
University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 1/3 Lab 3: Interrupts Welsey Piard, Instructor

OBJECTIVES
• Understand general computer interrupt concepts and begin to utilize interrupts within the ATxmega128A1U.
• Learn how to use interrupts along with timer/counters to properly debounce a switch.

INTRODUCTION
Primarily, computer systems are comprised of multiple, independent components that communicate with one another.1 For independence
between components to remain effective, it is often desired that communication only take place when certain events are known to have
occurred. To gain this ability, hardware components are generally designed to emit special digital signals, referred to here as hardware
flags (or simply flags, if the context is clear2), that exactly identify the occurrence of specific events.3

For most computer systems, one generally flexible manner for handling an event of some peripheral component is to (1) identify an
occurrence of the event through a hardware flag, either synchronously or asynchronously, and then (2) perform some set of instructions
based on the event.4 To limit how much an application program is responsible for keeping track of event occurrences, there is often the
ability to additionally configure what is typically known as an interrupt. Essentially, an interrupt is an automatic procedure for handling
some event specified by a hardware flag.5, 6

During an interrupt, the desired set of instructions to handle the relevant event are executed within what is generally known as an interrupt
service routine (ISR), or interrupt handler. The manner in which an interrupt service routine is configured depends on the computer
architecture (as do all other aspects of interrupts), however it is often either that there be a predefined section of memory for the instructions
of the ISR to reside or that there be a predefined memory location, known as an interrupt vector, to contain information regarding where
the desired set of instructions reside.7 In the former case, the “size” of an interrupt service routine, or the amount of instructions that could
be performed during the routine, is more or less predefined by the computer system designer, whereas in the latter case, the level of
indirection achieved by an interrupt vector potentially allows a user to configure an arbitrarily-sized routine.

LAB STRUCTURE
In this lab, you will begin to utilize interrupts and the programmable interrupt controller (more specifically, the programmable multilevel
interrupt controller [PMIC]) within the ATxmega128A1U. In § 1, you will learn fundamental information regarding interrupts within the
ATxmega128A1U and then learn to how utilize an interrupt signal for a timer/counter module. Following this, in § 2, you will learn how
to utilize an I/O port interrupt so that responses to a tactile switch on the OOTB SLB (Switch/LED Backpack) can be made asynchronously,
as well as learn how to efficiently debounce such a switch in an asynchronous environment.

REQUIRED MATERIALS
• Atmel XMEGA AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• OOTB µPAD v2.0 with USB A/B cable and accompanying

schematic
• OOTB Switch & LED Backpack (SLB) with accompanying

schematic
• Switch Debouncing through Software
• Digilent Analog Discovery (DAD) kit with WaveForms

software

SUPPLEMENTAL MATERIALS

• AVR Instruction Set (doc0856)

1 There are various reasons for this modularity; some of the more common reasons involve efficiency, cost, and power, although there can be other factors as well.
2 The term “flag” can also be used in contexts regarding software to describe a variable (i.e., a labeled set of memory locations) used to represent the value of some “logical”
condition. In the specific discussion presented here, we do not consider such flags.
3 Unfortunately, although hardware designers may try to provide a flag for each crucial or useful event within a given device, there is always some limit.
4 Similar strategies can be implemented for computer systems without a central processing unit.
5 In this context, hardware flags are often referred to as either interrupt flags or interrupt signals.
6 When it is intended that there be multiple interrupts, some form of centralized control is often achieved through dedicated hardware such as a programmable interrupt
controller.
7 Typically, an interrupt vector is to contain the starting address of the desired interrupt handler, although this may not always be the case.

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 2/3 Lab 3: Interrupts Welsey Piard, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

1. INTRODUCTION TO INTERRUPTS
Up until this point in this course, whenever it has been desired
to determine when some event occurs within a peripheral
component (e.g., when a tactile switch is pressed, when a TC
counts for a specified amount of time, etc.), the CPU has been
programmed to continually poll some input source. Ultimately,
this technique wastes potentially useful processing time. In this
section of the lab, you will be introduced to interrupts by
implementing a simple overflow (OVF) interrupt for a
timer/counter module within the ATxmega128A1U. However,
before this, you must research all relevant information regarding
interrupts within the ATxmega128A1U.

1.1. Read § 12 (Interrupts and Programmable Multilevel
Interrupt Controller) of the 8331 manual, as well as § 14
(Interrupts and Programmable Multilevel Interrupt
Controller) of the 8385 manual, to understand how
interrupts are managed within the ATxmega128A1U.

1.2. Read all parts of § 14 (TC0/1 – 16-bit Timer/Counter Type
0 and 1) within the 8331 manual regarding timer/counter
interrupts.

1.3. Create a simple assembly program, lab3_1.asm. Within
this program, configure a timer/counter to trigger an
overflow (OVF) interrupt every 67 ms. Within the
necessary interrupt service routine, toggle an I/O port pin
for which you have access to probe via the µPAD. Use your
DAD to verify that the chosen pin toggles at the appropriate
rate. Take a screenshot to include in your lab report. (Note:
Anytime you are asked to verify something with your Use

your DAD to verify that the chosen pin toggles at the
appropriate rate.

NOTE: An interrupt-driven program should have a format
similar to what is shown in Figure 1.

PRE-LAB EXERCISES
i. Assuming that no interrupt has been previously configured,

devise and describe a generalized series of steps for
configuring any interrupt within the ATxmega128A1U, i.e.,
not just an interrupt within the TC system.

ii. Explain what happens in hardware (in other words, without
the programmer’s intervention) when the processor detects
and then services (and returns from) an interrupt. Be as
specific as possible, referencing certain registers when
appropriate. You can assume that the reti instruction does
not count as programmer intervention. You may provide a
flowchart as a response, if desired.

2. INTERRUPTS, CONTINUED

In this section of the lab, you will learn how to configure an I/O
port interrupt so that responses to a tactile switch on the OOTB
SLB can be made asynchronously. Additionally, you will learn
how to efficiently debounce the relevant switch within the
asynchronous context.

2.1. Read the relevant parts within § 13 (I/O Ports) of the 8331
manual to learn how to configure interrupts for an I/O port
on the ATxmega128A1U.

2.2. Create an assembly program (lab3_2a.asm) to trigger
an interrupt whenever tactile switch S2 on the OOTB SLB
is pressed, without debouncing the switch. Within the
necessary ISR for the interrupt, increment a global counter,
e.g., a register, and then display the updated count value on
the LEDs available on the OOTB SLB such that the count
value is displayed in binary notation with illuminated
LEDs. (For example, if the current count value is equal to
three, then LEDs D1 and D0 should be illuminated.)
Additionally, within the main routine of the relevant
program, after configuring the necessary interrupt,
continually toggle on/off the blue LED within the RGB
package available on your µPAD (labeled Blue_PWM

within the µPAD schematic) as quickly as possible (i.e.,
within a loop), to be able to easily highlight the fact that the
separate, assigned tasks can appear to occur at the same
time.

2.3. Verify that your program responds asynchronously to your
tactile switch and that the toggling of the LED never
appears to falter. Note that the relevant count value will
most likely update non-incrementally due to switch
bouncing.

Now, techniques for debouncing the relevant switch with
interrupts will be explored. It is important to note that, in general,
debouncing a switch in an asynchronous environment is much
different than in a synchronous environment. In the Switch
Debouncing through Software document available on our course
website, two techniques are provided for environments where
asynchronous responses to a switch are desired, however as the
document further specifies, only one is allowable for our course.

2.4. Re-read and understand the pertinent sections of the Switch
Debouncing through Software document.

Figure 1: Proper program flow for an
interrupt-driven program

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 3/3 Lab 3: Interrupts Welsey Piard, Instructor

2.5. Create another assembly program (lab3_2b.asm) to
perform the same functionality as described in § 2.2, but
additionally debounce tactile switch S2 on the OOTB SLB
with the relevant technique described in the Switch
Debouncing through Software document.

2.6. Check that your switch is now correctly debounced by
verifying that any count value displayed on your LEDs is
exactly the same as the amount of times that the
push-button has been pressed. (While remaining cautious,

try pressing the button in a rougher-than-normal manner to
attempt to ensure that the switch is appropriately
debounced even when placed under more “stressful”
situations.)

NOTE: Now that you have become somewhat familiar with
interrupts, do not let yourself get carried away when developing
future applications – just like with anything, it should always be
thoughtfully considered whether or not interrupts are necessary
to accomplish some given task.

PRE-LAB PROCEDURE SUMMARY
1) Answer pre-lab exercises, when applicable.
2) Learn how to configure a timer/counter interrupt in § 1.
3) Understand how to configure an I/O port interrupt, as well as how to properly debounce a switch within an asynchronous environment,

in § 2.

https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf
https://mil.ufl.edu/4744/docs/switch_debouncing_through_software.pdf

	Objectives
	Introduction
	LAB STRUCTURE
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	1. Introduction to Interrupts
	1.1. Read § 12 (Interrupts and Programmable Multilevel Interrupt Controller) of the 8331 manual, as well as § 14 (Interrupts and Programmable Multilevel Interrupt Controller) of the 8385 manual, to understand how interrupts are managed within the ATxm...
	1.2. Read all parts of § 14 (TC0/1 – 16-bit Timer/Counter Type 0 and 1) within the 8331 manual regarding timer/counter interrupts.
	1.3. Create a simple assembly program, lab3_1.asm. Within this program, configure a timer/counter to trigger an overflow (OVF) interrupt every 67 ms. Within the necessary interrupt service routine, toggle an I/O port pin for which you have access to p...
	1.4. Use your DAD to verify that the chosen pin toggles at the appropriate rate.
	PRE-LAB EXERCISES

	2. interrupts, continued
	2.1. Read the relevant parts within § 13 (I/O Ports) of the 8331 manual to learn how to configure interrupts for an I/O port on the ATxmega128A1U.
	2.2. Create an assembly program (lab3_2a.asm) to trigger an interrupt whenever tactile switch S2 on the OOTB SLB is pressed, without debouncing the switch. Within the necessary ISR for the interrupt, increment a global counter, e.g., a register, and t...

	2.3. Verify that your program responds asynchronously to your tactile switch and that the toggling of the LED never appears to falter. Note that the relevant count value will most likely update non-incrementally due to switch bouncing.
	2.4. Re-read and understand the pertinent sections of the Switch Debouncing through Software document.
	2.5. Create another assembly program (lab3_2b.asm) to perform the same functionality as described in § 2.2, but additionally debounce tactile switch S2 on the OOTB SLB with the relevant technique described in the Switch Debouncing through Software doc...
	2.6. Check that your switch is now correctly debounced by verifying that any count value displayed on your LEDs is exactly the same as the amount of times that the push-button has been pressed. (While remaining cautious, try pressing the button in a r...
	NOTE: Now that you have become somewhat familiar with interrupts, do not let yourself get carried away when developing future applications – just like with anything, it should always be thoughtfully considered whether or not interrupts are necessary t...
	pre-lab procedure summary

