
University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 1/6 Revision 1 Wesley Piard, Instructor

OBJECTIVES
• Understand fundamental input and output (I/O) concepts, in regard to microprocessors and microcontrollers.
• Learn how to manage timing with a software delay as well as with a hardware timer/counter (TC) system.
• Combine I/O and timing concepts to design an LED animation creator program.

INTRODUCTION
It is often desired that a microprocessor be able to interface with an external entity to either receive or transmit data. More generally, all
computer systems are designed to utilize some form of input and output (I/O). Without these, there would simply be no practical purpose
for a computer system.1

Separately, another important concept in the world of microprocessors is timing. Normally, computer applications require that some thread
of execution occur at a specific point in runtime; as a basic example, to blink an LED, a low voltage must be applied to the LED during
some intervals(s) of time, and a high voltage must be applied at all other times. In applications such as these, a microprocessor can
sometimes manage timing by simply performing some set of meaningless instructions on purpose.2 In this context, these meaningless
instructions constitute what is known as a software delay. Oftentimes, a more accurate and advanced approach of utilizing a hardware
timer, or an independent electronic system that keeps track of time, is chosen. Within the ATxmega128A1U, programmable hardware
timers exist within the Real-Time Clock (RTC) and Timer/Counter (TC) systems.

Overall, understanding how to utilize both I/O and timing is crucial for being able to create any meaningful program for a computer
system.

LAB STRUCTURE
In § 1 of this lab, you will explore basic input and output (I/O) concepts, as well as learn to interface your microcontroller with two basic
I/O components available on the OOTB Switch & LED Backpack: DIP switches and LEDs. Next, in § 2 and § 3 of this lab, you will begin
to utilize both of the aforementioned timing mechanisms, that is, both software and hardware timers. Lastly, in § 4, you will design a
program that creates LED animations; this will utilize a switch on the OOTB Memory Base. This comprehensive application will utilize
I/O components as well as timing mechanisms to allow you to create, edit, and display any “8-bit animation” of up to approximately 8000
frames.

REQUIRED MATERIALS
• Atmel XMEGA AU Manual (doc8331)
• OOTB Switch & LED Backpack Schematic
• OOTB Memory Base Schematic
• OOTB µPAD v2.0 with USB A/B cable
• OOTB Switch & LED Backpack
• OOTB Memory Base
• Digilent Analog Discovery (DAD) with WaveForms

software
• Switch Debouncing through Software
• The Most Common Use Case for Timer/Counters

SUPPLEMENTAL MATERIALS

• Adding Additional Program Files To An Atmel Studio
Project (GIF)

• Atmel ATxmega128A1U Manual (doc8385)
• AVR Instruction Set (doc0856)
• UF WaveForms Tutorial
• Digilent WaveForms Video Tutorials
• Using the XMEGA Timer/Counter (doc8045)
• lab2_f24_4_skeleton.asm

1 Relate this idea to the hypothetical thought of human life without sensory communication, i.e., no vision, sound, speech, smell, taste, etc.!
2 Ideally, the amount of memory used by these meaningless instructions would be small. To do so, some form of looping is generally preferred.

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/uPAD/schematics/switchLED_backpack%20v1.3.pdf
https://mil.ufl.edu/4744/docs/uPAD/schematics/MemoryBase%202.X%20SCH.PDF
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/tc_note.pdf
https://mil.ufl.edu/4744/labs/multiple_asm_files.gif
https://mil.ufl.edu/4744/labs/multiple_asm_files.gif
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf
https://mil.ufl.edu/3701/DAD/Waveforms_2015_tutorial.pdf
https://mil.ufl.edu/3701/DAD/DAD-vids.html
http://ww1.microchip.com/downloads/en/AppNotes/doc8045.pdf
https://mil.ufl.edu/4744/labs/lab2_f24_4_skeleton.asm
https://mil.ufl.edu/4744/labs/lab2_f24_4_skeleton.asm
https://mil.ufl.edu/4744/labs/lab2_f24_4_skeleton.asm
https://mil.ufl.edu/4744/labs/lab2_f24_4_skeleton.asm

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 2/6 Revision 1 Wesley Piard, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

1. INTRODUCTION TO I/O
Most microcontrollers use I/O ports as a construct to share
information with other devices. An I/O port is simply a
collection of pins which can be individually configured for
various purposes. Often, an I/O port is a conglomerate interface
for both an input port, a collection of input signals, and an output
port, a collection of output signals. These pins are referred to as
General Purpose Input/Output (GPIO). GPIO ports on the
ATxmega128A1U are configured and accessed via registers,
which are mapped to addresses in data memory space. In most
cases, these memory-mapped registers can simply be modified
by any instruction which accesses data memory. Sometimes, as
is the case in the ATxmega128A1U, an individual signal made
available by an I/O port has the capability of serving as either an
input or an output.

Within the ATxmega128A1U, there exist many I/O ports, all of
which (collectively, or individually) allow the microcontroller to
connect to the outside world. To grant even additional flexibility,
each I/O port supports multiple configurations.

NOTES:

 From the perspective of the central processing unit (CPU)
within the ATxmega128A1U, the collection of all I/O ports
constitute what is known as a peripheral system (a system
peripheral to the processing unit), and each entity within the
system is referred to as a module. Throughout this course,
a wide variety of other peripheral systems, both inside and
outside the microcontroller, will be utilized.

 Most systems within the ATxmega128A1U, including the
I/O port system, are made to support dynamic configuration.
To support dynamic configuration, data storage devices
known as registers (flip-flop-like components) are utilized.
Within the ATxmega128A1U, all registers that store
configuration information, where these are otherwise
known as configuration registers, are accessible through the
use of dedicated memory locations (within the “I/O
memory space”) and some appropriate memory-accessing
instructions. When configuration memory such as a register,
or anything similar, is designed to be accessible through
such means, it is said to be memory-mapped.

 In the context of the ATxmega128A1U, most of the physical
pins on the chip package directly connect to I/O port signals.
Because of this, most pins on the chip package are named in
terms of the I/O port signals! Additionally, instead of
having separate dedicated signals for specific peripheral
systems within the microcontroller, i.e., those that are not
“general-purpose input/output (GPIO)” signals, most
signals are multiplexed with those that connect I/O ports.
Become familiar with § 33.2 (Alternate Pin Functions)
within the 8385 manual, which lists all signals that are
multiplexed with those that connect to I/O ports (this will
become very handy in the majority of your labs, so make
sure you are familiar with it).

 If the provided lab kit was assembled correctly, when
“backpacks” and “base boards” are plugged into the OOTB
µPAD, some components, e.g., switches and LEDs, will be
directly connected to some I/O port pins on the chip
package.

In this part of the lab, you will learn how to interface your
microcontroller with the DIP switches and LEDs available on
your OOTB Switch & LED Backpack (SLB), where these
components represent input and output sources, respectively.

1.1. First, understand how to utilize the memory-mapped I/O
configuration registers by reading § 13 (I/O Ports) of the
8331 manual

1.2. Study the OOTB Switch & LED Backpack and its relevant
schematic. Identify any necessary components, as well as
where they connect to the ATxmega128A1U.

PRE-LAB EXERCISES
i. Which configuration register allows the utilization of a

subset of I/O port pins to be configured as inputs (without
affecting other pins)? Which configuration register allowed
the utilization of a subset of I/O port pins to be configured
as an output (without affecting other pins)?

ii. What is the purpose of the SET/CLR/TGL variants of the
DIR and OUT registers?

iii. Are the LEDs on the OOTB Switch & LED Backpack
active-high, or active-low? Draw a schematic diagram for a
single LED circuit with the same activation level used on
the backpack, as well as one with the opposite activation
level. Also, draw a schematic diagram for a single-pole,
single-throw (SPST) switch circuit, using the same pull-up
or pull-down resistor condition utilized on the backpack, as
well as another switch circuit using the opposite
configuration.

iv. Which I/O ports are utilized for the DIP switches and LEDs
on the OOTB Switch & LED Backpack?

v. Would it be possible to interface the OOTB µPAD with an
external input device consisting of 22 inputs? If so, describe
how many I/O ports would be necessary. If not, explain
why.

To mount the OOTB Switch and LED Backpack (as well as any
of the other backpacks) onto the µPAD, you must match the J1,
J2, J3, and J4 headers with the respective ports. The cutout at the
top of the backpack (as well as all other backpacks) should allow
the reset button on the µPAD (labeled S1) to remain visible. See
Figure 1 for an image of a correctly mounted OOTB Switch &
LED Backpack.

1.3. Connect the OOTB Switch & LED Backpack to the µPAD.

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 3/6 Revision 1 Wesley Piard, Instructor

You will now create an assembly program (lab2_1.asm) to
continually, i.e., within an endless loop, output the value of each
DIP switch circuit located on the OOTB Switch & LED
Backpack to a corresponding LED circuit also located on the
backpack. More specifically, if an input switch is determined to
be closed, the LED located directly below the switch on the
backpack must be powered on (i.e., illuminated); conversely, if
an input switch is determined to be open, the LED located
directly below it must be powered off.

1.4. Write an assembly program (lab2_1.asm) to allow the
µPAD to emulate the behavior described above.

2. SOFTWARE DELAYS

In this section, you will begin to utilize software delays.
Software delays are a form of timing delays that are constructed
with some (ideally small) set of instructions. Although software
delays generally have the potential to be very precise, they
prevent a microprocessor from executing other instructions, and
ultimately cause CPU time to be wasted. Software delays are
also extremely non-modular, as they cannot easily be used at
other processor clock speeds, and if designed in an assembly
language, cannot be directly ported to most other processors.

In general, a hardware timer/counter is preferable to a software
delay, however software delays may sometimes be appropriate
when a simple delay is needed. You will learn about the
hardware timer/counters available within the ATxmega128A1U
in the following section of this lab document.

To create a software delay, as described above, a (condensed,
ideally) series of meaningless instructions should be performed
by your microcontroller. The delay length created, in units of
time, will be determined by the number and type of instructions
executed. (Depending on the series of instructions, the
architecture within the microcontroller may add unintended
execution time.)

Below, you will create an assembly subroutine to delay 10 ms
via a software delay. When determining how many instructions
your microcontroller should execute, it would be fair to assume
that each one-cycle assembly instruction takes about 0.5 µs,
since the ATxmega128A1U system clock runs at 2 MHz by
default (1/[2 MHz] = 0.5 µs). Remember that frequency (f) is the
reciprocal of period (T), i.e., f = 1/T. (Later in this semester, you
will learn how to change the system clock frequency.)

2.1. Read through the pertinent sections of our course notes, § 3
(AVR CPU) within the 8331 manual, and the 0856 (AVR
Instruction Set) manual to learn about how to write
assembly subroutines as well as how to effectively
manipulate “stack memory”.

2.2. Create an assembly file (lab2_2.asm). (See the
Supplemental Materials section of this document for a GIF
file that depicts how to add an additional assembly file and
set it as the entry file, so that you can utilize multiple
programs within a single assembly project of Atmel
Studio.) Within this newly created file, first explicitly

configure the “stack pointer” to have an initial value of the
highest possible data memory address, as to allow the stack
to be of maximal size. (Although the processor
automatically performs this procedure, you are expected to
perform it explicitly within all programs created
throughout this course.) Following this, write a subroutine,
DELAY_10MS, to simply delay ten milliseconds (i.e.,
10 ms), without the use of an additional subroutine, e.g.,
DELAY_1MS. An error allowance of 3% is given. Finally,
with the intention to test your delay subroutine, write a
main routine (within the same assembly file) to toggle
every 10 ms the output of an I/O port pin that is available
for probing. To determine which I/O port pins are available
for probing, review the appropriate OOTB schematics.

NOTE: Within a subroutine, when appropriate, remember to
push/pop registers.

To write a subroutine that delays for a specific amount of time,
the most efficient technique is to utilize some type of loop
structure, calculating the time for each loop iteration.

Delaying for long periods may require nested loops, i.e., loops
inside loops (inside loops …). Nesting loops is exactly what is
done for counting clock time, i.e., there is a second counter
incremented every second; when 60 seconds is reached, a minute
counter increments; when 60 minutes is reached, an hour counter
increments; etc. Consider a one-hour delay. Start two counters,
both at 60, one for minutes and one for seconds. Every second,
decrement the second counter; when the second counter gets to
zero, restore the 60 seconds in this counter and decrement the
minute counter. When both counters are zero, 60 minutes have
elapsed.

NOTE: Utilizing many dummy instructions just to waste time is
not an efficient delay technique and should be avoided.

2.3. Program your microcontroller with the above assembly
file; use your DAD, along with the Scope feature of
WaveForms, to measure the rate at which the specified
output pin toggles. (See the WaveForms Tutorial, Digilent
WaveForms Reference Manual PDF, and/or Digilent
WaveForms Reference Manual Website, if necessary.
Video tutorials are also available here.) Make note of the

Figure 1: OOTB Switch & LED Backpack correctly

mounted onto µPAD

https://mil.ufl.edu/3701/DAD/Waveforms_tutorial.pdf
https://mil.ufl.edu/3701/DAD/DAD2_ref_manual_ad2_rm.pdf
https://mil.ufl.edu/3701/DAD/DAD2_ref_manual_ad2_rm.pdf
https://reference.digilentinc.com/test-and-measurement/analog-discovery-2/reference-manual
https://reference.digilentinc.com/test-and-measurement/analog-discovery-2/reference-manual
https://mil.ufl.edu/3701/DAD/DAD-vids.html

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 4/6 Revision 1 Wesley Piard, Instructor

delay time initially measured and include this in the
Appendix of your pre-lab report.

2.4. Until the required accuracy is met, fine-tune your delay
subroutine. Make notes of any additional delay times
measured, including those with error greater than 3%, and
include them in the Appendix of your pre-lab report. (Hint:
you can try to calculate a precise software delay loop using
the clock cycles, but there will most likely be instructions
and other delay factors that you did not take into
consideration, so you will almost always need to
experiment with the number of loops.)

Now, you will create an additional subroutine,
DELAY_X_10MS, to delay a select multiple of 10 ms specified
by the value of a general-purpose register passed into the
subroutine. To do so, before the subroutine is called within a
program, a specific register must be loaded with a value
representing the number of 10 ms delays that should occur. (In
essence, this register is storing a parameter, or an argument, of
the subroutine.) Ultimately, to perform the necessary delay, the
DELAY_X_10MS subroutine should call the DELAY_10MS
subroutine however many times is specified by the register
chosen to store the parameter. It is expected that a maximum
delay of 2.55 seconds (255×10 ms), as well as a minimum delay
of approximately 0 ms, be possible with your delay subroutine.

2.5. Create another subroutine, DELAY_X_10MS, as
described above.

2.6. Alter your main routine to toggle an output pin at a rate of
20.0 Hz (every 0.050 s), i.e., generate a square waveform
with a frequency of of 10.0 Hz (period of 0.100 s). An error
allowance of 3% is again allowed.

The routine described above should generate a square waveform
with a 50% duty cycle, as shown in Figure 2, where 2X in the
figure represents the period of the waveform.

2.7. Measure the chosen output pin (again with the Scope
feature of WaveForms) and verify that the toggle
frequency is 20 Hz, i.e., that the overall waveform has a
frequency of 10 Hz. When the frequency of the waveform
is within the given error allowance, take a screenshot,
including a frequency measurement of the waveform, and
include this image in the Appendix of your pre-lab report.

3. INTRODUCTION TO TIMER/COUNTERS
In this section, you will learn the fundamentals of timer/counter
(TC) systems within XMEGA microcontrollers. In general,
timer/counters are far more useful than software delays, though
normally are slightly more complex to utilize.

3.1. Read § 14 (TC0/1 – 16-bit Timer/Counter Type 0 and 1) of
the 8331 manual. (The timer/counter systems explained in
this section of the manual are those that you are required to
use in this lab.) Then, read The Most Common Use Case
for Timer/Counters. For further supplemental information
following these documents, you may also refer to doc8045
(Using the XMEGA Timer/Counter).

NOTE: It is possible to split a TC0 system into two 8-bit
timer/counters, and it is also possible to concatenate two 16-bit
timer/counters into a single 32-bit timer/counter; however,
neither of these need to be utilized for this lab.

PRE-LAB EXERCISES
vi. Assuming a system clock frequency of 2 MHz, a prescaler

value of 8, and a desired period of 37 ms, calculate a
theoretically-corresponding timer/counter period value two
separate times: once using a form of dimensional analysis,
providing explanation(s) when appropriate, and another
time using the general formula provided within The Most
Common Use Case for Timer/Counters..

vii. Assuming a system clock frequency of 2 MHz, is a period
of two seconds achievable when using a 16-bit
timer/counter prescaler value of one? If not, determine if
there exists any prescaler value that allows for this period

under the assumed circumstances, and if there does, list such
a value.

viii. What is the maximum time value (to the nearest
millisecond) representable by a timer/counter, if the
relevant system clock frequency is 2 MHz? What about for
a system clock frequency of 32.768 kHz?

3.2. Referring to Pre-lab Exercise vi., write an assembly
program (lab2_3.asm) to toggle an I/O port pin
available for probing every 37 ms, utilizing a timer/counter
where appropriate. After writing a complete initial version
of this program, use the DAD and the Scope feature of the
WaveForms software to experimentally determine which
whole-number digital period value provides a
corresponding period with the least amount of error.
(Recognize that this whole-number may not be either the
truncated or “rounded-up” version of the
theoretically-corresponding value.) Provide an appropriate
screenshot of the relevant waveform with the minimal
amount of error, including its precise frequency. (Refer to
the Lab Rules and Policies for how to appropriately take a
screenshot of a waveform as well as for how to
appropriately measure a precise frequency.) Additionally,
provide within the caption of the relevant screenshot the
whole-number value that resulted in a minimal amount of
error.

NOTES:

 When writing to 16-bit registers (such as PER and CNT),
the bytes must be written in order of least to most

Figure 2: Square waveform with 50% duty cycle,

where X is the toggle rate.

X X

2X

ON OFF

https://mil.ufl.edu/4744/docs/tc_note.pdf
https://mil.ufl.edu/4744/docs/tc_note.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8045_TC.pdf
https://mil.ufl.edu/4744/docs/tc_note.pdf
https://mil.ufl.edu/4744/docs/tc_note.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 5/6 Revision 1 Wesley Piard, Instructor

significant, otherwise the value will not be updated. This is
due to the internal buffering used when writing to registers
which represent values greater than 8-bits (§3.11 doc8331).

 In general, the native ATxmega128a1udef.inc file does not
provide a direct symbol name for the address of a memory-
mapped register that holds a specific byte of some overall
value greater than eight bits. For example, although the 16-
bit period value within timer/counter module TCC0 is
represented with two separate memory-mapped registers,
one dedicated to the “low byte” (PERL) and one dedicated
to the “high byte” (PERH), there only exists the symbol
name “TCC0_PER” which corresponds to the address of
PERL. Consulting the offset TC register summary (§14.13
doc8331), PERH is mapped to the address immediately after
PERL, and so corresponds to “TCC0_PER+1” (This pattern
holds true for most, if not all, other register sets).

 The TC module provides an overflow flag (OVFIF in the
INTFLAGS register) which is set in hardware whenever the
overflow or underflow condition is met (depending on the
mode of operation). Use of this flag is essential to the proper
operation of the TC system. If the CNT value is compared
manually, there is no guarantee that the overflow condition
will be caught, as reading and comparing a 16-bit value
requires multiple cycles to complete. In this lab the
overflow flag will be polled synchronously and must be
cleared when an overflow occurs in order to detect the next
overflow event. (Hint: You should not start the counter until

all the relevant registers are configured properly, and you
should always make sure the flag is reset after you execute
your overflow instructions.)

PRE-LAB EXERCISES
ix. Create an assembly program to perform the same procedure

as in § 3.2 but utilize a prescaler value of 2. Perform
everything else described in the section for this new context,
i.e., experimentally determine which wholenumber digital
period value provides a corresponding period with the least
amount of error, provide an appropriate screenshot of the
relevant waveform with the minimal amount of error,
including its precise frequency, and provide within the
caption of the relevant screenshot the whole-number value
that resulted in a minimal amount of error. Finally, describe
and explain why there may be any differences between the
two contexts, i.e., between using a prescaler value of 8, the
value in exercise vi, and a prescaler value of 2.

x. Create an assembly program to keep track of elapsing
minutes with a timer/counter, i.e., design a “watch” that
only has a “minute-hand”. (Hint: Instead of attempting to
configure the period of the timer/counter to directly
correspond to sixty seconds, configure the period to
correspond to one second, and then keep track of how many
times this timer/counter overflows [or underflows, if you
wish to configure the timer/counter to count down].)

4. LED ANIMATION CREATOR

In this final part of the lab, you will design a comprehensive
application that utilizes I/O components as well as timing
mechanisms to create, edit, and display LED animations. (You
should have OOTB Memory Base (MB) already connected to
the uPAD if you haven’t done so already, since this part of the
lab will require additional buttons from the MB.) The required
program is as follows. (A skeleton file for the program is
provided on our course website and is also available through the
Supplemental Materials section of this document.)

Note: You will utilize all three switches available to you from
the uPAD and the Memory Base. Pay attention to all the
instructions regarding which switch is used for what purpose in
the instructions below.

Upon program start, your application should be in what will be
referred to as EDIT mode. In this mode, the LEDs located on the
OOTB SLB should be continually updated with the current logic
values of the DIP switches also located on the SLB, just as in § 1.
However, whenever tactile switch S1 on the SLB is determined
to be depressed (i.e., pressed), the current logic values of the DIP
switches should be stored into an 8-bit data memory table only
once, starting at address 0x2000, where the value stored is to
represent a “frame” of the LED animation. At any point during
program runtime, the LED animation is defined to consist of
only the animation frames currently stored in memory. Data
memory addresses up through 0x3FFF should be allocated for
the animation.

To guarantee that a value is stored only once per press of the
relevant tactile switch, your program should wait for the switch
to be released. Separately, it is likely that this tactile switch
bounces (upon either a press or release of the switch), as almost

all real, non-debounced switches do. To prevent multiple frames
from being stored due to bouncing, it is will also be required that
your program debounce this tactile switch. For the purposes of
this lab, you may either perform this debouncing with a software
delay or with timer/counter module. (Within the provided
skeleton file, a method of debouncing using a timer/counter
module is suggested.)

4.1. Read the pertinent sections of the Switch Debouncing
through Software document. Note that, although a
synchronous method for debouncing a switch with a
timer/counter is not described in this document, the
techniques described could be easily altered to account for
synchronicity.

Your program should remain in EDIT mode until tactile switch
S2 on the SLB is pressed. Note that it should not be necessary to
debounce or wait for the release of this switch. When tactile
switch S2 is determined to have been pressed, what is referred
to as PLAY mode should commence.

In PLAY mode, the entire LED animation currently stored in
memory should begin to play sequentially on your LEDs,
starting from the initially stored frame. The rate at which each
frame of the animation changes, or the “frame rate”, should be
5 Hz. (An error allowance of 3% is given.) At rates faster than
10 Hz, you would have a hard time verifying the animation, but
could use your DAD’s Logic Analyzer to verify the animation
frames. Observe how changing the frame rate affects the
“smoothness” of the animation.) Although software delays could
be utilized to accomplish this frame rate, you must use a
timer/counter. Upon reaching the end of the animation, the LED
pattern should restart, and continue to be output until tactile

https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engr. Dept. Lab 2: I/O & Timing Christopher Crary, Instructor
Page 6/6 Revision 1 Wesley Piard, Instructor

switch S1 on the OOTB MB is pressed; after it is determined that
this tactile switch has been pressed, the animation should stop,
and the program should return to EDIT mode. Note that it should
not be necessary to debounce or wait for the release of this
switch.

Upon returning to EDIT mode, the program should function just
as it did initially, although the LED animation previously stored
should be retained, i.e., if tactile switch S1 on the SLB is pressed,
another frame should simply be stored to the end of the previous
LED animation. Thus, the program shall never terminate, and
the only way to reset the LED animation should be to either
re-program your microcontroller or to use the on-board reset
button (labeled S1 on the µPAD).

Since you will need to debounce tactile switch S1 on the SLB, it
will first be necessary to measure the amount of time that the
switch bounces. To more easily measure the bouncing, you
should perform measurements without the backpack connected
to the µPAD.

4.2. If necessary, remove the OOTB SLB from the µPAD. Once
the backpack is isolated, connect the appropriate voltage
supplying pin from your DAD to one of the “3V3” pins on
the Switch & LED backpack, and connect the internal
ground pin from the DAD to the “GND” pin on the
backpack. Following this, provide 3.3 V to the backpack
by using the Supplies feature within Waveforms. (If your
DAD/NAD’s software is incapable of providing 3.3 V, it is
also tolerable to power your backpack with 5 V.) Next, use
your DAD and the Scope feature within Waveforms to
record tactile switch bouncing and to determine an
appropriate delay time. Refer to the available schematics,
if necessary. Submit some screenshot(s) depicting the two

relevant bouncing waveforms: one for the press of the
switch, and one for the release of the switch.

If you do not see bouncing, try pressing the tactile switch
in the following way: slowly, sideways, and fast. If you
STILL do not see bouncing, then use one of the PORTA
switches (like the ones from 3701) to see (and record for
your lab report) bouncing when the switch goes from one
position to the other and then back to the original position.
Use these bounce results to calculate your delay values.
Note that if your tactile switch does not bounce today, it
may bounce tomorrow or later in the semester.

NOTE: Many configurations within the Scope feature should be
able to capture bouncing, although it may be helpful to use the
Repeated, Normal mode, a trigger with a level of around 2 V, an
initial timebase of around 25 ms (zooming in when determining
if a bounce occurred), and any other appropriate configurations.

4.3. Create the LED animation creation program
(lab2_4.asm) described above. A skeleton file for the
program is provided on our course website and is also
available through the Supplemental Materials section of
this document. Your program should not be susceptible to
tactile switch bouncing.

PRE-LAB EXERCISES
xi. It is stated above that, in the relevant context, it should not

be necessary to debounce (nor wait for the release of) either
tactile switch S1 on the OOTB MB. Why is this so?

xii. Provide a scenario in which the above program would
experience unintended behavior due to tactile switch
bouncing.

PRE-LAB PROCEDURE SUMMARY
1) Answer pre-lab exercises, when appropriate.
2) Familiarize yourself with I/O ports in §1.
3) Learn about software delays in § 2.
4) Become introduced to timer/counter (TC) systems in § 3.
5) Measure tactile switch bouncing and design an LED animation creator in § 4.

	Objectives
	Introduction
	Lab structure
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	1. Introduction to i/O
	1.1. First, understand how to utilize the memory-mapped I/O configuration registers by reading § 13 (I/O Ports) of the 8331 manual
	1.2. Study the OOTB Switch & LED Backpack and its relevant schematic. Identify any necessary components, as well as where they connect to the ATxmega128A1U.
	PRE-LAB EXERCISES

	To mount the OOTB Switch and LED Backpack (as well as any of the other backpacks) onto the µPAD, you must match the J1, J2, J3, and J4 headers with the respective ports. The cutout at the top of the backpack (as well as all other backpacks) should all...
	1.3. Connect the OOTB Switch & LED Backpack to the µPAD.
	1.4. Write an assembly program (lab2_1.asm) to allow the µPAD to emulate the behavior described above.
	2. Software delays
	2.1. Read through the pertinent sections of our course notes, § 3 (AVR CPU) within the 8331 manual, and the 0856 (AVR Instruction Set) manual to learn about how to write assembly subroutines as well as how to effectively manipulate “stack memory”.
	2.2. Create an assembly file (lab2_2.asm). (See the Supplemental Materials section of this document for a GIF file that depicts how to add an additional assembly file and set it as the entry file, so that you can utilize multiple programs within a sin...
	2.3. Program your microcontroller with the above assembly file; use your DAD, along with the Scope feature of WaveForms, to measure the rate at which the specified output pin toggles. (See the WaveForms Tutorial, Digilent WaveForms Reference Manual PD...
	2.4. Until the required accuracy is met, fine-tune your delay subroutine. Make notes of any additional delay times measured, including those with error greater than 3%, and include them in the Appendix of your pre-lab report. (Hint: you can try to cal...
	2.5. Create another subroutine, DELAY_X_10MS, as described above.
	2.6. Alter your main routine to toggle an output pin at a rate of 20.0 Hz (every 0.050 s), i.e., generate a square waveform with a frequency of of 10.0 Hz (period of 0.100 s). An error allowance of 3% is again allowed.
	2.7. Measure the chosen output pin (again with the Scope feature of WaveForms) and verify that the toggle frequency is 20 Hz, i.e., that the overall waveform has a frequency of 10 Hz. When the frequency of the waveform is within the given error allowa...
	3. Introduction to timer/counters
	3.1. Read § 14 (TC0/1 – 16-bit Timer/Counter Type 0 and 1) of the 8331 manual. (The timer/counter systems explained in this section of the manual are those that you are required to use in this lab.) Then, read The Most Common Use Case for Timer/Counte...
	PRE-LAB EXERCISES

	3.2. Referring to Pre-lab Exercise vi., write an assembly program (lab2_3.asm) to toggle an I/O port pin available for probing every 37 ms, utilizing a timer/counter where appropriate. After writing a complete initial version of this program, use the ...
	PRE-LAB EXERCISES

	4. led animation creator
	4.1. Read the pertinent sections of the Switch Debouncing through Software document. Note that, although a synchronous method for debouncing a switch with a timer/counter is not described in this document, the techniques described could be easily alte...
	Since you will need to debounce tactile switch S1 on the SLB, it will first be necessary to measure the amount of time that the switch bounces. To more easily measure the bouncing, you should perform measurements without the backpack connected to the ...
	4.2. If necessary, remove the OOTB SLB from the µPAD. Once the backpack is isolated, connect the appropriate voltage supplying pin from your DAD to one of the “3V3” pins on the Switch & LED backpack, and connect the internal ground pin from the DAD to...
	If you do not see bouncing, try pressing the tactile switch in the following way: slowly, sideways, and fast. If you STILL do not see bouncing, then use one of the PORTA switches (like the ones from 3701) to see (and record for your lab report) bounci...
	NOTE: Many configurations within the Scope feature should be able to capture bouncing, although it may be helpful to use the Repeated, Normal mode, a trigger with a level of around 2 V, an initial timebase of around 25 ms (zooming in when determining ...
	4.3. Create the LED animation creation program (lab2_4.asm) described above. A skeleton file for the program is provided on our course website and is also available through the Supplemental Materials section of this document. Your program should not b...
	PRE-LAB EXERCISES
	pre-lab procedure summary

