
University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 1/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

OBJECTIVES
• Learn how to apply asynchronous communication and the Universal Synchronous/Asynchronous Receiver Transmitter (USART)

system of the ATxmega128A1U.

INTRODUCTION
Beyond parallel communication, where multiple bits of data are transferred together via a bus of pins1, serial communication is another
method in which a processor can communicate with external devices. Overall, serial communication involves the process of sending one
bit of data at a time, while following a specific protocol.

Serial communication is generally classified as either being asynchronous or synchronous. Unlike synchronous serial communication,
where a common clock signal is used to determine when to send, receive, or sample data between multiple devices, there exists no
synchronization signal for asynchronous serial communication. Instead, asynchronous communication protocols rely on the hope that a
common transfer rate will be upheld by any systems using a chosen protocol; if this is not achieved, data transferred or received could be
wrongly interpreted, or even entirely missed.

To facilitate asynchronous serial communication, a device known as a Universal Asynchronous Receiver/Transmitter (UART) is
generally used in conjunction with both a transmitting device and a receiving device. A UART utilizes a clock signal to generate a transfer
rate, denoted as the baud rate2, and also uses two physical connections to communicate data: one pin to receive data (Rx), and one pin
to transmit data (Tx). Within the ATxmega128A1U, several UART modules are available by way of the Universal
Synchronous/Asynchronous Receiver Transmitter (USART) system.3

LAB STRUCTURE
Within this lab, you will begin to explore the asynchronous capabilities of the USART system within the ATxmega128A1U. In § 1, you
will research relevant information regarding the USART system. In § 2, you will learn to transmit a text character from your
microcontroller to a connected computer, via the USART system. In § 3, you will use an oscilloscope to measure the transmission signal
generated from a relevant USART module. In § 4, you will learn to transmit a character string of arbitrary length4. In § 5, you will
determine how to receive a character from a connected computer via the USART system. In § 6, you will learn to receive a character
string of arbitrary length4. In § 7, you will configure the reception of data via the USART system to be interrupt-based.

REQUIRED MATERIALS
• Atmel ATxmega128A1U AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• OOTB µPAD v2.0 with USB A/B cable
• Digilent Analog Discovery (DAD) kit with WaveForms

software

SUPPLEMENTAL MATERIALS

1 You have previously utilized parallel communication whenever using an I/O port or the external bus interface (EBI) system.
2 To learn more about baud rates in the context of this course, see Appendix B of this document.
3 In addition to providing the functionality of a UART, the USART system also provides a form of synchronous serial communication to the ATxmega128A1U.
4 By “arbitrary length”, we mean any length of allottable, contiguous data memory locations.

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 2/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

1. INTRODUCTION TO USART
In this section, you will explore documentation for the Universal
Synchronous/Asynchronous Receiver Transmitter (USART)
system within the ATxmega128A1U, which provides the
microcontroller with forms for both synchronous and
asynchronous serial communication. However, in this lab, we
will only explore the asynchronous form provided by the system.

1.1. Read any relevant parts of § 23 (USART) within the 8331
manual to learn about the asynchronous abilities of the
USART system available within the ATxmega128A1U.

On the µPAD, the ATxmega128A1U uses a specific USART
module to transfer data, via an EDBG chip, to and from the USB
type B port also located on the µPAD; this allows
communication between the USB type B port and a USB type A
port on a computer, whenever the appropriate USB A/B cable is
connected. (Note that the EDBG chip is not shown on the µPAD
schematic due to the request of the manufacturer.)

NOTE: It is said that the microcontroller receives data
transmitted from the EDBG chip, and that the EDBG receives
data transmitted from the microcontroller. Following this
nomenclature, recognize that the signal labeled
EDBG_USART_CDC_TX in the µPAD schematic is meant to
correspond to the Rx signal within the relevant USART module,
and the signal labeled EDBG_USART_CDC_RX is meant to
correspond to the Tx signal within the same USART module.

1.2. Review the relevant µPAD schematic to identify which
USART module is used to communicate with a connected
computer.

PRE-LAB EXERCISES
i. The sampling rate of a UART receiver is usually faster than

the baud rate of the overall system. Why is this so?

ii. What is the maximum possible baud rate for asynchronous
communication within the USART system of the
ATxmega128A1U, assuming that the microcontroller has a
system clock frequency of 2 MHz and that the USART
“double-speed mode” is disabled (i.e., the relevant bit
CLK2X is set to 0)? In addition to the maximum rate,
provide the values of the relevant registers used to configure
that rate. Whenever appropriate, support your answer with
calculations.

iii. In the context of the USART system within the
ATxmega128A1U, how many buffers (i.e., memory
locations that store temporary data) are used by a
transmitter? How many are used by a receiver?
Additionally, for both transmitters and receivers, explain
how the use of buffers provides greater flexibility to an
application involving these components.

iv. If an asynchronous serial communication protocol of 7 data
bits, one start bit, one stop bits, odd parity, and baud rate of
12.24 kHz was chosen, calculate how many seconds it
would take to transmit the ASCII character string “Dr.
Schwartz saw seven slick slimy snakes slowly
sliding southward.” (This string has 67 characters.)
Note that ASCII is a 7-bit (not an 8-bit) code. Show all
work.

2. USART, CHARACTER TRANSMISSION
In this section, you will write an assembly program,
lab5_2.asm, to configure the appropriate USART module
within your microcontroller to send data to your computer via
the relevant USB ports. For this lab, you must utilize the
following asynchronous serial communication protocol: odd
parity, 8 data bits, 1 start bit, 1 stop bit, and 51,000 bps (bits per
second) baud rate, i.e., 51 kHz.

2.1. Create an assembly program, lab5_2.asm. In this
program, first create the following two subroutines.

2.1.1. USART Initialization (USART_INIT). This subroutine
should initialize the necessary USART module.

2.1.1.1. Set the data direction of the appropriate USART
transmit pin.

2.1.1.2. Configure the USART module for the appropriate
mode (synchronous, asynchronous, etc.), and
configure the expected number of data bits, parity
type, and number of stop bits.

2.1.1.3. Set the baud rate by storing the appropriate value in
the relevant baud rate registers. (See Appendix B for
some information regarding baud rates.) You can
use the excel workbook given on the course website
(Baud Calculator) to verify any baud rate
calculations, but be sure that you know how to
calculate the necessary values by hand for
quizzes and exams. (When configuring baud rate
registers, it is useful to use assembler directives
when programming in assembly, or macros when
programming in C, which will be relevant later.)

2.1.2. Output Character (OUT_CHAR). This subroutine will
output a single character to the transmit pin of a chosen
USART module. It will be assumed that the relevant
character is passed into the subroutine via a
general-purpose register (e.g., r16 or r17).

2.1.2.1. At the beginning of this subroutine, check if there is
currently an ongoing transmission in the relevant
USART module; if there is, wait until it has been

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf
https://mil.ufl.edu/4744/software/xmega_usart_baud_calc.xlsx

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 3/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

completed. An appropriate interrupt flag should be
polled to handle this, i.e., do not use an interrupt.

2.1.2.2. Transmit the character passed into the subroutine.

2.2. Next, create a main routine within the assembly program
to continually transmit the ASCII character U (i.e., the
capital letter U) utilizing the OUT_CHAR subroutine.

You will need to use a serial terminal program on your computer
to view any data transmitted by your microcontroller. Basic
information on how to configure/use PuTTY, a popular serial

terminal program, is given in Appendix A of this document.
Some other popular terminal programs are X-CTU, RealTerm,
Bray Terminal (also known as Br@y++ Terminal), MobaXterm,
and HyperTerminal. There is even a terminal within the Data
Visualizer extension of Atmel Studio. You may use any serial
terminal program for this course, as long as it has all features
needed. (These features will not be listed here.)

2.3. Use a serial terminal program on your computer, e.g.,
PuTTY, to test your assembly program and verify that the
ASCII character U is continually transmitted.

3. USART, MEASURING BAUD RATE

In this section of the lab, you will use your DAD to measure a
baud rate created by a USART module, and then record a
transmission frame for the ASCII character U.

Unfortunately, on the µPAD, there is no practical way to
measure the physical pins utilized by the USART module
connected to your computer. Thus, so that any measurements
may be easier, you will utilize some other USART module that
has the relevant signals mapped to more accessible pins.

NOTE: When utilizing a separate USART module, you will not
be able to communicate with a connected computer, since the
µPAD was not designed to connect any other module to the
relevant EDBG chip.

3.1. Create an assembly program, lab5_3.asm, to configure a
USART module that has its Tx signal connected to an I/O
pin that can be easily measured via the µPAD, and then to
continually transmit the ASCII character U within a main
routine. (Other than the different USART module, this

program should be unchanged from your previous
program.)

3.2. To verify that the defined protocol is met (i.e., 51 kHz baud
rate, odd parity, 8 data bits, 1 start bit, and 1 stop bit), use
the Scope feature within WaveForms, along with your
DAD, to measure the width of both a single data bit and a
single character transmission frame. Take an appropriate
screenshot for each measurement. For the character
transmission frame screenshot, annotate each element
within one frame by type, e.g., start bit, data bit 0 (D0),
data bit 1 (D1), etc.

NOTE: The ASCII character U (equivalent to 0x55 =
0b01010101) was chosen for the above tasks to allow the
elements within a character transmission frame to be easily
identified.

4. USART, STRING TRANSMISSION

Now that you have a method to output a single character via the
USART system, you should be able to easily create a routine to
output a character string of arbitrary length.

4.1. Create an assembly file, lab5_4.asm. First, copy the
subroutines used in § 2. Then, write the following
subroutine.

4.1.1. Output character string (OUT_STRING). This
subroutine should output a character string stored in
program memory, using the appropriate USART
module. When this subroutine is called, it will be
assumed that the Z register already points to the
beginning of a character string within memory, i.e.,
any main program utilizing this subroutine must
properly configure the Z register before calling the
subroutine.

4.1.1.1. Read the character pointed to by Z and increment
the pointer.

4.1.1.2. For each non-null (i.e., non-zero) character, call
the subroutine OUT_CHAR; when a null character
is found, return from the subroutine.

4.2. Create a main routine within the relevant assembly
program to output your complete name, using the
OUT_STRING subroutine. Use a terminal program on your
computer to test your assembly program.

NOTE: Recall that ASCII characters can be referenced in Atmel
Studio individually, by using single quotes (e.g., 'A'), and as a
string, by using double quotes (e.g., "this is a string of
ASCII characters").

5. USART, CHARACTER INPUT

In this section, you will begin to configure the appropriate
USART module to receive serial data from your computer.

5.1. Create an assembly file, lab5_5.asm. First, copy the
subroutines used in § 4, and edit the USART_INIT
subroutine to additionally enable the receiver within the
appropriate module and configure the data direction of the

pin connected to the Rx signal. Then, write the following
subroutine.

5.1.1. Input character (IN_CHAR). This subroutine should
receive a single character with the relevant USART
module and return the received character to the calling
procedure via a specified general-purpose register
(e.g., r16 or r17).

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 4/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

5.1.1.1. Check if a character has been received (by polling
an appropriate interrupt flag), and if not, keep
checking until one has been received.

5.1.1.2. Read the received character from the appropriate
buffer and return the character to the calling
procedure.

5.2. Design a main routine within the relevant assembly file to
continually echo (i.e., transmit back) to your computer any
character received. Utilize the IN_CHAR and OUT_CHAR
subroutines whenever appropriate. Use a terminal program
on your computer to test your assembly program.

6. USART, STRING INPUT

Now that you have a method to input a single character via the
USART system, you should be able to create a routine to input a
character string of arbitrary length.

6.1. Create an assembly program (lab5_6.asm). First, copy
the subroutines used in § 5. Then, write the following
subroutine.

6.1.1. Input character string (IN_STRING). This subroutine
should receive a character string of arbitrary length
with the relevant USART module and store the
received character string to some memory location(s)
within data memory via the Y index. Whenever this
subroutine is called, it will be assumed that the Y
index already points to the beginning of some pre-
allocated contiguous memory locations, i.e., any main
program utilizing this subroutine must properly
configure data memory and the Y index before calling
the subroutine.

6.1.1.1. Continually read characters from the appropriate
USART module with the IN_CHAR subroutine.
For each character not equal to the carriage
return5 character (CR, 0x0D) character, nor the
backspace character (BS, 0x08), nor the delete
character (DEL, 0x7F), store the character in
the next appropriate data memory location with
the Y index; when a backspace character or delete
character6 is found, decrement the Y index to

allow for another character to be written, and
when a carriage return character is found, store a
null character at the end of the input string and
return from the subroutine.

6.2. Create a main routine within the relevant assembly
program to input your complete name, using the
IN_STRING subroutine, and then echo the relevant input
string. To echo this string stored in data memory, you will
not be able to use the OUT_STRING designed in § 4 (since
this subroutine was designed to read from program
memory), however another subroutine with very similar
functionality could be created. Make sure to allocate an
appropriate amount of data memory as well as configure
any necessary indices, e.g., Y. The amount of memory that
should be allocated for the input string is, more or less,
arbitrary. (In general, this should be dependent on the
application.) However, it would be wise to utilize some
form of a symbolic constant, e.g., one defined by the
‘.equ’ keyword, so that the amount of data allocated
could be readily changed.

6.3. Use a serial terminal on your computer to test your
program. Verify that backspace functionality is correct for
at least one of [1] the backspace character (BS, 0x08) or
[2] the delete character (DEL, 0x7F); it is not expected
that both of these specified characters actually be utilized
on some connected keyboard.6

7. USART, INTERRUPT-BASED RECEIVING
In this section of the lab, you will learn how to configure
interrupt-based receiving within the USART system by creating
an interrupt-driven echo program for the appropriate USART
module.

7.1. Create an assembly program, lab5_7.asm, that utilizes
the receive complete (RxC) interrupt within the appropriate
USART module to echo (i.e., transmit back) to your
computer any character received. Additionally, to
demonstrate that your serial interrupt is independent from
the rest of your program, continually toggle the

5 To denote when text should start to appear at the beginning of a following line,
a special sequence of values, comprising what is known as a newline, is utilized.
Usually, a newline is generated by an Enter key or Return key on a computer
keyboard, and, with most operating systems, a newline consists of at least a line
feed (LF, 0x0A, \n) character. However, with PuTTY and some other serial
terminal programs, only a carriage return (CR, 0x0D, \r) character is used
to represent a newline, at least by default.

In the Windows® operating system, a newline is a carriage return character,
followed by a line feed character, to designate that a relevant cursor should both
return to the beginning of a line of text and advance to the next line of text,

BLUE_PWM LED within the main routine of your
program. (See the relevant µPAD schematic, if necessary.)
Use a serial terminal program to test your assembly
program. Within the serial terminal, make sure that local
echoing, or anything similar, is disabled. (See § A.3 within
Appendix A of this document to learn how to disable local
echoing within PuTTY.)

respectively. This sequence of characters originates from typewriter times, when
starting a new line of text involved the two-step process of turning a carriage to
the position denoting the beginning of a line and then turning the platen (wheel)
to the following line.

In systems based on Unix® or Linux®, a newline character consists of only a
line feed character.

6 The delete character code is included here since serial terminal programs (e.g.,
PuTTY) utilize, by default, the delete character code to represent a “backspace”.

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 5/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

NOTE: Recall that interrupt service routines should generally be
as short as possible; thus, it would generally be unwise to call a
subroutine within an ISR.

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 6/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

PRE-LAB PROCEDURE SUMMARY
1) Answer pre-lab exercises when applicable.
2) Become introduced to the USART system within the ATxmega128A1U in § 1.
3) Learn how to transmit a character via the USART system in § 2.
4) Measure USART character transmissions with an oscilloscope in § 3. Take an appropriate screenshot for each relevant measurement

and annotate when appropriate.
5) Learn to transmit a character string of arbitrary length via the USART system in § 4.
6) Create a subroutine to receive a character via the USART system in § 5.
7) Implement a subroutine to receive a character string of arbitrary length via the USART system in § 6.
8) Create an interrupt-driven echo program in § 7.

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 7/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

APPENDIXES
A. PUTTY

PuTTY is a lightweight terminal program with many features and
settings, but for the purposes of this course, we will only need to
use its serial operating mode. To start using PuTTY, you will first
need to download the program to your PC.

A.1. To download PuTTY for 64-bit operating systems, click
here; for 32-bit operating systems, click here. Once
downloaded, run the executable.

Upon the program opening, the PuTTY configuration menu
should be displayed, as shown in Figure 2. This configuration
menu is used to select the operation(s) of the terminal
application. There are a few things that must be changed before
we can start communication between our computer and the
microcontroller.

A.2. In the configuration menu of PuTTY, do the following:

A.2.1. Select the Session tab at the top left. Choose Serial as
the connection type (on the right, next to SSH).

A.2.2. Select the Serial sub-tab on the left of the PuTTY
configuration menu (located at the bottom of the
Connection tab list).

A.2.3. Choose and enter the correct COM (communication)
port that corresponds to the µPAD. To determine which
COM port on your computer represents the µPAD,

A.2.3.1. Open the preinstalled Device Manager application
in Windows, expanding the Ports section.

A.2.3.2. Disconnect your µPAD USB cable and make a note
of the COM ports that are available. (It is possible
that no ports may be shown.)

A.2.3.3. Re-connect your µPAD USB cable and notice the
COM port was added to the list. This is the COM
port that you should use in PuTTY, e.g., COM1,
COM2, etc.

A.2.4. Enter the correct baud rate in the Speed (baud) textbox,
select the correct number of data and stop bits, and also
select the correct type of parity. Additionally, set Flow
Control to None. (Make sure that the data bits, stop
bits, and type of parity are all configured as they are in
the USART system within the ATxmega128A1U.)

A.2.5. Once everything is configured, you can save your
configuration settings so that you do not have to change
them every time. To do this, do the following:

A.2.5.1. Navigate back to the Session menu, and in the
textbox located under Saved Sessions, type
something such as 4744 UART Config. This will be
the name used for your configuration.

A.2.5.2. Next, click the button to the right labeled Save. This
will save your current configuration, so that you can
access it for the next time you use PuTTY. (To load
a saved configuration, you will need to first click on
the appropriate configuration listed within Saved
Sessions and then click the button to the right
labeled Load.)

Now that everything is configured, you can open the terminal
window by clicking the Open button located at the bottom right
of the window.

NOTES:

 Configure PuTTY and open the terminal window BEFORE
you debug/run your program in Atmel Studio.

 It is possible that the COM channel will change if you have
different USB devices connected to your PC, or if you
connect any USB devices in a different order. If this occurs,
just repeat items 2 and 3 above to determine the proper
COM port for your microcontroller.

Additionally, there is a setting in PuTTY that causes characters
typed to the terminal to be echoed, i.e., displayed to the terminal
automatically. This can be mistaken as a properly-working echo
program, when in fact PuTTY might be the only source of
echoing.

A.3. When applicable, to turn off the automatic echo setting, do
the following:

A.1.1. Open the configuration menu of PuTTY.

A.3.6. Select the Terminal tab.

A.3.7. Under Local echo, select Force off.

You can find more detailed information on PuTTY’s website, or
by clicking on the following link: PuTTY User Manual.

Figure 2: PuTTY Configuration Menu

https://the.earth.li/%7Esgtatham/putty/latest/w64/putty.exe
https://the.earth.li/%7Esgtatham/putty/latest/w32/putty.exe
https://the.earth.li/%7Esgtatham/putty/0.70/htmldoc/

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Revision 0 Christopher Crary, Instructor
Page 8/8 Lab 5: Asynchronous Serial Communication Wesley Piard, Instructor

B. BAUD RATE VS. HZ VS. BITS/SECOND

In general, a baud rate represents the rate of symbols per
second, where a symbol represents a relevant unit. In this
course, the relevant symbol for a baud rate is a bit. Therefore,
the overall unit of any baud rate in this course is bits/second
(bps).

Additionally, since one bit of data is transmitted per one cycle of
a respective clock signal, and since the unit of hertz (Hz)

represents cycles per second, we can state that a baud rate of
1 bps implies that the respective clock signal has a frequency of
1 Hz.

To learn more about communication theory, take EEL4514:
Communication Systems and Component

C. DEBUGGING WITH UART
The ATxmega128A1U UART module does not continue to run
while the processor is halted at a breakpoint. Consequently, if
you are trying to debug your code by setting breakpoints
anywhere near your UART functions, or code that calls your
UART functions, your character transmissions are very likely to
become corrupted. If you use breakpoints, you should be aware
of this fact.

Fortunately, you have many tools at your disposal. Halting the
program to view IO memory and registers can still be useful, as
long as you are aware that stepping through the code line by line
will interfere with UART communication. Additional debugging
techniques include outputting useful information (such as the
USART STATUS register) via LEDs at runtime. Another
common debugging technique is printing information to the
terminal.

	Objectives
	Introduction
	Lab structure
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.
	1. introduction to usart
	1.1. Read any relevant parts of § 23 (USART) within the 8331 manual to learn about the asynchronous abilities of the USART system available within the ATxmega128A1U.
	1.2. Review the relevant µPAD schematic to identify which USART module is used to communicate with a connected computer.
	PRE-LAB EXERCISES

	2. USART, CHaracter transmission
	2.1. Create an assembly program, lab5_2.asm. In this program, first create the following two subroutines.
	2.1.1. USART Initialization (USART_INIT). This subroutine should initialize the necessary USART module.
	2.1.1.1. Set the data direction of the appropriate USART transmit pin.
	2.1.1.2. Configure the USART module for the appropriate mode (synchronous, asynchronous, etc.), and configure the expected number of data bits, parity type, and number of stop bits.
	2.1.1.3. Set the baud rate by storing the appropriate value in the relevant baud rate registers. (See Appendix B for some information regarding baud rates.) You can use the excel workbook given on the course website (Baud Calculator) to verify any bau...
	2.1.2. Output Character (OUT_CHAR). This subroutine will output a single character to the transmit pin of a chosen USART module. It will be assumed that the relevant character is passed into the subroutine via a general-purpose register (e.g., r16 or ...
	2.1.2.1. At the beginning of this subroutine, check if there is currently an ongoing transmission in the relevant USART module; if there is, wait until it has been completed. An appropriate interrupt flag should be polled to handle this, i.e., do not ...
	2.1.2.2. Transmit the character passed into the subroutine.
	2.2. Next, create a main routine within the assembly program to continually transmit the ASCII character U (i.e., the capital letter U) utilizing the OUT_CHAR subroutine.
	2.3. Use a serial terminal program on your computer, e.g., PuTTY, to test your assembly program and verify that the ASCII character U is continually transmitted.
	3. Usart, measuring baud rate
	3.1. Create an assembly program, lab5_3.asm, to configure a USART module that has its Tx signal connected to an I/O pin that can be easily measured via the µPAD, and then to continually transmit the ASCII character U within a main routine. (Other than...
	3.2. To verify that the defined protocol is met (i.e., 51 kHz baud rate, odd parity, 8 data bits, 1 start bit, and 1 stop bit), use the Scope feature within WaveForms, along with your DAD, to measure the width of both a single data bit and a single ch...
	4. usart, string TRANSMISSION
	4.1. Create an assembly file, lab5_4.asm. First, copy the subroutines used in § 2. Then, write the following subroutine.
	4.1.1. Output character string (OUT_STRING). This subroutine should output a character string stored in program memory, using the appropriate USART module. When this subroutine is called, it will be assumed that the Z register already points to the be...
	4.1.1.1. Read the character pointed to by Z and increment the pointer.
	4.1.1.2. For each non-null (i.e., non-zero) character, call the subroutine OUT_CHAR; when a null character is found, return from the subroutine.
	4.2. Create a main routine within the relevant assembly program to output your complete name, using the OUT_STRING subroutine. Use a terminal program on your computer to test your assembly program.
	5. usart, character input
	5.1. Create an assembly file, lab5_5.asm. First, copy the subroutines used in § 4, and edit the USART_INIT subroutine to additionally enable the receiver within the appropriate module and configure the data direction of the pin connected to the Rx sig...
	5.1.1. Input character (IN_CHAR). This subroutine should receive a single character with the relevant USART module and return the received character to the calling procedure via a specified general-purpose register (e.g., r16 or r17).
	5.1.1.1. Check if a character has been received (by polling an appropriate interrupt flag), and if not, keep checking until one has been received.
	5.1.1.2. Read the received character from the appropriate buffer and return the character to the calling procedure.
	5.2. Design a main routine within the relevant assembly file to continually echo (i.e., transmit back) to your computer any character received. Utilize the IN_CHAR and OUT_CHAR subroutines whenever appropriate. Use a terminal program on your computer ...
	6. usart, string input
	6.1. Create an assembly program (lab5_6.asm). First, copy the subroutines used in § 5. Then, write the following subroutine.
	6.1.1. Input character string (IN_STRING). This subroutine should receive a character string of arbitrary length with the relevant USART module and store the received character string to some memory location(s) within data memory via the Y index. When...
	6.1.1.1. Continually read characters from the appropriate USART module with the IN_CHAR subroutine. For each character not equal to the carriage return4F character (CR, 0x0D) character, nor the backspace character (BS, 0x08), nor the delete character...
	6.2. Create a main routine within the relevant assembly program to input your complete name, using the IN_STRING subroutine, and then echo the relevant input string. To echo this string stored in data memory, you will not be able to use the OUT_STRING...
	6.3. Use a serial terminal on your computer to test your program. Verify that backspace functionality is correct for at least one of [1] the backspace character (BS, 0x08) or [2] the delete character (DEL, 0x7F); it is not expected that both of these ...
	7. Usart, interrupt-based RECEIVING
	7.1. Create an assembly program, lab5_7.asm, that utilizes the receive complete (RxC) interrupt within the appropriate USART module to echo (i.e., transmit back) to your computer any character received. Additionally, to demonstrate that your serial in...
	pre-lab procedure summary

	appendixES
	A. putty
	B.
	B. baud rate vs. hz vs. bits/second
	C. debugging with uart

