
University of Florida EEL 4744C Christopher Crary
Electrical & Computer Engineering Dept. Switch Debouncing Through Software Dr. Eric Schwartz
Page 1/4 Revision 0

INTRODUCTION
The physical terminals of a switch often bounce when opened or
closed. Because of this, the voltage waveform of any electrical
connection made to a bouncing switch often contains some high
frequency components. Under these conditions, such a high
frequency component is also generally referred to as a bounce.
Additionally, during a period of time in which there exist
bounces within a voltage waveform, the waveform is
(unsurprisingly) said to be bouncing. An example of some
bouncing in a voltage waveform is shown in Figure 1, where the
diagram is meant to be representing the voltage waveform of a
digital switch circuit created with a pull-down resistor.

When software is written to depend on the digital value of a
switch, switch bouncing can cause unintended and indeterminate
results. For example, if the switch depicted in Figure 1 was
utilized to increment some register value whenever the switch
was determined to be closed, the bouncing shown implies that
the relevant register value, meant to only be incremented once,
could be incremented anywhere from one to nine times! Thus, it
is often desirable to remove or ignore any bounces within a
voltage waveform caused by a bouncing switch. In general, it is
said that to do so is to debounce the switch, or, to perform switch
debouncing.

Both hardware-based and software-based solutions exist for
switch debouncing. Although designing hardware circuitry to
debounce a switch is relatively simple and cheap, it can be costly
in certain circumstances. In comparison, debouncing a switch
through the use of software is almost always free and sufficient.

NOTE: In this document, the term software is meant to
represent any form of program code, including machine and
assembly code. Thus, it follows that there is also an implicit
assumption that some computer architecture capable of
supporting software is available to implement any relevant
switch debouncing software designs.

To effectively debounce a switch through software, it is
essentially only necessary to perform the following:

1. Outside of software, i.e., in the physical world, determine
through measurements an estimate of the upper-bound for
the duration of switch bouncing. The physical stress that the
switch is put under, through varying forces applied to the
switch, as well as the two separate cases of the switch being
opened or closed, should all be considered when making an
estimate.

2. Within software, whenever it is determined that some
relevant switch is in its active state, instead of immediately
performing the operation(s) meant to occur upon the switch
being in this state, create some time delay, otherwise known
as a debounce delay, greater than the estimated upper-bound
for the duration of switch bouncing. With the assumption
that the debounce delay is greater than this upper-bound, it
can be assumed that all switch bouncing has ceased
following such a delay. At such a time after an appropriate
delay has completely elapsed, determine the state of the
switch; if the switch is still in its active state, then it should
be able to be safely assumed that the relevant operation(s)
will be performed only once for some switch press (i.e., the
intended operation[s] will not be performed due to the
switch bouncing).

It should be straightforward for one to convince themselves of
the above rationale: to debounce some switch, determine an
estimate of the maximum amount of time that the switch could
bounce, and only perform some operation(s) upon on the
detection of the switch being in its active state if, after a delay
greater than that of the relevant estimate, the switch is still in its
active state.

NOTE: An estimate of the upper-bound for the duration of
bouncing will likely be heuristic; only many measurements or
careful analysis would allow for a very high probability that the
switch will always cease to bounce after such an estimated
amount of time. However, from empirical evidence involving
common switch components, between five and twenty
milliseconds is often a sufficient upper-bound estimate. (This
range of time should almost assuredly be sufficient when
debouncing any switches utilized for this course.)

While the general procedure for debouncing a switch through
software has been made clear, an exact implementation has not
been described. For the remainder of this document, three
generalized implementation strategies that should be viable for
most modern computer architectures are presented. Each
strategy has benefits and drawbacks. The first technique,
debouncing with a software delay, could be appropriate for
simple applications, though should generally be avoided due to
a strong restriction on program flow. The second, using a
timer/counter (TC) system along with a relevant timer/counter
hardware flag (where a hardware flag is defined here to be a
signal that represents the occurrence of some predefined event),
could also be appropriate for simple applications, though, like
the first strategy, should generally be avoided due to a clear
restriction on program flow. The third and final strategy
described in this document, using a timer/counter along with a
timer/counter interrupt, is by far the most desirable, since it has
little to no restriction on program flow; however, this strategy is
also generally the most complex to implement.

Figure 1: Digital switch bouncing diagram (thanks to
Epec's Blog)

University of Florida EEL 4744C Christopher Crary
Electrical & Computer Engineering Dept. Switch Debouncing Through Software Dr. Eric Schwartz
Page 2/4 Revision 0

USING A SOFTWARE DELAY

The first strategy described here involves tasking the computer
processor with a calculated number of (meaningless)
instructions, otherwise known as a software delay, to keep the
processor “busy” for a duration of time at least equivalent to that
of the expected switch bouncing.

For example, suppose that it is desired that some switch be
debounced through software. Further, suppose that all bouncing
for the relevant switch should cease following a one-millisecond
debounce delay. Then, to debounce the switch, one could simply
create a software delay of one millisecond. After such a delay,
the program would then check the appropriate pin level and
perform any necessary function(s).

Overall, although software delays have the potential to be very
precise, they prevent a microprocessor from executing other
instructions, and ultimately cause CPU time to be wasted.
Software delays are also extremely non-modular, as they cannot
easily be used at other processor clock speeds, and if designed
in an assembly language, cannot be directly ported to most other
processors.

NOTE: Although the above is sometimes plausible when
continually polling (i.e., continually reading) a switch outside of
an interrupt service routine, software delays (or really any delay
for that matter) should almost never be implemented within an
interrupt service routine (ISR). Designing a program to
explicitly delay within an ISR is typically a ghastly practice
because this prevents a microprocessor from being able to
service other interrupts during the delay, assuming that ISRs
have not been allowed to nest/preempt each other, which is also
normally discouraged. In general, interrupt service routines
should be as short as possible.

For the following two debouncing strategies, it is assumed that
hardware timer/counters would be utilized to create an
appropriate debounce delay. In the first of these strategies, it is
assumed that a hardware flag is used to identify when an
overflow, compare match, or something else applicable occurs.
(Note that, in this document, only overflow or compare match
flags are explicitly considered.) Moreover, each of the below
techniques are described in the context of an application that
intends to respond asynchronously to a switch; in other words, it
will be assumed that the following strategies begin (but do not
carry out) the appropriate debounce delay within an interrupt
handler for an I/O interrupt, upon the to-be-debounced switch
changing to an appropriate state. Similar techniques could be
implemented for applications that poll (i.e., respond
synchronously to) a switch.

NOTE: If debouncing a tactile switch, it is probable that an
unintended I/O interrupt will still occur upon a release of the
switch. This is the only unintended interrupt that should occur.
In any event, recall that the debouncing technique should always
prevent such an erroneous interrupt from performing unintended
functionality by validating the digital value of the relevant pin
after the appropriate debounce delay completely elapses.

University of Florida EEL 4744C Christopher Crary
Electrical & Computer Engineering Dept. Switch Debouncing Through Software Dr. Eric Schwartz
Page 3/4 Revision 0

USING A HARDWARE FLAG
The first of these next two strategies enables a timer/counter
within an I/O interrupt (for the purpose of creating a debounce
delay) and polls an appropriate hardware flag within a main
routine of the program, to determine when the relevant
timer/counter has overflowed or when a compare match has
occurred. A description of this strategy is provided below, and
an example flowchart of the strategy is given in Figure 2. (Note
that the exact implementation of the code could vary from
application to application.)

First, the relevant program should configure, but not enable, an
[1] I/O interrupt for an appropriate pin and [2] a timer/counter
system. After these initial configurations, interrupts should be
configured globally. (Global interrupt configurations could also
come further on, but it is likely most reasonable to do them at
this point.)

Next, whenever it is desired to use the relevant switch within a
main routine, the I/O interrupt should be enabled and a polling
loop should commence for the appropriate timer/counter
hardware flag. (The timer/counter should not have yet been
enabled to count, so the relevant timer/counter flag should not
yet be able to be asserted.) Upon the to-be-debounced switch
changing to an appropriate state, the relevant I/O interrupt
should then trigger. Within the respective interrupt service
routine, the I/O interrupt should be disabled (to prevent
unnecessary interrupts) and the chosen timer/counter module
should be enabled to count. Following this, the interrupt handler
should be terminated.

When the relevant timer/counter module has counted for the
designated length of time (i.e., when the relevant debounce delay
has elapsed), the pertinent hardware flag should be automatically
asserted, and the polling loop should terminate. Thereafter, in
the same routine as the polling loop, it should be ensured by the
programmer that [1] the timer/counter is disabled, [2] the
timer/counter count value and timer/counter interrupt flag are
reset to their default states, [3] the pin level of the switch is
conditionally checked as described previously in this document,
with any relevant operation(s) being performed based on the pin
level, and [4] the I/O interrupt flag is reset to its default state.
Note that the relevant I/O interrupt flag must be reset only after
the debounce delay has completely elapsed, since this is the
only point in which one should be able to safely assume that the
switch has stopped bouncing. Finally, whenever additional
switch input is needed, the I/O interrupt should be re-enabled.

Overall, although this strategy can be useful because it does not
require that a software delay be utilized, it is still very
non-modular; this is because the hardware flag must continually
be checked within the main program, wherever it is expected that
the to-be-debounced switch will be used. In some situations, this
is adequate; however, this strategy is not allowed for our course.

NOTE: There are other situations, e.g., not just when
debouncing a switch, that a hardware flag should be polled. In
these same contexts, a user-defined bit within a register or
memory, often otherwise known as a software flag, might also
be sufficient.

Figure 2: Example flowchart for the second strategy, i.e., the
strategy of switch debouncing using a hardware flag

University of Florida EEL 4744C Christopher Crary
Electrical & Computer Engineering Dept. Switch Debouncing Through Software Dr. Eric Schwartz
Page 4/4 Revision 0

USING A TC INTERRUPT
The final strategy described here involves, in addition to a
timer/counter and I/O interrupt, configuring a timer/counter
interrupt handler to handle all operations meant to ultimately
occur upon a to-be-debounced switch pin changing to a desired
state. A description of this strategy is provided below, and an
example flowchart for the strategy is given in Figure 3. (Note
that the exact implementation of the code could vary from
application to application.)

First, the relevant program should configure, but not enable,
[1] an I/O interrupt for an appropriate pin and [2] a timer/counter
system, including a relevant interrupt for an overflow or
compare match condition. After these initial configurations,
interrupts should be configured globally. (Global interrupt
configurations could also come further on, but it is likely most
reasonable to do them at this point.)

Next, whenever it is desired to use the relevant switch within the
main program, the I/O interrupt should be enabled, but unlike the
previous strategy described, no polling loop for the
timer/counter should be implemented – the code can proceed in
pretty much any other manner. Upon the to-be-debounced
switch changing to an appropriate state, the relevant I/O interrupt
should then trigger. Within the respective interrupt service
routine, the I/O interrupt should be disabled (to prevent
unnecessary interrupts) and the chosen timer/counter module,
along with its interrupt, should be enabled. Following this, the
I/O interrupt handler should be terminated, and the processor
should return to the relevant previous routine to handle anything
else pertinent, while the initiated debounce delay continues
silently in the background.

When the timer/counter has counted for the specified length of
time (i.e., when the relevant debounce delay has elapsed), the
overflow (or compare match) interrupt should trigger. Within the
respective interrupt, the programmer should ensure that [1] the
timer/counter and its relevant interrupt are disabled, [2] the
timer/counter count value and timer/counter interrupt flag are
reset to their default states, [3] the appropriate switch pin level
is conditionally checked as described previously in this
document, with any relevant operation(s) being performed based
on the pin level, and [4] the I/O interrupt flag is reset to its default
state. Note that the relevant I/O interrupt flag must be reset only
after the debounce delay has completely elapsed, since this is
the only point in which one should be able to safely assume that
the switch has stopped bouncing. Finally, whenever additional
switch input is needed, the I/O interrupt should be re-enabled.

Overall, the most noteworthy aspect of this debounce strategy
is that, unlike the previous debounce strategies presented, this
strategy is modular, since no other thread of execution within
the program is affected by the switch. The only notable
downside of this approach is that it is the most complex to
implement of those mentioned. However, for our course, this
debouncing technique is required whenever asynchronous
responses to a switch are desired.

Figure 3: Example flowchart for the third strategy, i.e., the

strategy of switch debouncing using a timer/counter interrupt

	INTRODUCTION
	USING A SOFTWARE DELAY
	USING A HARDWARE FLAG
	USING A TC INTERRUPT

