
University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 1: Introduction to AVR and Assembly Christopher Crary, Instructor Emeritus
Page 1/4 Revision 0 Wesley Piard, Instructor Emeritus

OBJECTIVES
• Become introduced to AVR assembly programming and the ATxmega128A1U microcontroller.
• Further understand how to utilize Microchip/Atmel Studio for creating, simulating, and emulating a program.
• Design an assembly program to filter and store data based on certain criteria.

INTRODUCTION
The foundation of every computer architecture is a specific set of operations. In general, each operation within a computer architecture
can be referenced by a unique numeric value known as an operation code (opcode)1, and the set of all operation codes for an architecture
defines a low-level programming language often referred to as machine code. Additionally, an operation code is also generally given a
symbolic name, classifying it as an instruction. The collection of all instructions for a given architecture then defines the most abstract
level of the architecture, often referred to as the Instruction Set Architecture (ISA), or more frequently, the assembly language.

With an assembly language, a computer program2 can be written much more quickly than with a machine code. However, for a given
computer architecture to be able execute a program written in an assembly language, the program must first be converted into an
appropriate machine code format with a pre-built software program often referred to as an assembler3, and then stored into some
appropriate computer memory.

LAB STRUCTURE
In this lab, you will start to gain familiarity with the ATxmega128A1U microcontroller (generally referred to in this course as the XMEGA)
as well further understand how to leverage Microchip/Atmel Studio (referred to in the rest of this document as Atmel Studio). First, you
will learn various fundamental information regarding the ATxmega128A1U, the AVR assembler, and Atmel Studio. Then, you will begin
to utilize the AVR ISA to design your first AVR assembly language program. After creating this program, your microcontroller will be
able to filter and store data based on several given conditions.

RA

REQUIRED MATERIALS
• Atmel XMEGA AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• AVR Instruction Set (doc0856)
• AVR Assembler User Guide (includes assembler directives)
• Getting Started with Atmel Studio 7 (User Guide)
• OOTB µPAD v2.0 with USB A/B cable
• Digilent Analog Discovery (DAD) with Waveforms software

SUPPLEMENTAL MATERIALS

• Assembly Language Conversion: GCPU to AVR
• Utilizing Watch in Atmel Studio
• Assembly Auto Complete Extension User Guide
• lab1_f24_skeleton.asm

1 Operation codes are often represented in terms of fields of zeroes and ones, otherwise referred to as bit fields, where these fields represent a unique, encoded binary
number. For hardware to handle bit fields, some form of encoding/decoding circuitry must be utilized.
2 A program, or program of execution, is a collection of either computer instructions or operation codes that direct which operations a computer is to perform.
3 Normally, assemblers are paired with an additional software program, generally known as a preprocessor, to recognize additional keywords, known as assembler
directives, which specify actions to be performed directly by the assembler (and not by the computer for which the code is assembled).

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf
https://mil.ufl.edu/4744/docs/XMEGA/AVR_Assembler_Manual.pdf
https://www.microchip.com/content/dam/mchp/documents/atmel-start/Getting-Started-with-Atmel-Studio7.pdf
https://mil.ufl.edu/4744/docs/GCPU_to_ATxmega.pdf
https://mil.ufl.edu/4744/docs/Watch_Atmel_Studio.pdf
https://mil.ufl.edu/4744/docs/Atmel_Studio_Auto_Complete_for_ASM/Auto%20Complete%20Extension%20for%20Atmel%20Studio.pdf
https://mil.ufl.edu/4744/labs/lab1_f24_skeleton.asm

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 1: Introduction to AVR and Assembly Christopher Crary, Instructor Emeritus
Page 2/4 Revision 0 Wesley Piard, Instructor Emeritus

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

Throughout this course, it will be necessary to conduct
individual research. When doing so, various types of
documentation, e.g., manuals, datasheets, application notes, and
tutorials, will all be of interest.

Below, you will begin to become exposed to some important
documentation relevant to this course, and will learn some basics
regarding the ATxmega128A1U microcontroller, the AVR
assembler, and Atmel Studio.

1. Study §§ 1-4 of the Atmel XMEGA AU Manual (doc8331),
a more general user manual describing the XMEGA AU
computer architecture. Additionally, study §§ 3, 6, and 7 of
the Atmel ATxmega128A1U Manual (doc8385), the specific
datasheet for the ATxmega128A1U microcontroller. Then,
skim through the AVR Instruction Set (doc0856) to get an
idea of the operations available to AVR microcontrollers.
Next, read AVR Assembler User Guide, especially section
5 on Assembler Directives. Finally, look through the
following the Getting Started with Atmel Studio 7 (User
Guide), especially the part on debugging (§§ 1.13-1.15).

PRE-LAB EXERCISES
i. As specified in Lab 0, you should have, upon receiving your

kit, verified that it contained all of the parts listed on µPAD
v2.0 Parts List (Excel or PDF). If it did not, you should have
immediately notified the PI if any components were
missing. For documentation purposes (and before any
assembly), you should have taken pictures of all of the parts
in your kit (each of the PCBs, the chips, etc.). Include these
images in your Lab 1 Pre-Lab Report. Your Lab 1 report
should also include images of all of your now completely
constructed PCBs.

ii. Which type of memory alignment is used for program
memory in the ATxmega128A1U? Byte-alignment, or
word-alignment? What about for data memory?

iii. Which assembly instructions can be used to load data
indirectly from data memory within XMEGA AU
microcontrollers? Which assembly instructions can be used
to store data indirectly to data memory?

iv. Which assembly instruction can be used to load data directly
from any of the general purpose I/O memory of XMEGA
AU microcontrollers? Which assembly instruction can be
used to store data directly to any of the I/O memory?

v. Which assembler directive places a byte of data in program
memory? Which assembler directive allocates space within
data memory? Which assembler directives allow you to
provide expressions (either constant or variable) with a
meaningful name?

vi. Which assembly instructions can be used to read from
(flash) program memory? For each instruction, list which
registers can be used as an operand.

vii. Your Lab 1 report should also include images of all of your
complete constructed PCBs.

viii. In which section of program memory is address 0xF086
located?

ix. If you were to use the Memory debug window of Atmel
Studio to verify that some datum was correctly stored at
address 0x9B4F within program memory of the
ATxmega128A1U, which address would you specify within
the debug window?

x. When using the internal SRAM (not EEPROM), which
memory locations can be utilized for the data segment
(.dseg)? Why?

xi. Which is the first (i.e., lowest) program memory address
(this is an address to the 16-bit wide program memory
information) that would require the relevant RAMP register
to be changed from its initial value of zero? Why?

xii. In the context of pointing an index to a specific program
memory address within an XMEGA AU architecture,
explain why and how the address value should first be
altered. Similarly, in the context of pointing an index to a
specific data memory address, explain why the address
value should not be altered.

Now, you will design your first AVR assembly language
program, lab1.asm. A skeleton for this file is provided on our
course website and is also available through the Supplemental
Materials section of this document.

Overall, this program should filter data stored within a
predefined input table based on a set of given conditions and
store a subset of filtered values into an output table. More
specifically, the following bulleted list describes an algorithm
that should be performed on each item within the predefined
input table, until an end-of-table (EOT) value of NULL, defined
to be zero, is encountered within the table. Note that the
algorithm should be executed in the same order as the bulleted

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8331_XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf
https://mil.ufl.edu/4744/docs/XMEGA/AVR_Assembler_Manual.pdf
https://www.microchip.com/content/dam/mchp/documents/atmel-start/Getting-Started-with-Atmel-Studio7.pdf
https://www.microchip.com/content/dam/mchp/documents/atmel-start/Getting-Started-with-Atmel-Studio7.pdf
https://mil.ufl.edu/4744/docs/uPAD/partsList_uPAD2p0_kit.xlsx
https://mil.ufl.edu/4744/docs/uPAD/partsList_uPAD2p0_kit.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 1: Introduction to AVR and Assembly Christopher Crary, Instructor Emeritus
Page 3/4 Revision 0 Wesley Piard, Instructor Emeritus

list is provided, and for each iteration of the algorithm, only one
of the three overall conditions within the bulleted list should be
performed.

 Upon finding the EOT value within the input table, the
output table should be terminated with a NULL character.

 If bit 6 is set, divide the 8-bit value by 2 (unsigned); if that
result is greater than or equal to 95, add 2 and store it to the
next available location within the output table.

 Else, multiply by 2 and check if the product is less than 77;
if it is, then subtract 8 from it and store the result to the next
available location within the output table.

The following are additional specifications for the program:

 The input table should be placed in program memory,
starting at address 0xF086, and should consist of the 8-bit
data provided in the left-hand of Table 1, where each value
in this column should be stored sequentially in memory,
without any padding, in the same format provided. (Data is
given in decimal, hexadecimal, binary, octal, and ASCII
formats to demonstrate that Atmel Studio can interpret
values in each of these given formats.)

 An output table should be allocated within data memory,
starting at address 0x2783.

 All values should be interpreted as unsigned, i.e.,
instructions that interpret data as a signed value (e.g.,
BRLT, BRGE, etc.) should not be utilized.

If the program is written as specified above, the resulting output
table should contain the message “ButterDog” when the relevant
data is viewed in terms of the ASCII encoding format supported
by Atmel Studio. To view the data in this format, a Memory
debug window within Atmel Studio should be utilized.

NOTES:
 The second column of Table 1 provides the relevant input

table data in terms of the ASCII encoding format supported
by Atmel Studio, simply to allow ease of verification if
debugging with a Memory view window in Atmel Studio.
(In general, ASCII provides a standard set of encoded
values, often in terms of seven bits although sometimes in
terms of eight bits if additional symbols are supported, for
commonly used symbols in human language. An example
ASCII table can be found at http://www.asciitable.com/.)

 In order to make your code modular and portable (i.e., able
to be reused in different contexts), utilize assembler
directives. For example, use assembler directives to create
constant or variable identifiers for pertinent memory
addresses within your input/output tables, for EOT values,
etc.

 A Watch window, available under Debug | Windows | Watch
within Atmel Studio, is used to view memory locations
while debugging a program; to learn more about Watch

windows, navigate to Debugging | Memory View within the
Getting Started with Atmel Studio 7 (User Guide), as well
as to the Using Watch in Atmel Studio document located on
the course website, listed under Software/Docs.

 To facilitate programming in the AVR assembly language
within Atmel Studio, it is recommended that you install the
Auto Complete Extension created by a former 4744 student.
To learn how to do so, refer to the Supplemental Materials
section of this document.

1. Make a flowchart or write pseudocode for the above
program. (This is required for ALL lab programs and may
not be specifically requested in future lab documents.)

2. Create the relevant assembly language program,
lab1.asm, as specified above. A skeleton for this file is
provided on our course website and is also available through
the Supplemental Materials section of this document.

3. Test your program using the Atmel Studio software
simulator. Utilize debugging tools to verify that the program
works as specified.

4. Emulate the program on your µPAD to verify that the
program also works on your hardware. Utilize the same
debugging tools.

5. Take a screenshot of a Memory view window after
executing the relevant program, showing the entire output
table at the appropriate memory locations.

Table 1: Memory Table
Data Data (ASCII)1

37 %

127 Not Visible
(Delete)

‘æ’ æ
0xE4 ä
‘?’ ?

0b11100100 ä
‘j’ j

0b11000110 Æ
224 à

0x37 7
38 &

0b01111101 }
‘Ú’ Ú
202 Ê

0x00 Not Visible
(Null)

1ASCII characters are standard for values less than
128 = 0x80. Characters at 128 and above are not

unique and many are not visible easily represented
in a table. Microchip/Atmel Studio extended ASCII

characters at 128 and above are shown.

http://www.asciitable.com/
https://www.microchip.com/content/dam/mchp/documents/atmel-start/Getting-Started-with-Atmel-Studio7.pdf
https://mil.ufl.edu/4744/docs/Watch_Atmel_Studio.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 1: Introduction to AVR and Assembly Christopher Crary, Instructor Emeritus
Page 4/4 Revision 0 Wesley Piard, Instructor Emeritus

PRE-LAB PROCEDURE SUMMARY
1) Read the specified sections within the relevant documentation.
2) Solve all pre-lab exercises.
3) Make a flowchart or write pseudocode for the described program.
4) Write the relevant assembly program, lab1.asm. Verify its correctness.
5) Capture a screenshot of a Memory view window displaying the resulting output table after executing the program.

	OBJECTIVES
	INTRODUCTION
	LAB STRUCTURE
	REQUIRED MATERIALS
	PRE-LAB PROCEDURE
	REMINDER OF LAB POLICY
	PRE-LAB EXERCISES
	PRE-LAB PROCEDURE SUMMARY

