Line Format

DEVICE
DEVICE ?
DEVICE <DeviceName>[<EEStart> <EEEnd> <FStart> <FEnd> <RAMStart> <RAMEnd>

<IOBase> <PPageAddr> <NumPages>]

Parameter Description

<DeviceName> Maximum of 7 ASCII characters used to select/define a target MCU device
<EEStart> on-chip EEPROM starting address; a 16-bit hexadecimal number
<EEEnd> on-chip EEPROM ending address; a 16-bit hexadecimal number
<FStart> on-chip Flash EEPROM starting address; a 16-bit hexadecimal number
<FEEnd> on-chip Flash EEPROM ending address; a 16-bit hexadecimal number
<RAMStart> on-chip RAM starting address; a 16-bit hexadecimal number
<RAMEnd> on-chip RAM ending address; a 16-bit hexadecimal number
<IOBase> Base address of the on-chip I/O registers; a 16-bit hexadecimal number
<PPageAddr> I/O address of the PPage register at reset; a 16-bit hexadecimal number
<NumPages> Number of 16K memory pages; a 16-bit hexadecimal number

Command Description

Selecting the proper target MCU with the DEVICE command provides D-Bug12 the
information necessary to allow transparent alteration of the target MCU’s on-chip EEPROM
using any D-Bug12 commands that modify memory. It also allows provides the necessary
information to allow the programming and erasure of on-chip Flash EEPROM. In addition, it
allows D-Bug12 to initialize the stack pointer to the top of on-chip RAM when the target MCU
is reset by use of the RESET command. The DEVICE command has four command line
formats that allows for the display, selection and/or definition of target device parameters.

Entering “DEVICE” on the command line followed by a carriage return will display the name
of the currently selected device, the on-chip EEPROM’s starting and ending address, the on-
chip Flash EEPROM’s starting and ending address, the on-chip RAM’s starting and ending
address, and the I/O Base address. This form of the command may be used when D-Bug12 is
operating in either EVB or POD mode.

When D-Bug12 is operated in the POD mode, the device command may also be used to select
or define a new target device. Entering the DEVICE command followed only by a device name
will configure D-Bug12 for operation with the selected target device. The default device list
contains entries for the MC68HC912B32, MC68HC912BC32, MC68HC812A4,
MC68HC912D60 and theMC68HC912DA/DG128. The table below shows the command line
name to use for the default MCU devices.

Device Name Target MCU
912B32 MC68HC912B(C)32
812A4 MC68HC812A4
912D60 MC68HC912D60
DA128 MC68HC912DA/DG128

Entering the DEVICE command followed by a device name and nine hexadecimal parameters
allows new devices to be added to the target device table or existing device table entries to be

D-Bug12 v2.1.x Reference Guide Page 17 Motorola Semiconductor
September 24, 1999

modified. When a new device is added or when an existing device entry is modified, it
becomes the currently selected device. If a new device does not contain a particular on-chip
resource, such as Flash EEPROM, a value of zero should be entered for the starting and ending
addresses

Because the target device data and the current device selection are stored in the probe MCU’s
on-chip EEPROM, new device information and the device selection are retained when power is
removed from the POD. If the MC68HC912B32EVB is operated in EVB mode and the
contents of ANY locations of the on-chip EEPROM are altered it is STRONGLY
recommended that the on-chip EEPROM be completely erased by using the BULK command
before using the EVB in POD mode again. Erasing the on-chip EEPROM will cause D-Bug12
to reinitialize the the device table with the default MCU devices. The information for any new
devices that were added to the table will be lost.

The <PPageAddr> and <NumPages> parameters are used to provide D–Bug12 with
information it requires to program Flash devices with greater than 64K bytes of memory. The
<PPageAddr> parameter must specify the I/O address of the PPAGE register at reset. The
<NumPages> parameter is used to specify the number of 16K byte pages that are visible in the
$8000 - $BFFF memory window. For a device such as the the MC68HC912DA/DG128, that
contains 128K of Flash, the <PPageAddr> parameter would be $FF and the <NumPages>
parameter would be 8 (128K ÷ 16K). If a device does not contain more than 64K of Flash
program memory, a value of zero must be provided for these two parameters.

 Restrictions

When operating the M68EVB912B32 in EVB mode, the DEVICE command may only be used
to display the current device information.

The DEVICE command maintains a 16-bit checksum on the contents of the entire on-chip
EEPROM to maintain the integrity of the device table. If any of the on-chip EEPROM locations
are altered while operating the M68EVB912B32 in EVB mode, D-Bug12 will reinitialize the
device table with the default device information contained in the on-chip Flash. However, it is
possible for the checksum verification to fail (one case where the checksum will fail is if the
entire contents of the on-chip EEPROM is programmed with zeros). Therefore, it is
STRONGLY recommended that the on-chip EEPROM be completely erased by using the
BULK command before using the EVB in POD mode again. Using the EVB in POD mode
with a corrupt device data table may cause D-Bug12 to operate in an unpredictable manner.

The 768 bytes of on-chip EEPROM will allow a total of 29 entries in the device table. DO
NOT exceed this number.

When adding a new device to the device table, the addresses provided for the on-chip Flash
EEPROM, on-chip RAM and the I/O Registers should reflect the locations of these resources
when the part is reset. This requirement is necessary for the FBULK and FLOAD command to
work properly.

D-Bug12 v2.1.x Reference Guide Page 18 Motorola Semiconductor
September 24, 1999

Example

>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000
S>device 912b32 1d00 1fff 8000 ffff 800 bff 0

Device: 912B32
EEPROM: $1D00 - $1FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Registers: $0000

S>device 812a4

Device: 812A4
EEPROM: $1000 - $1FFF
RAM: $0800 - $0BFF
I/O Registers: $0000

S>device da128

Device: DA128
EEPROM: $0800 - $0FFF
Flash: $8000 - $BFFF Pages: 8 PPAGE at: $00FF
RAM: $2000 - $3FFF
I/O Regs: $0000

S>

D-Bug12 v2.1.x Reference Guide Page 19 Motorola Semiconductor
September 24, 1999

EEBASE - Specify the EEPROM base address

Command Line Format

EEBASE <Address>

Parameter Description

<Address> A 16-bit hexadecimal number

Command Description

Each time D-Bug12 performs a memory write, it will automatically perform the necessary
register manipulations to program the on-chip EEPROM if the write operation falls within the
address range of the target’s on-chip EEPROM. Because user code may change the
EEPROM’s base address may be changed by writing to the INITEE register, D-Bug12 must be
informed of the EEPROM’s location if automatic EEPROM writes are to occur. The EEBASE
command is used to specify the base address of the target processor’s on-chip EEPROM.

When operating in EVB mode, the default EEPROM base address and range are specified in
the Customization Data variables CustomData.EEBase and CustomData.EESize. The
value in CustomData.EEBase is used by the startup code to remap the EEPROM. The
EEBASE command may not be used to relocate the I/O registers.

When operating in POD mode, the target’s default EEPROM base address and range are
specified by the currently selected device (See the DEVICE command description for additional
details).

The EEBASE command does not check to ensure that the parameter is a valid base address for
the selected M68HC12 family member. If an improper base address is provided, automatic
programming of the on-chip EEPROM will not operate properly.

Note: The EEBASE command does not automatically modify the INITEE register. It is the
responsibility of the user to ensure that the INITEE register is modified either manually
or through the execution of user code.

Example

S>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

D-Bug12 v2.1.x Reference Guide Page 20 Motorola Semiconductor
September 24, 1999

S>eebase 1d00

Device: 912B32
EEPROM: $1D00 - $1FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

S>mm 12

0012 01 11

0013 0F .

S>md 1d00

1D00 FF FF FF FF - FF FF FF FF - FF FF FF FF - FF FF FF FF
S>

D-Bug12 v2.1.x Reference Guide Page 21 Motorola Semiconductor
September 24, 1999

FBULK - Erase target on-chip Flash EEPROM Memory

Command Line Format

FBULK

Parameter Description

No parameters are required

Command Description

The FBULK command is used to erase the entire contents of the on-chip Flash EEPROM in a
single operation. After the bulk erase operation has been performed, each on-chip Flash
location shall be checked for contents of $FF. The target processor’s Flash memory is erased
by resetting the target processor and then loading a small ‘driver’ program into the target
processor’s on-chip RAM. For this reason, the previous contents of the target processor’s On-
chip RAM is lost.

Restrictions

When operating in the ‘EVB’ mode, the FBULK command cannot be used. If the FBULK
command is entered while in ‘EVB’ mode, an error message is displayed and command
execution will be terminated.

Before using the FBULK command, a target device must be selected (see the DEVICE
command description) that reflects the locations of the on-chip Flash EEPROM, on-chip RAM
and the I/O Registers when the part is reset. Failure to follow this restriction will cause the
FBULK command to fail and may require that the EVB be reset.

Because the FBULK command downloads a small ‘driver’ program into the target MCU’s on
chip RAM, D-Bug12’s breakpoint table is cleared before beginning execution of the ‘driver’.
This is necessary to prevent previously set breakpoints from accidentally halting the execution
of the driver program.

Example

S>fbulk
Flash Programming Voltage Not Present
S>fbulk
F/EEPROM Failed To Erase
S>fbulk
S>

>fbulk
Command Not Allowed In EVB Mode
>

D-Bug12 v2.1.x Reference Guide Page 22 Motorola Semiconductor
September 24, 1999

FLOAD - Program on-chip Flash memory from S-Records

Command Line Format

FLOAD [<AddressOffset>]

Parameter Description

<AddressOffset> A 32-bit hexadecimal number

Command Description

The FLoad command is used to program a target device’s Flash EEPROM memory with the
data contained in S-Record object files. The address offset, if supplied, is added to the load
address of each S-Record before an S-Record’s data bytes are placed in memory. Providing an
address offset other than zero allows object code or data to be programmed into memory at a
location other than that for which it was assembled or compiled. An offset greater than $FFFF
may only be used with devices that support more than 64K bytes of memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

The programming of the on-chip Flash memory uses an algorithm where the time required to
program each byte or word can vary from as little as 60 µS to as long as 3.5 mS (Note,
however that the programming time for each byte or word should typically take no more than
120 µS - 180 µS). Because of this variability, the FLOAD command uses a software
handshaking protocol to control the flow of S-Record data from the host computer. When the
FLOAD command is ready to receive an S-Record, an ASCII asterisk character (*) is sent to
the host computer. The host computer should respond by sending a single S-Record. The S-
Record may include a carriage return and/or line feed character(s). Most commercial terminal
programs that are capable of sending ASCII text files have the ability to wait for a specific
character or characters before sending a line of text.

The FLoad command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record.
If the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing a system Reset will
return D–Bug12 to its command line prompt.

Restrictions

As mentioned previously, the host program used to send the S-Record data must be capable of
waiting for an ASCII asterisk character (*) before sending each S-Record line.

Because the on-chip Flash EEPROM is only bulk erasable, the FBULK command should be
used before attempting to program the Flash memory using the FLOAD command.

The FLOAD command cannot be used with target MCUs operating with crystal speeds lower
than 3.0 MHz (E-clock speeds less than 1.5 MHz).

The FLOAD command cannot be used with S-Records that contain a code/data field longer than

D-Bug12 v2.1.x Reference Guide Page 23 Motorola Semiconductor
September 24, 1999

32 bytes. Sending an S-Record with a code/data field longer than 32 bytes will cause D-Bug12
to terminate the FLOAD command the issue an error message.

Before using the FLOAD command, a target device must be selected (see the DEVICE
command description) that reflects the locations of the on-chip Flash EEPROM, on-chip RAM
and the I/O Registers when the part is reset. Failure to follow this restriction will cause the
FLOAD command to fail and may require that the EVB be reset.

Because the FLOAD command downloads a small ‘driver’ program into the target MCU’s on
chip RAM, D-Bug12’s breakpoint table is cleared before beginning execution of the ‘driver’.
This is necessary to prevent previously set breakpoints from accidentally halting the execution
of the driver program.

Supplying an address offset greater than $FFFF for an M68HC12 family member that contains
less than 64K of addressable program memory will result in termination of the FLOAD
command and an error message being issued.

Example

S>fload
Flash Programming Voltage Not Present
S>fload
**
**

S>

D-Bug12 v2.1.x Reference Guide Page 24 Motorola Semiconductor
September 24, 1999

Go, begin execution of user code

Command Line Format

G [<Address>]

Parameter Description

<Address>A 16-bit hexadecimal number

Command Description

The G command is used to begin the execution of user code in real time. Before beginning
execution of user code, any breakpoints set using the BR command are placed in memory.
Execution of the user program will continue until a user breakpoint is encountered, a CPU
exception occurs or the reset switch on the HC12EVB is pressed. When user code halts for one
of these reasons and control is returned to D-Bug12, a message shall be displayed explaining
the reason for user program termination. In addition, D-Bug12 displays the CPU12’s register
contents, disassembles the instruction at the current PC address, and waits for the next D-
Bug12 command to be entered by the user.

If a starting address is not supplied in the command line parameter, program execution will
begin at the address defined by the current value of the Program Counter.

Restrictions

The G command cannot be issued when the ‘R>’ prompt is being displayed indicating that the
target system is already running a user program.

Example

S>g 800

R>md 1000

1000 FF FF FF FF - FF FF FF FF - FF FF FF FF - FF FF FF FF
R>
User Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
S>

D-Bug12 v2.1.x Reference Guide Page 25 Motorola Semiconductor
September 24, 1999

GT - Go Until, Execute user code until temporary breakpoint

Command Line Format

GT <Address>

Parameter Description

<Address>A 16-bit hexadecimal number

Command Description

The GT command is similar to the G command except that a temporary breakpoint is placed at
the address supplied on the command line. Any breakpoints that were set by the BR command
are NOT placed in the user’s code before program execution begins. Program execution begins
at the address defined by the current value of the Program Counter. When user code reaches
the temporary breakpoint and control is returned to D-Bug12, a message is displayed
explaining the reason for user program termination. In addition, D-Bug12 displays the
CPU12’s register contents, disassembles the instruction at the current PC address, and waits
for the next D-Bug12 command to be entered by the user.

Restrictions

The GT command cannot be issued when the ‘R>’ prompt is being displayed indicating that the
target system is already running a user program.

Example

S>gt 820
R>
Temporary Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
S>

D-Bug12 v2.1.x Reference Guide Page 26 Motorola Semiconductor
September 24, 1999

HELP - Display D-Bug12 command summary

Command Line Format

HELP

Parameter Description

No parameters are required

Command Description

The HELP command is used to display a summary of the D-Bug12 command set. Each
command is shown along with its command line format and a brief description of the
command's function. The commands are listed in alphabetical order.

Restrictions

None.

Error Conditions

None.

D-Bug12 v2.1.x Reference Guide Page 27 Motorola Semiconductor
September 24, 1999

Example

>help
ASM <Address> Single line assembler/disassembler
 <CR> Disassemble next instruction
 <.> Exit assembly/disassembly
BAUD <baudrate> Set communications rate for the terminal
BF <StartAddress> <EndAddress> [<data>] Fill memory with data
BR [<Address>] Set/Display breakpoints
BULK Erase entire on-chip EEPROM contents
CALL [<Address>] Call user subroutine at <Address>
DEVICE [<DevName> [<Address>...<Address>]] display/select/add target device
EEBASE <Address> Set base address of on-chip EEPROM
FBULK Erase entire target FLASH contents
FLOAD [<AddressOffset>] Load S-Records into target FLASH
G [<Address>] Begin/continue execution of user code
GT <Address> Set temporary breakpoint at <Address> & execute user code
HELP Display D-Bug12 command summary
LOAD [<AddressOffset>] [;d] Load S-Records into memory
MD <StartAddress> [<EndAddress>] Memory Display Bytes
MDW <StartAddress> [<EndAddress>] Memory Display Words
MM <StartAddress> Modify Memory Bytes
 <CR> Examine/Modify next location
 </> or <=> Examine/Modify same location
 <^> or <-> Examine/Modify previous location
 <.> Exit Modify Memory command
MMW <StartAddress> Modify Memory Words (same subcommands as MM)
MOVE <StartAddress> <EndAddress> <DestAddress> Move a block of memory
NOBR [<address>] Remove One/All Breakpoint(s)
RD Display CPU registers
REGBASE <Address> Set base address of I/O registers
RESET Reset target CPU
RM Modify CPU Register Contents
STOP Stop target CPU
T [<count>] Trace <count> instructions
UPLOAD <StartAddress> <EndAddress> S-Record Memory display
USEHBR Use Hardware Breakpoints
VERF [<AddressOffset>] Verify S-Records against memory contents
<Register Name> <Register Value> Set register contents
 Register Names: PC, SP, X, Y, A, B, D
 CCR Status Bits: S, XM, H, IM, N, Z, V, C
>

D-Bug12 v2.1.x Reference Guide Page 28 Motorola Semiconductor
September 24, 1999

LOAD - Load user program in S-Record format

Command Line Format

LOAD [<AddressOffset>] [;d]

Parameter Description

<AddressOffset> A 32-bit hexadecimal number
“;d” Load S-Records into ‘data’ memory (for devices with > 64K of

program memory)

Command Description

The Load command is used to load S-Record object files into user memory from an external
device. The address offset, if supplied, is added to the load address of each S-Record before an
S-Record’s data bytes are placed in memory. Providing an address offset other than zero
allows object code or data to be loaded into memory at a location other than that for which it
was assembled. An offset greater than $FFFF may only be used with devices that support
more than 64K bytes of memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

During the loading process, the S-Record data is not echoed to the control console. However,
for each ten S-Records that are successfully loaded, an ASCII asterisk character (*) is sent to
the control console. When an S-Record file has been successfully loaded, D-Bug12 will issue
its prompt.

The Load command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record. If
the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing a systems Reset button
will return D–Bug12 to its command line prompt.

The ‘;d’ option is used to load S-Records, containing program or data, into target memory
such as RAM or EEPROM that is outside of the normal program memory range. This option is
only required by devices that support more than 64K bytes of memory and have a device
definition where the number of 16K memory pages is greater than zero. This option allows the
S-Record loader to distinguish between S-Records that are to be loaded into paged program
memory and those destined for other areas of on- or off-chip memory.

Restrictions

When operating in POD mode, the LOAD command will not support standard baud rates above
19,200 when the target MCU is operating at an E-clock frequency of 8.0 MHz (16.0 MHz
crystal). This restriction is due to the overhead involved in the implementation of the Custom
Serial Protocol required by the Single Wire Background Debug pin. For target MCUs
operating at lower E-clock frequencies, the maximum baud rate that can be used with the
LOAD command will be proportionally lower.

D-Bug12 v2.1.x Reference Guide Page 29 Motorola Semiconductor
September 24, 1999

Example

>load 1000

>

D-Bug12 v2.1.x Reference Guide Page 30 Motorola Semiconductor
September 24, 1999

MD - Display memory in hexadecimal bytes and ASCII format

Command Line Format

MD <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number
<EndAddress> A 16-bit hexadecimal number

Command Description

The memory display command displays the contents of memory in both hexadecimal bytes and
ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however, the
<EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if the user entered $205 as the start address and $217 as
the ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>md 800

0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx

>md 800 87f

0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx
0810 B6 36 27 F9 - 35 AE 27 F9 - 35 9E 27 F9 - 35 BE B5 28 .6'.5.'.5.'.5..(
0820 27 F9 35 D6 - 37 B8 00 0F - 37 82 01 0A - 37 36 FF F0 '.5.7...7...76..
0830 7C 10 37 B3 - 00 00 37 B6 - 00 0F AA 04 - A5 02 37 B6 |.7...7.......7.
0840 00 0F 27 78 - 37 6A 00 06 - 27 F9 35 78 - 27 F9 35 56 ..'x7j..'.5x'.5V
0850 78 0D B7 10 - 78 3B 37 86 - 00 DC 27 F9 - 35 48 78 57 x...x;7...'.5HxW
0860 37 86 00 DE - F5 01 EA 09 - 37 B5 0D 0A - 27 F9 36 2A 7.......7...'.6*
0870 A5 00 37 65 - 00 02 27 F9 - 35 E8 37 9C - 37 4C F5 02 ..7e..'.5.7.7L..

D-Bug12 v2.1.x Reference Guide Page 31 Motorola Semiconductor
September 24, 1999

MDW - Display memory in hexadecimal words and ASCII format

Command Line Format

MDW <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number
<EndAddress> A 16-bit hexadecimal number

Command Description

The memory display command displays the contents of memory in both hexadecimal words
and ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however,
the <EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if the user entered $205 as the start address and $217 as
the ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>mdw 800
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx

>mdw 800 87f
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx
0810 B636 27F9 - 35AE 27F9 - 359E 27F9 - 35BE B528 .6'.5.'.5.'.5..(
0820 27F9 35D6 - 37B8 000F - 3782 010A - 3736 FFF0 '.5.7...7...76..
0830 7C10 37B3 - 0000 37B6 - 000F AA04 - A502 37B6 |.7...7.......7.
0840 000F 2778 - 376A 0006 - 27F9 3578 - 27F9 3556 ..'x7j..'.5x'.5V
0850 780D B710 - 783B 3786 - 00DC 27F9 - 3548 7857 x...x;7...'.5HxW
0860 3786 00DE - F501 EA09 - 37B5 0D0A - 27F9 362A 7.......7...'.6*
0870 A500 3765 - 0002 27F9 - 35E8 379C - 374C F502 ..7e..'.5.7.7L..
>

D-Bug12 v2.1.x Reference Guide Page 32 Motorola Semiconductor
September 24, 1999

MM - Modify memory bytes in hexadecimal format

Command Line Format

MM <Address> [<data>]

Parameter Description

<Address>A 16-bit hexadecimal number
<data> An 8-bit hexadecimal number

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 8-bit hexadecimal data. If the 8-bit data parameter is present on the command line,
the byte at memory location at <Address> is replaced with <data>. If not, D-Bug12 will enter
the interactive memory modify mode. In the interactive mode, each byte is displayed on a
separate line following the data's address. Once the memory modify command has been
entered, several sub-commands are used for the modification and verification of memory
contents. These sub-commands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message will be issued and the contents of the current memory location shall
be redisplayed.

Restrictions

While there are no restrictions regarding the use of the MM command, caution should be used
when modifying target memory while user code is running. Accidentally modifying target
memory containing program code could lead to program run away.

Example

>mm 800
0800 00 <CR>
0801 F0 FF
0802 00 ^
0801 FF <CR>
0802 00 <CR>
0803 08 55 /
0803 55 .
>

D-Bug12 v2.1.x Reference Guide Page 33 Motorola Semiconductor
September 24, 1999

MMW - Modify memory words in hexadecimal format

Command Line Format

MMW <Address> [<data>]

Parameter Description

<Address> A 16-bit hexadecimal number
<data> A 16-bit hexadecimal number

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 16-bit hexadecimal data. If the 16-bit data parameter is present on the command
line, the word at memory location at <Address> is replaced with <data>. If not, D-Bug12 will
enter the interactive memory modify mode. In the interactive mode, each byte is displayed on a
separate line following the data's address. Once the memory modify command has been
entered, several sub-commands are used for the modification and verification of memory
contents. These sub-commands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message will be issued and the contents of the current memory location shall
be redisplayed.

If the <Address> parameter corresponds to an even byte address, values read from and/or
written to memory will be performed as aligned word accesses. This guarantees data coherency
for peripherals that require a single access to their 16-bit registers.

Restrictions

While there are no restrictions regarding the use of the MMW command, caution should be
used when modifying target memory while user code is running. Accidentally modifying target
memory containing program code could lead to program run away.

Example

>mmw 800
0800 00F0 <CR>
0802 0008 AA55 /
0804 843F ^
0802 AA55 <CR>
0804 843F <CR>
0806 C000 .
>

D-Bug12 v2.1.x Reference Guide Page 34 Motorola Semiconductor
September 24, 1999

MOVE - Move a Block of Memory

Command Line Format

MOVE <StartAddress> <EndAddress> <DestAddress>

Parameter Description

<StartAddress> A 16-bit hexadecimal number
<EndAddress> A 16-bit hexadecimal number
<DestAddress> A 16-bit hexadecimal number

Command Description

The MOVE command is used to move a block of memory from one location to another a byte at
a time. The number of bytes moved is one more than the <EndAddress> - <StartAddress>.
The block of memory created beginning at the destination address may overlap the memory
block defined by the <StartAddress> and <EndAddress>.

One of the uses of the MOVE command might be to copy a program from RAM into EEPROM
memory.

Restrictions

A minimum of one byte may be moved if the <StartAddress> is equal to the <EndAddress>.
The maximum number of bytes that may be moved is 216 - 1. In addition, caution should be
exercised when moving target memory while user code is running. Accidentally modifying
target memory containing program code could lead to program run away.

Example

>move 800 8ff 1000
>

D-Bug12 v2.1.x Reference Guide Page 35 Motorola Semiconductor
September 24, 1999

NOBR - Remove one/all user breakpoints

Command Line Format

NOBR [<Address> <Address>…]

Parameter Description

<Address>A 16-bit hexadecimal number

Command Description

The NOBR command is used to remove one or more of previously entered breakpoints. If the
NOBR command is entered without any arguments, all user breakpoints are removed from the
breakpoint table.

Restrictions

When operating in the POD mode, breakpoints may not be removed with the NOBR command
when the ‘R>’ prompt is being displayed.

Example

>br 800 810 820 830
Breakpoints: 0800 0810 0820 0830

>nobr 810 820
Breakpoints: 0800 0830

>nobr
All Breakpoints Removed

>

D-Bug12 v2.1.x Reference Guide Page 36 Motorola Semiconductor
September 24, 1999

RD - Display CPU12 Register Contents

Command Line Format

RD

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The Register Display command is used to display the CPU12’s registers. The registers are
displayed in the same format used when a breakpoint is encountered.

Restrictions

When operating in the POD mode, the CPU registers may not be displayed when the ‘R>’
prompt is being displayed.

Example

S>rd

 PC SP X Y D = A:B CCR = SXHI NZVC
C028 4000 0000 0000 00:00 1101 0000
C028 790016 CLR $0016
S>

D-Bug12 v2.1.x Reference Guide Page 37 Motorola Semiconductor
September 24, 1999

REGBASE - Specify the Register base address

Command Line Format

REGBASE <Address>

Parameter Description

<Address> A 16-bit hexadecimal number

Command Description

Because D-Bug12 supports the ability to transparently program the on-chip EEPROM of the
target MCU, it must know the base address of the I/O registers. Because user code may change
the register block’s base address by writing to the INITRG register, D-Bug12 must be
informed of the register block’s base address for transparent EEPROM writes to occur. The
REGBASE command is used to specify the base address of the target processor’s on-chip
registers.

The REGBASE command does not check to ensure that the <Address> parameter is a valid
base address for the selected M68HC12 family member. If an improper register base address is
provided, automatic programming of the on-chip EEPROM will not operate properly.

When operating in EVB mode, the default register base address is specified in the
Customization Data variables CustomData.IOBase. This value is used by the startup code
to remap the I/O registers. The REGBASE command may not be used to relocate the I/O
registers.

Note: The REGBASE command does not automatically modify the INITRG register. It is the
responsibility of the user to ensure that the INITRG register is modified either manually
or through the execution of user code.

Restrictions

The REGBASE command may not be used when D-Bug12 is operated in the EVB mode.

Example

S>device

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF
I/O Regs: $0000

S>regbase 2000

Device: 912B32
EEPROM: $0D00 - $0FFF
Flash: $8000 - $FFFF
RAM: $0800 - $0BFF

I/O Regs: $2000

D-Bug12 v2.1.x Reference Guide Page 38 Motorola Semiconductor
September 24, 1999

RESET - Reset the target system MCU

Command Line Format

RESET

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The RESET command is used to reset the target system processor when operating in
D–Bug12’s POD mode. The target processor’s reset pin is held low for approximately 2 mS.
When the reset line is released, BDM commands are are sent to the target processor to place it
in active background mode. With the exception of the program counter (PC), the target
processor’s registers are initialized with the same values used for the registers when operating
in EVB mode. The PC is initialized with the contents of the target processor’s reset vector,
memory locations $FFFE and $FFFF

Restrictions

When operating in the ‘EVB’ mode, the RESET command cannot be used. If the RESET
command is entered while in ‘EVB’ mode, an error message will be displayed and command
execution will be terminated.

Example

S>reset
Target Processor Has Been Reset
S>g 4000
R>reset
Target Processor Has Been Reset
S>

D-Bug12 v2.1.x Reference Guide Page 39 Motorola Semiconductor
September 24, 1999

RM - Interactively Modify CPU12 Register Contents

Command Line Format

RM

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The register modify command is used to examine and/or modify the contents of the CPU12's
registers in an interactive manner. As each register and its contents is displayed, D-Bug12
allows the user to enter a new value for the register in hexadecimal. If modification of the
displayed register is not desired, entering a carriage return causes the next CPU12 register and
its contents to be displayed on the next line. When the last of the CPU12's registers has been
examined and/or modified, the RM command will redisplay the first register giving the user an
opportunity to make additional modifications to the CPU12's register contents. Typing a period
(.) as the first non space character on the line will exit the interactive mode of the register
modify command and return to the D-Bug12 prompt.

The registers are displayed in the following order, one register per line: PC, SP, X, Y, A, B,
CCR.

Restrictions

When operating in the POD mode, the CPU registers may not be modified when the ‘R>’
prompt is being displayed.

Example

>RM
PC=0206 200
SP=03FF <CR>
X=1000 1004
Y=3700 <CR>
A=27 <CR>
B=FF <CR>
CCR=D0 D1
PC=0200 .
>

D-Bug12 v2.1.x Reference Guide Page 40 Motorola Semiconductor
September 24, 1999

STOP - Stop Execution of user code in the target MCU

Command Line Format

STOP

Parameter Description

No parameters are required. Any parameters on the command line are ignored.

Command Description

When operating in D–Bug12’s POD mode, the STOP command is used to halt target program
execution and place the target processor in active background debug mode.

Restrictions

When operating in the ‘EVB’ mode, the STOP command cannot be used. If the STOP
command is entered while in ‘EVB’ mode, an error message is displayed and command
execution will be terminated.

Example

S>asm 4000
4000 CCFFFF LDD #$FFFF
4003 830001 SUBD #$0001
4006 26FB BNE $4003
4008 20F6 BRA $4000
400A 00 BGND >.
S>g 4000
R>stop
Target Processor Has Been Stopped

 PC SP X Y D = A:B CCR = SXHI NZVC
4003 0A00 0000 0000 37:3F 1101 0000
4003 830001 SUBD #$0001
S>

D-Bug12 v2.1.x Reference Guide Page 41 Motorola Semiconductor
September 24, 1999

T - Trace (Execute) CPU12 Instruction(s)

Command Line Format

T [<Count>]

Parameter Description

<Count> An 8-bit decimal number in the range 1..255

Command Description

The Trace command is used to execute one or more user program instructions beginning at the
current Program Counter (PC) location. As each program instruction is executed, the CPU12’s
register contents are displayed and the next instruction to be executed is displayed. A single
instruction may be executed by entering the trace command followed immediately by a carriage
return.

Restrictions

When operating in ‘EVB’ mode, all branch instructions (Bcc, LBcc, BRSET, BRCLR,
DBEQ/NE, IBEQ/NE, TBEQ/NE) containing an offset that branches back to the instruction
opcode will NOT execute because of the method used to execute a single instruction. The
monitor will appear to become ‘stuck’ at the branch instruction and will not execute the
instruction even if the condition for the branch instruction is satisfied. This limitation can be
overcome by using the GT (GoTill) command to set a temporary breakpoint at the instruction
following the branch instruction.

This restriction DOES NOT apply when using D-Bug12 on a target system in the POD mode.

Example

>t

 PC SP X Y D = A:B CCR = SXHI NZVC
0803 09FE 057C 0000 10:00 1001 0000
0803 830001 SUBD #$0001
>t 2

 PC SP X Y D = A:B CCR = SXHI NZVC
0806 09FE 057C 0000 0F:FF 1001 0000
0806 26FB BNE $0803

 PC SP X Y D = A:B CCR = SXHI NZVC
0803 09FE 057C 0000 0F:FF 1001 0000
0803 830001 SUBD #$0001

 >

D-Bug12 v2.1.x Reference Guide Page 42 Motorola Semiconductor
September 24, 1999

UPLOAD - Display Memory In S-Record Format

Command Line Format

UPLOAD <StartAddress> <EndAddress>

Parameter Description

<StartAddress> A 16-bit hexadecimal number
<EndAddress> A 16-bit hexadecimal number

Command Description

The UPLOAD command is used to display the contents of memory in Motorola S-Record
format. In addition to displaying the specified range of memory, the UPLOAD command also
outputs an S9 end-of-file record. The output of this command may be captured by the users
terminal program and saved to a disk file.

Restrictions

None.

Example

>upload 400 5ff
S123040000F0000843FC0000F50F379F37BF43FCF50F27FA757F177AFA047504177AFA21C5
S123042037B500FF37FAFB0437B5400037FAFB061735FB0037B500C137FAFA003715379C01
S1230440F50F379D37BC012C37BD400085009A003C023D02377C0140B6EE7A0F400037B583
S1230460000337FAFA4C37FAFA5037FAFA5437B5502037FAFA4E37B5302037FAFA5237B58A
S1230480682037FAFA5637BD014037BC000095008A003C023D02377D0172B6EE37BD017259
S12304A037BC020095008A003C023D02377D018EB6EE27F937B0F50F379C37BC00CE27F901
S12304C000FC27F9104C27F90E68378000BE0A0D442D42756731362056312E3033202D20E3
S12304E04465627567204D6F6E69746F7220466F7220546865204D363848433136204661ED
S12305006D696C790A0D2843292031393932204D6F746F726F6C612053656D69636F6E64BD
S12305207563746F7220496E632E000037B5FF0237FAFA4837B578B037FAFA4A7A0F005E52
S12305400000000000000000020002040208020C021000000000000000000000000002144F
S12305600000000000000000000000000000000002187A0F3BAC7A0F3BBC7A0F11E87A0F62
S12305803C727A0F3C847A0F3C967A0F3CA8F50F379C379D379E27FAF50F379F37BF43FCE8
S12305A07501177A4054173540523604361C27F90088B0D637BC01BC360227F70A0D3E00A9
S12305C04500B70427F936BC3C01B0F027F7277537BC400017BC405027F936CC780DB60477
S12305E027F936A0274A27F77803B6FEB03A7808B6162776B7DE3730000127F93686752002
S9030000FC
>

D-Bug12 v2.1.x Reference Guide Page 43 Motorola Semiconductor
September 24, 1999

USEHBR - Use EVB/Target Hardware Breakpoints

Command Line Format

USEHBR

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

Entering the USEHBR command causes D-Bug12 to use the hardware breakpoint capability of
the MC68HC912B32 on the EVB, in EVB mode, or the breakpoint capability of the target
microcontroller in POD mode. Using hardware breakpoints allows two, program only
breakpoints to be set in Flash or other non-volatile memory. To revert to the 10 software
breakpoints, the EVB reset button must be pressed.

Using the hardware breakpoints of the MC68HC912B32 when operating in EVB mode allows
the developer to trace through the user accessible routines in D-Bug12 that are located in the
on-chip Flash memory. Further, when debugging small programs located in the
MC68HC912B32’s on-chip EEPROM, it is recommended that hardware breakpoints be used.
Using hardware breakpoints will prevent D-Bug12 from repeatedly erasing and reprogramming
the on-chip EEPROM when using the T, G or GT commands or when setting breakpoints.

Entering the USEHBR command will reinitialize the breakpoint table causing any previously
set breakpoints to be removed from the breakpoint table.

Restrictions

When operating in POD mode, D-Bug12 has no way of detecting whether the target processor
contains a hardware breakpoint module. If the USEHBR command is issued when running in
POD mode and the target processor does not contain a hardware breakpoint module, D-Bug12
breakpoint capability will be lost. In addition, unpredictable behavior of the target may occur if
breakpoints are set with the BR command.

When operating in the POD mode, the USEHBR command cannot be issued when the ‘R>’
prompt is being displayed indicating that the target system is running a user program.

Example

S>usehbr

Using Hardware Breakpoints

S>br 810 835

Breakpoints: 0810 0835

S>br 957

Breakpoint Table Full

S>

D-Bug12 v2.1.x Reference Guide Page 44 Motorola Semiconductor
September 24, 1999

VERF - Compare S-Record File To The Contents of Memory

Command Line Format

VERF [<AddressOffset>]

Parameter Description

<AddressOffset> A 16-bit hexadecimal number

Command Description

The VERF command is used to compare the data contained in an S-Record object file to the
contents of target memory. The address offset, if supplied, is added to the load address of each
S-Record before an S-Record’s data bytes are compared to the contents of memory. Providing
an address offset other than zero allows the S-Record’s object code or data to be compared
against memory other than that for which the S-Record was assembled. An offset greater than
$FFFF may only be used with devices that support more than 64K bytes of memory.

Note: Please refer to the section titled “FLOAD, LOAD and VERIFY S-Record Format” at the
end of this document for a complete description of the S-Record Format utilized by this
command for M68HC12 devices supporting more than 64K bytes of memory.

Note: The VERF command DOES NOT require the software handshaking protocol used by
the FLOAD command. Before using the VERF command, make sure that the terminal’s
line-at-a-time handshaking is disabled.

During the verification process, an ASCII asterisk character (*) shall be sent to the control
console for each ten S-Records that are successfully verified. When an S-Record file has been
successfully verified, D-Bug12 will issue its prompt.

The VERF command is terminated when D-Bug12 receives an ‘S8’ or ‘S9’ end of file record.
If the object file being loaded does not contain an ‘S8’ or ‘S9’ record, D–Bug12 will not return
its prompt and will continue to wait for the end of file record. Pressing a system Reset will
return D–Bug12 to its command line prompt.

Restrictions

When operating in POD mode, the VERF command will not support standard baud rates above
19,200 when the target MCU is operating at an E-clock frequency of 8.0 MHz (16.0 MHz
crystal). This restriction is due to the overhead involved in the implementation of the Custom
Serial Protocol required by the Single Wire Background Debug pin. For target MCUs
operating at lower E-clock frequencies, the maximum baud rate that can be used with the VERF
command will be proportionally lower.

D-Bug12 v2.1.x Reference Guide Page 45 Motorola Semiconductor
September 24, 1999

Example

>verf 1000

>

D-Bug12 v2.1.x Reference Guide Page 46 Motorola Semiconductor
September 24, 1999

<RegisterName> - Modify a CPU12 Register Value

Command Line Format

<RegisterName> <RegisterValue>

Parameter Description

Where <RegisterName> is one of the following CPU12 register names:

Register Name Description Legal Range
PC Program Counter $0..$FFFF
SP Stack Pointer $0..$FFFF
X X-Index Register $0..$FFFF
Y Y-Index Register $0..$FFFF
A A Accumulator $0..$FF
B B Accumulator $0..$FF
D D Accumulator (A:B) $0..$FFFF
CCR Condition Code Register $0..$FF

Each of the fields in the CCR may be modified by using the following field Names:

CCR Bit Name Description Legal Range
S STOP Enable 0..1
H Half Carry 0..1
N Negative Flag 0..1
Z Zero Flag 0..1
V Twos Complement Overflow Flag 0..1
C Carry Flag 0..1
IM IRQ Interrupt Mask 0..1
XM XIRQ Interrupt Mask 0..1

Command Description

This set of “commands” uses the CPU12 register names as individual commands to allow
changing the contents of individual registers. Each register name or Condition Code Register
bit name is entered on the command line followed by a space, then followed by the new
register or bit value. The successful alteration of a CPU register or CCR will cause the
CPU12’s register contents to be displayed.

Restrictions

None.

If a value outside the range for a given register is entered, an error message is displayed and
command execution is terminated leaving the register contents unaltered.

D-Bug12 v2.1.x Reference Guide Page 47 Motorola Semiconductor
September 24, 1999

Example

>pc 700e

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 7315 7D62 47:44 1001 0000
700E 790016 CLR $0016
>x 1000

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0000
700E 790016 CLR $0016
>c 1

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0001
700E 790016 CLR $0016
>z 1

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0101
700E 790016 CLR $0016
>d adf7

 PC SP X Y D = A:B CCR = SXHI NZVC
700E 0A00 1000 7D62 AD:F7 1001 0101
700E 790016 CLR $0016
>

D-Bug12 v2.1.x Reference Guide Page 48 Motorola Semiconductor
September 24, 1999

FLOAD, LOAD and VERIFY S-Record Format

The S-Record object file format was designed to allow binary object code and/or data to be
represented in printable ASCII hexadecimal format to allow easy transportation between computer
systems and development tools. For M68HC12 family members supporting less than 64K bytes of
address space, S1 records, which contain a 16-bit address, are sufficient to specify the location in
the device’s memory space where code and/or data are to be loaded. The load address contained in
the S1 record generally corresponds directly to the address of on-chip or off-chip memory device.
For M68HC12 devices that support an address space greater than 64K bytes, S1 records are not
sufficient.

Because the M68HC12 family is a 16-bit microcontroller with a 16-bit program counter, it cannot
directly address a total of more than 64K bytes of memory. To enable the M68HC12 family to
address more than 64K bytes of program memory, a paging mechanism was designed into the
architecture. Program memory space expansion provides a window of 16K byte pages that are
located from $8000 through $BFFF. An 8-bit paging register, called the PPAGE register, provides
access to a maximum of 256, 16K byte pages or 4 megabytes of program memory. While there
may never be any devices that contain this much on-chip memory, the MC68HC812A4 is capable
of addressing this much external memory. In addition, the MC68HC912DA/DG128 contains 128K
bytes of on-chip Flash EEPROM that must be programmed by various development tools.

While many high-level debuggers are capable of directly loading linked, absolute binary object files
into a target system’s memory, D–Bug12 does not have that capability. D–Bug12 is only capable
of loading object files that are represented in the S-Record format. As mentioned previously,
because S1 records only contain a 16-bit address, they are inadequate to specify a load address for
a memory space greater than 64K bytes. S2 records, which contain a 24-bit address, were
originally defined for loading object files into the memory space of the M68000 family. It would
seem that S2 records would provide the necessary load address information required for
M68HC12 object files. However, as those who are familiar with the M68000 family know, the
M68000 has a linear (non-paged) address space. Thus, development tools, such as non-volitle
memory device programmers, interpret the 24-bit address as a simple linear address when placing
program data into memory devices.

Because the M68HC12 memory space expansion is based on 16k byte pages, there is not a direct
one-to-one mapping of the 24-bit linear address contained in the S2 record to the 16K byte
program memory expansion space. Instead of defining a new S–Record type or utilizing an
existing S–Record type in a non-standard manner, the D–Bug12 FLOAD, LOAD and VERIFY
commands view M68HC12 memory blocks larger than 64K bytes as a simple linear array of
memory that begins at an address of $00000. This is the same format in which S–Records would
need to be presented to a stand alone non-volitle memory device programmer. For example, from
the view of the FLOAD, LOAD and VERIFY commands, the 128K bytes of on-chip Flash would
have addresses from $00000 through $1FFFF. The mapping between the linear address contained
in the S–Record and the 16K byte page viewable through the window at addresses $8000 through
$BFFF is shown in Figure 1 below.

The generation of S-Records that meet these requirements is the responsibility of the linker and/or
S-Record generation utility provided by the compiler/assembler vendor. Cosmic Software’s linker
and S-Record generation utility is capable of producing properly formatted S-Records that can be
used by D-Bug12. Other vendor’s tools may or may not posses this capability.

D-Bug12 v2.1.x Reference Guide Page 49 Motorola Semiconductor
September 24, 1999

$0000

$FFFF
$FF00

$E000

$C000

$8000

$4000

$2000

8K Boot
Block

7

6

16K Flash
(Paged)

16K Flash
(Unpaged)

0 1 6

00 Flash 32K 01 Flash 32K 10 Flash 32K 11 Flash 32K

8K Boot

$00000 -
$03FFF

$04000 -
$07FFF

$08000 -
$0BFFF

$0C000 -
$0FFFF

$10000 -
$13FFF

$14000 -
$17FFF

$18000 -
$1BFFF

$1C000 -
$1FFFF

2 3

8K Boot

4 5

8K Boot

7

8K Boot

Figure 1, MC68HC912DA/DG128 Flash Memory Paging

D-Bug12 v2.1.x Reference Guide Page 50 Motorola Semiconductor
September 24, 1999

