
D-BUG12 STARTUP CODE

HC12A4EVBUM/D C-1

APPENDIX C

D-BUG12 STARTUP CODE

The D-Bug12 startup code is located in the EPROMs, U7 and U9A, in the address range $FD80
to $FDFF, as shown in Table 3-5.

To customize this startup code, it is necessary to reprogram the EPROMs. For more information,
refer to Appendix E, Customizing the EPROMs.

The following D-Bug12 startup code is distilled from the source listing for clarity. To assemble
the startup code for programming into the EPROMs, the .DEFINEs must be included ahead of
the code listed below. These are available on the Internet at http://www.mot.com/m68hc12.

opt lis ; assembler directive to turn
; listing on

0A00 MonRAMStart equ $0A00
0200 MonRAMSize equ $0200

0800 RAM_START equ $0800

0400 RAMSize equ $0400

0C00 STACKTOP equ RAM_START+RAMSize ; stack at top of int RAM

1000 EE_START equ $1000 ; 4K EEPROM located here out
; of reset(in expanded modes)

FD80 org $fd80

;***
; INITIALIZATION
;
; Initialization code for the M68HC12A4EVB D-Bug12 monitor program
;***

FD80 CODE_START:

; set PortE bit 7 to an output to eliminate possible noise
; problems associated with unterminated input pins.

D-BUG12 STARTUP CODE

HC12A4EVBUM/DC-2

FD80 4C0980 bset DDRE,80h ; set the data direction to
; configure PortE, bit 7 as an
; output.

FD83 4C0880 bset PORTE,80h ; set PortE, bit 7 to logic 1.

FD86 CF0C00 lds #STACKTOP ; initialize D-Bug12 stack
; pointer

FD89 4F6F0103 brclr PORTAD,01h,DEBUG12; if bit 0 of A/D port is 1,
FD8D 061000 jmp EE_START ; then jump to the start of

; internal EEPROM
; otherwise, remain in D-Bug12

FD90 DEBUG12:

; Clear all monitor RAM to start from a known state

FD90 CE0A00 ldx #MonRAMStart
FD93 6930 ClrRAM: clr 1,x+ ; clear one and inc pointer
FD95 8E0C00 cpx #MonRAMStart+MonRAMSize
FD98 26F9 bne ClrRAM ; loop till RAM clear

; Enable pipe signals, E, low strobe and read/write in port E
; PIPOE, NECLK, LSTRE and RDWE are write once in normal modes
; PEAR [ARSIE:CDLTE :PIPOE :NECLK !LSTRE : RDWE : 0 : 0]$0A

FD9A 862C ldaa #$2c ; prevent later protection
; lock

FD9C 5A0A staa PEAR ; PROTLK is write-once

; Without changing modes, enable internal visibility
; MODE [SMODN: MODB : MODA : ESTR ! IVIS : 0 : EMD : EME]$0B

FD9E 4C0B08 bset MODE,$08 ; set IVIS

; Disable the COP watchdog by CR2:CR1:CR0 = 0:0:0
; COPCTL = $07 when reset in normal modes
; FCME and CRx bits are write once in normal modes
; COPCTL[CME : FCME : FCM : FCOP ! DISR : CR2 : CR1 : CR0]$16

FDA1 790016 clr COPCTL ; disable watchdog

; Enable Program chip select 0 and Data chip select
; CSCTL0 = $20 after reset (CSP0 on others off)
; also set data chip select to cover $0000-7FFF (will mirror
; to fill space)
; internal resources have higher priority in case of overlaps
;
; CSCTL0[0 :CSP1E :CSP0E : CSDE ! CS3E : CS2E : CS1E : CS0E]$3C
; CSCTL1[0 :CSP1FL:CSPA21:CSDHF !CS3EP : 0 : 0 : 0]$3D

FDA4 8630 ldaa #$30
FDA6 5A3C staa CSCTL0 ; CSP0E and CSDE on
FDA8 8610 ldaa #$10
FDAA 5A3D staa CSCTL1 ; CSD to cover $0000-7FFF

D-BUG12 STARTUP CODE

HC12A4EVBUM/D C-3

; Set stretch for CSP0 and CSD to 1 extra E-speed cycle per
; access (to accomodate slower external RAM and EPROM)
;
; CSSTR0[0 : 0 :SRP1A :SRP1B !SRP0A :SRP0B :STRDA :STRDB]$3E

FDAC 8605 ldaa #$05
FDAE 5A3E staa CSSTR0 ; CSP0E and CSDE on

; Enable EEPROM so D-Bug12 can program/erase bytes
; EEMCR [1 : 1 : 1 : 1 ! 1 : 1 :PROTLK: EERC]$F0
; BPROT [1 :BPROT6:BPROT5:BPROT4!BPROT3:BPROT2:BPROT1:BPROT0]$F1

FDB0 86FC ldaa #$fc ; prevent later protection
; lock

FDB2 5AF0 staa EEMCR ; PROTLK is write-once
FDB4 7900F1 clr BPROT ; allow EE program and erase

FDB7 CEFE00 ldx #$fe00 ; point to the table of user
; accessible routines.

FDBA 05E30000 jmp [0,x] ; the first entry is a pointer
; to main. GO.........

; The following subroutine produces a delay of approximately
; 20 mS, based on the following conditions:

; 1.) An 8.00 MHz E-clock
; 2.) Subroutine located in external EPROM - selected by CSP0
; 3.) CSP0 programmed for 1 E-clock stretch
;
; This routine is called by D-Bug12’s WriteEEByte() function
; through a pointer stored in the Customization Data Table.

FDBE _EEDelay:
FDBE CE2710 ldx #10000 ; load delay count into x
FDC1 09 DlyLoop: dex ; decrement count
FDC2 26FD bne DlyLoop ; loop till done.
FDC4 3D rts ; return.

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/D D-1

APPENDIX D

D-BUG12 CUSTOMIZATION DATA

The Customization Data area, located in EPROM from $FE80 to $FEFF, allows users to
change default data parameters used by D-Bug12. The data contained in this area is described by
C data structure. The CustomData typedef is shown below. For those unfamiliar with C an
assembly language equivalent is also shown. The purpose of each field is explained in the
following paragraphs.

typedef struct {
 Byte UserCCR; /* User CPU Condition Code Register */
 Byte UserB; /* User CPU B-accumulator */
 Byte UserA; /* User CPU A-accumulator */
 Address UserX; /* User CPU X-index register */
 Address UserY; /* User CPU Y-index register */
 Address UserPC; /* User CPU Program Counter */
 Address UserSP; /* User CPU Stack Pointer */
 unsigned long SysClk; /* System Clock frequency (in Hz) */
 Address IOBase; /* Base address of the I/O registers */
 unsigned int SCIBaudRegVal; /* Initial SCI BAUD register value */
 Address EEBase; /* Base address of on-chip EEPROM */
 unsigned int EESize; /* size of the on-chip EEPROM */
 void (*Delay)(void); /* pointer to EEPROM program/erase */

/* delay routine */
 int AuxCmdCount; /* number of commands in the */

/* auxiliary command table */
 CmdTblEntryP AuxCmdTableP; /* pointer to the auxiliary command */

/* table */
 } CustomData;

org $FE80
;
CustData equ *
UserCCR dc.b $90 ; User CPU Condition Code Register
UserB dc.b $00 ; User CPU B-accumulator
UserA dc.b $00 ; User CPU A-accumulator
UserX dc.w $0000 ; User CPU X-index register
UserY dc.w $0000 ; User CPU Y-index register
UserPC dc.w $0000 ; User CPU Program Counter
UserSP dc.w $0A00 ; User CPU Stack Pointer
SysClk dc.l 8000000 ; System Clock frequency (in Hz)
IOBase dc.w $0000 ; Base address of the I/O registers
SCIBaudRegVal dc.w 52 ; Initial SCI BAUD register value
EEBase dc.w $1000 ; Base address of the on-chip EEPROM
EESize dc.w 4096 ; Size of the on-chip EEPROM
EEDelay dc.w _EEDELAY ; Address of EEPROM program/erase delay

; routine
AuxCmdCount dc.w 0 ; Number of commands in the auxiliary

; command table
AuxCmdTableP dc.w $0000 ; Pointer to the auxiliary command table

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/DD-2

Initial User CPU Register Values

The first seven fields in the CustomData typedef struct are used to provide default
values for the user CPU12 registers. The user CCR value is set to 0x90. This sets the S-bit,
disabling the STOP instruction, and the I-bit, inhibiting IRQ interrupts. The X-bit is cleared to
allow the use of the XIRQ interrupt as a programmer’s abort switch. The user SP value is set to
0x0a00, which is one byte beyond the last on-chip RAM location available to the user. The
CPU12 stack pointer points to the last byte pushed onto the stack. All of the other registers
contain the value zero.

SysClk Field

The SysClk field is used to inform D-Bug12 of the system clock frequency, M. Its value, in
Hz, is set to 8,000,000. The E-clock frequency is the same as the system clock frequency, M.
SysClk is used by the D-Bug12 BAUD command in calculating the new value of the SCI Baud
register for the requested baud rate.

NOTE

It is the responsibility of the startup code to perform any actions
necessary to set the system clock frequency. D-Bug12 DOES NOT
set or change the system clock frequency using the SysClk value.

IOBase Field

The IOBase field defines the base address of the I/O registers. This address is used by D-
Bug12 when accessing the I/O registers associated with the SCI and when programming or
erasing the on-chip EEPROM. On the MC68HC812A4 the I/O registers are mappable to any 2k
memory space. Therefore, the IOBase entry should only be a multiple of 2048. The value of
IOBase is set to 0x0000 which is the default address of the I/O registers for the
MC68HC812A4.

NOTE

It is the responsibility of the startup code to set the base address of
the I/O registers. D-Bug12 DOES NOT set or change the I/O
register base address.

SCIBaudRegVal Field

The SCIBaudRegVal field is used to set the initial baud rate of the SCI used for console I/O by
D-Bug12. Note that the value in SCIBaudRegVal is written directly to the Baud register of the
console SCI. The value is NOT the desired baud rate. The calculation of this value is NOT
made by D-Bug12 because of the possibility of an invalid Baud register value. Without a valid
Baud register value during SCI initialization, D-Bug12 would have no way to inform the user
that a problem existed. Not all combinations of baud rates and system clock frequencies produce
a valid Baud register value. The formula used to calculate the Baud register value is:

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/D D-3

BaudRegVal = MCLK ÷ (16 * SCIBaudRate)

The initial Baud register value is 52 (0x0034). At a system clock frequency of 8.0 MHz, this sets
the communications rate of 9600 baud.

NOTE

Because of the ability to choose either SCI0 or SCI1 for use as the
control console, D-Bug12 takes care of initializing the SCI
registers. The chosen SCI is set to 8-data bits, 1-start bit, 1-stop
bit, and no parity.

EEBase and EESize Fields

The EEBase and EESize fields are used to describe the base address and range of the
M68HC12’s on-chip EEPROM. This information is used by D-Bug12’s WriteMem() function
to determine when a byte is being written to the on-chip EEPROM. D-Bug12 then calls its
WriteEEByte() function to place the data in the on-chip EEPROM. On the MC68HC812A4 the
EEPROM base address is mappable to any 4k memory space. Therefore, the EEBase entry
should only be a multiple of 0x1000. The value of EEBase is set to 0x1000 which is the default
base address of the on-chip EEPROM for the MC68HC812A4. The value of EESize is also set
to 0x1000 (4096) which is the size of the on-chip EEPROM. Setting the value of EESize to
zero disables the WriteMem() function’s ability to write to on chip EEPROM.

NOTE

It is the responsibility of the startup code to set the base address of
the EEPROM. D-Bug12 DOES NOT set or change the EEPROM
base address.

EEPROM Erase/Program Delay Function Pointer Field

The (void)(* Delay)(void) field is a function pointer that points to an EEPROM
program/erase delay routine. For the MC68HC812A4, the routine should produce a delay of 20
mS before it returns. The delay routine is nothing more than a software delay loop. The
subroutine is located in the startup code area of the D-Bug12 EPROM from $FD80 - $FDFF.
See Appendix C, D-Bug12 Startup Code.

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/DD-4

Auxiliary Command Table Entries

The last two entries in this table provide a mechanism to extend the command set of D-Bug12.
The AuxCmdTableP points to an auxiliary command table, and AuxCmdCount contains the
number of entries in the auxiliary command table. The table consists of an array of
CmdTblEntry’s. Each CmdTblEntry in the auxiliary command table has the following
structure:
typedef struct {

const char *CommandStr; /* pointer to the command */
/*string */

int (*ExecuteCmd)(int argC, char *argV[]);/* pointer to function that*/
/* implements the command */

 } CmdTblEntry, * CmdTblEntryP;

As the typedef shows, the first field is a character pointer pointing to a null terminated
character array containing the command name. The command name string must be in upper
case. The second field, a function pointer, points to a function that implements the new D-Bug12
command. The first parameter to this function is a count of the number of command line
arguments that the command line interpreter found on the command line. This count includes the
command name itself. The command line may contain no more than a total of 10 parameters.
The second function parameter is a pointer to an array of char *. Each char * points to one
of the command line parameters parsed by the command line interpreter.

The function implementing the new command can report any error conditions to the user in one
of two ways. If the error condition can be described by one of the error messages in the
enumerated constant list below, the user defined command should return the appropriate
constant. If some other message text needs to be conveyed to the user, the command should
communicate the error message directly to the user by using the printf() function which is
one of the available user callable functions. In this case, the user defined command should return
an error code of noErr.

enum Error {
 WrongNumArgs = 6, /* Wrong Number of Arguments */
 BadStartAddress = 7, /* Invalid Starting Address */
 BadEndAddress = 8, /* Invalid Ending Address */
 StartEndError = 9, /* Start Address Greater Than End Address */
 BadHexData = 10, /* Invalid Hex Data */
 DataSizeError = 11, /* Data Out Of Range */
 NoTargetWrite = 12, /* Can’t Write Target Memory */

 };

CUSTOMIZING THE EPROMS

HC12A4EVBUM/D E-1

APPENDIX E

CUSTOMIZING THE EPROMS

The following blocks in the factory-supplied EPROMs can be reprogrammed with user code or
D-Bug12 code that has been modified for custom operation:

$8000 - $9FFF — available for user programs

$FD80 - $FDFF — D-Bug12 startup code. See Appendix C.

$FE80 - $FEFF — D-Bug12 customization data. See Appendix D.

$FF00 - $FFBF — available for user programs

Since the EPROMs also contain D-Bug12 and other EVB operating firmware, the factory
programming must be retained and burned into the custom chips along with the custom code.
The table below maps the EVB’s logical addresses (from Table 3-5) to the pin-level physical
addresses of U7 and U9A.

Note that the lower half of each EPROM — from $0000 to $3FFF — is unused and is filled with
ones. This is necessary because of the chip select, CSP0*, used by the MCU for EPROM access.
For more information on this subject, refer to 4.6.2 Chip Selects.

NOTE

Do not reprogram the factory-supplied EPROMs. Keep them as
masters, using expendable chips for new programming.

CUSTOMIZING THE EPROMS

HC12A4EVBUM/DE-2

Physical EPROM Addresses

MCU
Logical Address

Data U9A
Physical Address

U7
Physical Address

— $FF $0000 - $3FFF $0000 - $3FFF

$8000 - $9FFE
even addresses

custom $4000 - $4FFF —

$8001 - $9FFF
odd addresses

custom — $4000 - $4FFF

$A000 - $FD7E
even addresses

factory $5000 - $7EBF —

$A001 - $FD7F
odd addresses

factory — $5000 - $7EBF

$FD80 - $FDFE
even addresses

factory or
modified

$7EC0 - $7EFF —

$FD81 - $FDFF
odd addresses

factory or
modified

— $7EC0 - $7EFF

$FE00 - $FE7E
even addresses

factory $7F00 - $7F3F —

$FE01 - $FE7F
odd addresses

factory — $7F00 - $7F3F

$FE80 - $FEFE
even addresses

factory or
modified

$7F40 - $7F7F —

$FE81 - $FEFF
odd addresses

factory or
modified

— $7F40 - $7F7F

$FF00 - $FFBE
even addresses

custom $7F80 - $7FBF —

$FF01 - FFBF
odd addresses

custom — $7F80 - $7FBF

$FFC0 - $FFFE
even addresses

factory $7FC0 - $7FFF —

$FFC1 - $FFFF
odd addresses

factory — $7FC0 - $7FFF

SDI CONFIGURATION

HC12A4EVBUM/D F-1

APPENDIX F

SDI CONFIGURATION

To configure the EVB for use with Motorola’s Serial Debug Interface (SDI), follow these steps:

1. Remove the jumper on header W11 from CSD*.

2. Move the CSP0* jumper on W11 to pins 2-3.

 Steps 1 and 2 disable the external EPROM and map the CSP0* chip select to external
RAM.

3. Remove the jumper from W30.

 Step 3 allows the SDI to drive the MCU’s BKGD pin low at reset.

4. Move the jumper on W34 to pins 1-2.

5. Move the jumper on W42 to pins 1-2.

 Steps 4 and 5 place the MCU in Special Single Chip mode.

6. Move the base address of the MCU’s on-chip EEPROM from $F000 (the default in
Special Single Chip mode) to $1000. To do this, change the data at address $0012 to
a value of $11 using the appropriate debugging tool. For MCUdebug, the correct
command is:

 MM 12 11

 Step 6 must be repeated each time the EVB is reset in this mode, as the EEPROM’s
base address defaults to $F000 at reset.

Table 4-1 provides full descriptions of these jumper changes. See Figure 4-2 for details of
header W11. See Figure 1-1 for header locations on the EVB.

Note that CSP0* covers the address range from $8000 to $FFFF. The 16 Kbytes of RAM appear
in the new memory map from $C000 to $FFFF. This SDI memory map is shown in the table
below.

SDI CONFIGURATION

HC12A4EVBUM/DF-2

This configuration provides the following enhancements when using the SDI:

• The MCU’s on-chip RAM, from $0800 to $0BFF, is entirely available for user data.

• Data can be loaded into the vector area, which was reserved under the D-Bug12
operating configuration.

For information on using the SDI, refer to the Motorola Serial Debug Interface User’s Manual.

SDI Memory Map

Address Range Description Location

$0000 - $01FF CPU registers on-chip (MCU)

$0800 - $0BFF user data area 1K on-chip RAM (MCU)

$1000 - $1FFF user code area 4K on-chip EEPROM (MCU)

$C000 - $FFFF user code/data area 16K external RAM (U4, U6A)

INDEX

HC12A4EVBUM/D 1

INDEX

—A—
A/D converter

description, 4-14
isolatable power circuits, 4-6, 4-14

—B—
background debug mode (BDM)

as user interface, 1-6, 1-7, 2-4
interface connector, J5, 4-15
MCU mode, 3-26, 4-8

block diagram
EVB system, 1-4

bulletin boards, 1-9, C-1

—C—
chip select. See memory, chip selects
clock

circuitry, 4-13
E-clock, 1-5, 2-6, 4-11, C-3
external input, 4-14
oscillator chip and socket, 4-13
speed, 1-7, 4-13
time base, 4-14

code
firmware modification, C-1
generation, 1-6, 3-32

commands, D-Bug12
<REGISTER NAME> — Modify Register Value, 3-30
ASM — Assembler/Disassembler, 3-6
BAUD — Set Baud Rate, 3-9
BF — Block Fill, 3-10
BR — Breakpoint Set, 3-11
BULK — Bulk Erase on-chip EEPROM, 3-12
CALL — Call Subroutine, 3-13
GO — Go Execute a User Program, 3-14
Go Till, 3-15
HELP — Onscreen Help Summary, 3-16
LOAD — Load S-Record File, 3-17
MD — Memory Display, 3-18
MDW — Memory Display, Word, 3-19
MM — Memory Modify, 3-20
MMW — Memory Modify, Word, 3-21
MOVE — Move Memory Block, 3-22
NOBR — Remove Breakpoints, 3-23
RD — Register Display, 3-24
RM — Register Modify, 3-25
T — Trace, 3-26
UPLOAD — Display Memory, S-Record Format, 3-28
VERF — Verify S-Record File against Memory, 3-29

communications, EVB-host

baud rate, 2-5, 3-9
limitations, 3-35
parameters, 2-4, 2-5
SCI ports, 2-3, 4-6
software, 1-7, 2-5, B-1

configuration
D-Bug12, C-1
EVB, 2-2
jumpers, 4-1
SDI, F-1

connectors
J1, J2 — SCI1 RS-232C port, 2-3, 4-6
J3, J4 — SCI0 RS-232C port, 2-3, 4-6
J5 — BDM interface, 4-15
J6 — power input, 2-2, 4-6
J7 — external clock, 4-14
J8, J9 — MCU access, 1-6, 4-15, 4-17
locations, 1-3
types, 4-1

CPU
instruction translation, 3-6, 3-7
registers. See registers
type. See MCU

crystal. See clock
customer support, 1-9

—D—
D-Bug12

aborting a user program, 3-2
command set, 3-4, 3-5
command-line format, 3-3
commands. See commands, D-Bug12
configuration requirements, 1-5, 1-6, 2-2, 2-4, 4-1
customization data, D-1
description, 1-5, 1-6
generating user code, 1-6, 3-32
limitations imposed by, 1-7, 3-34
memory usage, 3-33, 3-34, E-1
resetting, 3-2
stack pointer, 3-33
starting, 3-1
startup code, C-1
startup modes, 1-6, 2-2, 3-1, 3-32
terminal interface, 1-5, 4-6

DS1. See power, indicator

—E—
E-clock, 1-5, 2-6, 4-11, C-3
EEPROM. See also memory

starting execution from, 3-32
EPROM. See memory
evaluation board. See EVB

INDEX

HC12A4EVBUM/D2

EVB
block diagram, 1-4
component placement, 1-3
configuring, 2-2, 4-1
description, general, 1-1
description, hardware, 4-1
features, 1-1
firmware. See D-Bug12
functional overview, 1-5
operating instructions, 3-1
packing list, 2-1
restrictions on use, 3-34
specifications, 1-8
unpacking, 2-1

—F—
file transfers, 3-17, 3-29, 3-32, B-1
firmware. See D-Bug12

—H—
headers

connector, 4-1. See also connectors
cut-trace, 4-1
description, 4-1
jumper, 4-1. See also jumper settings

—J—
J1, J2 — SCI1 RS-232C port, 2-3, 4-6
J3, J4 — SCI0 RS-232C port, 2-3, 4-6
J5 — BDM interface, 4-15
J6 — power input, 2-2, 4-6
J7 — external clock, 4-14
J8, J9 — MCU access, 1-6, 4-15, 4-17
jumper settings, 1-2, 1-5, 4-1, 4-3

—L—
LED. See power, indicator
low voltage inhibit (LVI), 4-14

—M—
M68HC12A4EVB Evaluation Board. See EVB
MC68HC812A4 Microcontroller Unit. See MCU
MCU

access interface, 1-6, 4-15, 4-17
description, 4-7
isolatable power circuits, 4-6
location, 1-3
modes, 4-7, 4-8, 4-9, 4-10
restrictions on use, 1-6, 3-33, 3-34
socket, 2-1
type, 1-8, 4-7

memory
and MCU modes, 4-7
chip selects, 1-5, 2-6, 4-11, F-1

configurations, 3-33, 4-9, 4-10
customizing the EPROMs, E-1
EEPROM, external, 4-9
EEPROM, on-chip, 1-6, 2-2, 3-12, 3-32, 4-14
EPROM, 1-5, 4-9, E-1
external, 4-9
glue logic, 4-12
limitations, 3-33, 3-34
loading from host computer, 3-32
locations, 1-3, 1-4
map, EPROM, E-2
map, factory default, 3-33, 3-34
map, SDI configuration, F-2
on-chip, 4-7, F-2
programming, 1-6
RAM, 1-4, 2-6, 4-9
ROM, 4-9
sockets, 4-9, 4-10
speed enhancement, 1-4, 2-6
SRAM, 1-4, 2-6, 4-9
usage, 3-33, 4-9
wait states, 1-4, 2-6, 4-11

microcontroller unit. See MCU
monitor program. See D-Bug12
multiple serial interface (MSI), 4-22

—O—
oscillator. See clock

—P—
packing list, 2-1
phase-locked loop (PLL)

description, 4-14
isolatable power circuit, 4-6

power
distribution, 4-6, 4-15, 4-16, 4-17
indicator,description, 4-6
indicator,location, 1-3
input circuit and protection, 4-6
input connector, J6, 2-2
isolatable circuits, 4-6
low-voltage inhibit, 4-14
supply, connecting to, 2-2
supply, requirements, 1-6, 1-8

printed circuit board
description, 4-1

program abort, 1-6, 3-2, 3-14, 3-32, 3-35
prototype area, 1-6, 4-15

—R—
RAM. See memory
registers, 2-6, 3-2, 3-11, 3-13, 3-14, 3-15, 3-24, 3-25, 3-26,

3-30, 3-34, 3-35, 4-7, D-1, F-2
reset, 1-6, 2-2, 2-5, 3-1, 3-2, 4-7, 4-14
ROM. See memory

INDEX

HC12A4EVBUM/D 3

—S—
S1, S2. See switches
SCI ports

baud rate, 3-9
configuration, 2-3, 4-6
limitations, 3-35
usage, 1-5, 1-7, 2-3, 2-4

SCI0. See SCI ports
SCI1. See SCI ports
serial communications interface. See SCI ports
Serial Debug Interface (SDI), 1-6, 1-7, 2-4, 4-15, F-1
sockets

clock oscillator, 4-13
locations, 1-3
MCU, 2-1
memory, 4-9, 4-10

specifications
EVB, 1-8

speed enhancement, 1-4, 2-6
SRAM. See memory
S-Records, 3-17, 3-29, 3-32, A-1
switches, 1-6

locations, 1-3
S1 — reset, 3-2
S2 — program abort, 3-2

—T—
terminal

baud rate, 2-5, 3-9
cabling, 2-3, 2-4
communications parameters, 2-4, 2-5
communications software, 1-7, 2-5, B-1
connectors, 2-3, 4-6
interface circuitry, 4-6
limitations, 3-35
requirements, 1-7
SCI ports, 1-5, 2-3, 4-6
setup, 2-3, 2-5, 4-6

test points, 1-2, 4-15
time base, 4-14

—U—
upacking instructions, 2-1

—V—
vector memory area, 3-34, F-2

—W—
wait states, 1-4, 2-6, 4-11

	COVER
	CONTENTS
	CHAPTER 1 GENERAL INFORMATION
	CHAPTER 2 CONFIGURATION AND SETUP
	CHAPTER 3 OPERATION
	CHAPTER 4 HARDWARE REFERENCE
	APPENDIX A S-RECORD FORMAT
	APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES
	APPENDIX C D-BUG12 STARTUP CODE
	APPENDIX D D-BUG12 CUSTOMIZATION DATA
	APPENDIX E CUSTOMIZING THE EPROMS
	APPENDIX F SDI CONFIGURATION
	INDEX
	FIGURES
	TABLES

	FIGURES
	Figure 1-1. EVB Layout and Component Placement
	Figure 1-2. System Block Diagram
	Figure 2-1. EVB Power Connector J6
	Figure 4-1. Memory Sockets Configuration
	Figure 4-2. Chip Select Header
	Figure 4-3. RAM/ROM Logic Diagram
	Figure 4-4. Prototype Area (Component-Side View)
	Figure 4-5. MCU Connector J8 (Component-Side View)
	Figure 4-6. MCU Connector J9 (Component-Side View)

	TABLES
	Table 1-1. EVB Specifications
	Table 2-1. RS-232C Interface Cabling
	Table 2-2. Communication Parameters
	Table 3-1. D-Bug12 Command-Set Summary
	Table 3-2. M68HC11 to CPU12 Instruction Translation
	Table 3-3. CPU12 Registers
	Table 3-4. Condition Code Register Bits
	Table 3-5. Factory-Configuration Memory Map
	Table 4-1. Jumper-Selectable Functions
	Table 4-2. CPU Mode Selection
	Table 4-3. EVB Memories Supplied
	Table 4-4. BDM Connector J5 Pin Assignments
	Table 4-5. MCU Connector J8 Pin Assignments
	Table 4-6. MCU Connector J9 Pin Assignments

	CHAPTER 1 GENERAL INFORMATION
	1.1 INTRODUCTION
	1.2 GENERAL DESCRIPTION AND FEATURES
	1.3 PERFORMANCE NOTES
	1.4 FUNCTIONAL OVERVIEW
	1.5 EXTERNAL EQUPMENT REQUIREMENTS
	1.6 EVB SPECIFICATIONS
	1.7 CUSTOMER SUPPORT

	CHAPTER 2 CONFIGURATION AND SETUP
	2.1 UNPACKING AND PREPARATION
	2.2 EVB CONFIGURATION
	2.3 EVB TO POWER SUPPLY CONNECTION
	2.4 EVB TO TERMINAL CONNECTION
	2.5 TERMINAL COMMUNICATIONS SETUP
	2.5.1 Communication Parameters
	2.5.2 Dumb-Terminal Setup
	2.5.3 Host-Computer Setup
	2.5.4 Changing the Baud Rate

	2.6 USING FAST EXTERNAL RAM
	2.6.1 Selecting and Replacing the RAM Chips
	2.6.2 Reprogramming the RAM Chip Select

	CHAPTER 3 OPERATION
	3.1 STARTUP
	3.2 RESET
	3.3 PROGRAM ABORT
	3.4 USING D-BUG12 COMMANDS
	3.5 D-BUG12 COMMAND SET
	Assembler/Disassembler (ASM)
	Set Baud Rate (BAUD)
	Block Fill (BF)
	Breakpoint Set (BR)
	Bulk Erase On-Chip EEPROM (BULK)
	Call Subroutine (CALL)
	Go Execute a User Program (GO)
	Go Till (GT)
	Onscreen Help Summary (HELP)
	Load S-Record File (LOAD)
	Memory Display (MD)
	Memory Display, Word (MDW)
	Memory Modify (MM)
	Memory Modify, Word (MMW)
	Move Memory Block (MOVE)
	Remove Breakpoints (NOBR)
	Register Display (RD)
	Register Modify (RM)
	Trace (T)
	Display Memory in S-Record Format (UPLOAD)
	Verify S-Record File against Memory (VERF)
	Modify Register Value (<Register Name>)

	3.6 ALTERNATE EXECUTION FROM EEPROM
	3.7 OFF-BOARD CODE GENERATION
	3.8 MEMORY USAGE
	3.8.1 Description
	3.8.2 Memory Map

	3.9 OPERATIONAL LIMITATIONS
	3.9.1 On-Chip RAM
	3.9.2 SCI Port Usage
	3.9.3 Dedicated MCU Pins
	3.9.4 Terminal Communications

	CHAPTER 4 HARDWARE REFERENCE
	4.1 PCB DESCRIPTION
	4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS
	4.3 POWER INPUT CIRCUITRY
	4.4 TERMINAL INTERFACE
	4.5 MICROCONTROLLER
	4.6 MEMORY
	4.6.1 Memory Types and Sockets
	4.6.2 Chip Selects
	4.6.3 Glue Logic

	4.7 CLOCK CIRCUITRY
	4.8 PHASE-LOCKED LOOP (PLL)
	4.9 RESET
	4.10 LOW-VOLTAGE INHIBIT
	4.11 ANALOG-TO-DIGITAL (A/D) CONVERTER
	4.12 BACKGROUND DEBUG MODE (BDM) INTERFACE
	4.13 PROTOTYPE AREA
	4.14 MCU CONNECTORS

	APPENDIX A S-RECORD FORMAT
	DESCRIPTION
	S-RECORD CONTENT
	S-RECORD TYPES
	S-RECORD EXAMPLE

	APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES
	INTRODUCTION
	PROCOMM FOR DOS — IBM PC
	Setup
	S-Record Transfers to EVB Memory

	KERMIT FOR DOS — IBM PC
	Setup
	S-Record Transfers to EVB Memory

	KERMIT — SUN WORKSTATION
	Setup
	S-Record Transfers to EVB Memory

	MACTERMINAL — APPLE MACINTOSH
	Setup
	S-Record Transfers to EVB Memory

	RED RYDER — APPLE MACINTOSH
	Setup
	S-Record Transfers to EVB Memory

	APPENDIX C D-BUG12 STARTUP CODE
	APPENDIX D D-BUG12 CUSTOMIZATION DATA
	Initial User CPU Register Values
	SysClk Field
	IOBase Field
	SCIBaudRegVal Field
	EEBase and EESize Fields
	EEPROM Erase/Program Delay Function Pointer Field
	Auxiliary Command Table Entries

	APPENDIX E CUSTOMIZING THE EPROMS
	Physical EPROM Addresses

	APPENDIX F SDI CONFIGURATION
	SDI Memory Map

	INDEX

