
University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 7: ADC, Events Wesley Piard, Instructor
Page 1/5 Revision 0 Christopher Crary, Instructor

OBJECTIVES
• Develop a basic understanding of converting signals from the analog continuous-time domain to the digital discrete-time domain

using the ADC system within the ATxmega128A1U.
• Use and understand the purpose of the event system within the ATxmega128A1U
• Create a basic oscilloscope program by using the ADC and event systems within the XMEGA, as well as the SerialPlot program

INTRODUCTION
As you have seen throughout the previous labs, your microcontroller can produce and detect discrete binary values, i.e., ‘0’ corresponding
to a voltage value close to your processor’s ground reference (normally 0 V), and ‘1’ corresponding to a voltage value close to your
processor’s VCC reference (e.g., 3.3 V). However, the world is also filled with analog signals, i.e., signals that have more than two discrete
values, such as those that represent velocity, temperature, sound and light intensities, etc. Thankfully, it is possible for your microcontroller
to both interpret and generate these non-digital signals, through two separate systems: An Analog-to-Digital Converter (ADC), and a
Digital-to-Analog Converter (DAC).

NOTE: Many sensors output analog signals; an ADC is often used to convert their outputs to a digital representation. Some sensors perform this
conversion themselves.

With an ADC system, an analog signal can be sampled and converted to a digital value. This digital value, whose limits are determined
by the hardware and software configurations of the ADC system, can then be interpreted by your microcontroller.

LAB STRUCTURE
In this lab, we will leverage the ADC system within the XMEGA to ultimately create a program that functions like a simple oscilloscope.
An analog input will be displayed on your computer screen via SerialPlot.

REQUIRED MATERIALS
• Atmel ATxmega128A1U AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• OOTB µPAD, with USB A/B cable
• OOTB Analog Backpack, with accompanying schematic
• Digital Analog Discovery (DAD) kit, with WaveForms

SUPPLEMENTAL MATERIALS

• AVR1300: Using the AVR XMEGA ADC
• AVR1001: Getting Started with the Event System
• SerialPlot source website

o SerialPlot for 64- and 32-bit Windows

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_%20XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8032_ADC.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8071_events.pdf
https://hackaday.io/project/5334-serialplot-realtime-plotting-software
https://mil.ufl.edu/4744/software/serialplot-0.12.0-win32-setup.exe

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 7: ADC, Events Wesley Piard, Instructor
Page 2/5 Revision 0 Christopher Crary, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
As required, you must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

1. USING THE ADC SYSTEM
In this section, you will write a program, lab7_1.c, to sample
data from the CdS cell located on the OOTB Analog Backpack.

NOTE: A Cadmium-Sulfide (CdS) photocell (also known as a
photoresistor, or a light-dependent resistor [LDR]) is a resistor
whose resistance is variable to the amount of light present on the
surface of the photo-conductive cell (see Figure 1). The CdS cell
located on your OOTB Analog Backpack is labeled CDS1.

However, before interfacing with the CdS photoresistor cell, you
must familiarize yourself with the ADC system within the
ATxmega128A1U.

1.1. Read the AVR1300 Application Note describing the ADC
system within XMEGA microcontrollers. Re-enforce the
concepts from this document by reading § 28 (ADC –
Analog-to-Digital Converter) of the doc8331 manual.

PRE-LAB EXERCISES
i. Why must we use the ADCA module as opposed to the

ADCB module?

As alluded to above, an ADC system within your
microcontroller will be used to sample analog voltage values
generated by the CdS cell located on the OOTB Analog
Backpack. Below, you will write software to interface with the
CdS cell, although it will first be necessary to identify which
ADC system must be used within the XMEGA.

1.2. Determine which ADC module must be used to interface
with the CdS cell located on the OOTB Analog Backpack.
Refer to the OOTB Analog Backpack Schematic.

1.3. Write a “C” function, void adc_init(void), to initialize the
ADCA module as follows:

 12-bit signed, right-adjusted
 Normal, i.e., not freerun mode
 2.5 V voltage reference

Only enable the module after all ADC initializations have been
made, and do not start a conversion within the initialization
function.

In the MUXCTRL register, select the appropriate combination of
positive and negative inputs to measure the voltage at the CdS
cell. The CDS+ and CDS- signals on the OOTB Analog
Backpack schematic should be used.

PRE-LAB EXERCISES
ii. Would it be possible to use any other ADC configurations

such as single-ended, differential, differential with gain, etc.
with the current pinout and connections of the OOTB
Analog Backpack? Why or why not?

iii. What would the main benefit be for using an ADC system
with 12bit resolution, rather than an ADC system with 8bit
resolution? Would there be any reason to use 8bit resolution
instead of 12bit resolution? If so, explain.

1.4. Write a main routine for your program that continually
does the following:

i. Start an ADC conversion on the proper ADC channel.
ii. Wait for the proper ADC interrupt flag to be set,

indicating that the conversion has finished.
iii. Store the 12-bit signed conversion result into a signed

16-bit variable.

1.5. Verify that some ADC conversion results are accurate.
This can easily be achieved by placing a breakpoint after
you save the conversion result and viewing its contents in
the Watch window.

To check if the result is correct, find an appropriate equation of
a line that represents the linear relationship between the range of
measurable analog voltage values and the range of digital values
of the ADC system (e.g., VANALOG = f(VDIGITAL)). For example,
with an analog voltage range of −2.5 V to +2.5 V, if the analog
voltage is 1V, the digital representation should be about
5110 = 0x33 for an 8-bit ADC system, and 81910 = 0x333 for a
12-bit ADC system; if the voltage is 1.5V, the digital
representation should be about 7710 = 0x4D for an 8-bit ADC
system, and 122810 = 0x4CC for a 12-bit ADC system. You can
measure the voltage difference across the CDS+ and CDS- pins
using your multimeter and then compare that to the voltage value
you calculate from your ADC result.

Figure 1: Two CdS photocells

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 7: ADC, Events Wesley Piard, Instructor
Page 3/5 Revision 0 Christopher Crary, Instructor

2. SAMPLING AT A SPECIFIC RATE USING EVENTS

In this section, you will write a program, lab7_2.c, that will
sample the CdS cell every 0.213 seconds (i.e., 4.7 Hz). A timer
will be used to automatically trigger ADC conversions at a
frequency of 4.7 Hz. For this to happen automatically, you must
use the Event System.

2.1. Read § 6 (Event System) of the doc8331 manual as well as
the AVR1001 application note, which is provided in the
Supplemental Materials section of this document.

When reading about events, you do not need to pay attention to
any information regarding the quadrature decoder. It is not
relevant for our course.

2.2. Write a “C” function, void tcc0_init(void), to initialize the
TCC0 timer/counter module to overflow at 0.213 seconds.

2.2.1 Use any valid prescaler/period combination to
achieve an overflow time 0.213 seconds.

2.2.2 Use the TCC0 overflow to trigger an event on
Event Channel 0. This can be done using the
CH0MUX register within the Event System.

2.3. Make the following additions to the adc_init function you
wrote in § 0:

 Enable an ADC interrupt to be triggered when a
conversion is complete.

 Using the EVCTRL register within the ADC module,
make an ADC conversion start when Event Channel 0
is triggered.

2.4. Write the ADC interrupt service routine that is executed
when a conversion is complete. It should do the following:

i. Save the result into a signed 16-bit integer variable, just
like you did in § (1.4)iii.

ii. Toggle the BLUE_PWM LED located on the µPAD.

NOTE: The rate at which the LED toggles should be identical
to your sampling rate, i.e., 4.7 Hz.

3. OUTPUTTING SAMPLED DATA WITH UART

In this section, you will test the functionality of your current
system by outputting the analog voltage value measured on the
CdS cell every second, and then display the results, in terms of
both decimal and hexadecimal, within a serial terminal program
on your computer (e.g., PuTTY). More specifically, the output
displayed within your terminal program must include at least the
following to describe the voltage measured:

(+/-)voltage_decimal V (0xvoltage_hex)

where voltage_decimal is the measured ADC digital value
corresponding to the voltage drop experienced by the CdS
photocell, in terms of a decimal value with two decimal places,
and where voltage_hex is the measured ADC digital value
corresponding to the voltage drop experienced by the CdS
photocell, in terms of a hexadecimal value with three digits.

For example, if an 8-bit ADC system with a voltage range of
-5 V to +5 V was used, and the measured voltage was to
correspond to a decimal value of 1.37 V, your output should
include “+1.37 V (0x22)”, without the quotes.

Moreover, if for the same system, a measured voltage value was
to correspond to a decimal value of -2.52 V, your output should
include “-2.52 V (0xC0)”, also without the quotes.

PRE-LAB EXERCISES
iv. What is the decimal voltage value that is equivalent to a

12-bit signed result of 0x1AA, given a voltage range of -3V
to +3V?

v. Given an 8-bit signed ADC system with a voltage reference
range of -2V to +5V, express the expected digital value in
terms of the analog input voltage, using the form
VD = f(VA).

3.1. Using everything from the previous two sections, create a
voltmeter program, lab7_3.c, that outputs the voltage at
the CdS cell to a serial terminal program every second.

3.2. In your ADC ISR, update a global variable with the new
ADC conversion result, and set a global flag that indicates
a new conversion has been made.

3.3. Create a “C” function, void usartd0_init(void), that
initializes the USARTD0 module to operate at
116,500 bps, with eight data bits, odd parity, and one stop
bit.

3.4. In your main routine, when the flag gets set, do the
following:

3.4.1 Clear the global flag.

3.4.2 Output the voltage to the serial terminal.

First send the sign, either ‘+’ or ‘−’ out of the XMEGA’s serial
port, i.e., transmit it to your computer.

The below algorithm describes how you could output the digits
of a decimal number. (Remember that, for this course, you are
not allowed to use standard “C” functions like sprint or
printf.)

• Pi = 3.14159…//variable holds original value
• Int1 = (int) Pi = 3 3 is the first digit of Pi
• Transmit the ASCII value of Int1 and then ‘.’
• Pi2 = 10*(Pi - Int1) = 1.4159…
• Int2 = (int) Pi2 = 1 1 is the second digit of Pi
• Transmit the ASCII value of Int2 digit
• Pi3 = 10*(Pi2 – Int2) = 4.159…
• Int3 = (int) Pi3 = 4 4 is the third digit of Pi
• Transmit the ASCII value of Int3 digit, then a space, and

then a ‘V’

Transmitted Result: 3.14 V

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 7: ADC, Events Wesley Piard, Instructor
Page 4/5 Revision 0 Christopher Crary, Instructor

Make sure that after every voltage transmission, you send a
carriage return and line feed characters such that the next voltage
is displayed on a new line.

NOTE: Although previously in this course, we could avoid floating
point numbers, this would make it much more difficult to solve the
given problems in this section and the subsequent sections of the lab.
Therefore, you should use float in these sections of the lab.

4. VISUALIZING THE ADC CONVERSIONS
In this section, you will write a program, lab7_4.c, to visually
display the CdS cell’s voltage using SerialPlot, like you did in
Lab 6 with the IMU’s accelerometer. This will behave like a very
basic oscilloscope.

4.1. Modify your tcc0_init function to make the timer overflow
at 152 Hz instead of 4.7 Hz. You may need to make
changes to your prescaler.

4.2. In your main routine, instead of outputting the decimal
voltage value as done in § 3, you will output the raw 16-bit
signed values via UART using Simple Binary data format

that SerialPlot understands. Now, since you are only
outputting one type of data (ADC channel conversion), you
only need to use one channel in SerialPlot. This means that
you only need to output two bytes via UART every time
you get a new conversion result. Don’t forget to update
your SerialPlot configurations accordingly. Leave the
variable type the same (int16) and change the number of
channels to one.

You should be able to see the waveform in a SerialPlot window,
like when it was used with the accelerometer.

5. SWITCHING BETWEEN MULTIPLE INPUTS

Finally, you will write a program, lab7_5.c, to use UART to
switch between two different analog inputs: the CdS cell and the
analog input jumper labeled J3 on the OOTB Analog Backpack.
Note that the circuit on the last page of the OOTB Analog
Backpack schematic that will be used in this section has a gain
of 0.4 (as stated in the text on the top of that page).

5.1. Modify your previous usartd0_init function to enable
interrupts for the UART receiver.

NOTE: To send data from SerialPlot to your microcontroller,
you will use the Commands tab within SerialPlot. Enter the
character you wish to send in the field next to “Command 1” and
then click Send. You can create and save multiple unique
commands if desired.

When the character ‘B’ (for Brightness) is received via your
serial terminal connection, the program should switch to
continually measuring and outputting the CdS cell data to

SerialPlot at a rate of 152 Hz, where an error of up to 2% is
permitted for the generated frequency.

When the character ‘F’ (for Function generator) is received, the
program should switch to measuring the result of the analog
input jumper J3, located on the OOTB Analog Backpack.

If any other characters are received, do not change anything.

The decision to switch input sources should occur only within
the receiver interrupt service routine.

NOTE: You will most likely be using the function generator of
your DAD board to supply the ADC with an analog signal via
the J3 header. You should, however, be able to visualize
waveforms from other entities, such as another circuit, a DAC
(digital-to-analog converter), or some other source.

Be aware that this will not work over all input frequencies. You
may want to explore the correlation between the frequency of an
input signal and the affect it has on your program’s output.

PRE-LAB PROCEDURE SUMMARY
1. Write lab7_1.c to ensure your ADC initializations are correct.
2. Write lab7_2.c to introduce the concept of sampling at specific intervals.
3. Write lab7_3.c to create a voltmeter-like application with UART.
4. Write lab7_4.c to create a single-input basic oscilloscope.
5. Write lab7_5.c to expand on the topics from § 4.

University of Florida EEL4744C – Fall 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 7: ADC, Events Wesley Piard, Instructor
Page 5/5 Revision 0 Christopher Crary, Instructor

APPENDIX

A. TROUBLESHOOTING SERIAL PLOT

The goal of this section is to help you with some of the issues students typically have with the serial plot software.

Problem #1 (Flipped Low & High Bytes)
• Many students run into an issue where their data seems to fluctuate rapidly through a large range of values. This typically happens

when the data from your µPAD is flipped. SerialPlot is taking in your low byte as a high byte and your high byte as the low byte. The
simplest way to fix this is to restart you program and ensure that Serial Plot is running before you start the program on your µPAD.

Problem #2 (Baud Rate)
• If you are getting junk data from your µPAD on SerialPlot, this usually indicates that the Baud Rate is incorrectly input into SerialPlot.

Check both your code and SerialPlot values to ensure that they match.

Problem #3 (PuTTY)
• If you are getting no data from your µPAD, ensure that you do not have PuTTY running. Only one program can have control over a

serial connection of your µPAD, and PuTTY and SerialPlot don’t get along, so only use one at a time.

	Objectives
	Introduction
	Lab structure
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	1. using the adc system
	1.1. Read the AVR1300 Application Note describing the ADC system within XMEGA microcontrollers. Re-enforce the concepts from this document by reading § 28 (ADC – Analog-to-Digital Converter) of the doc8331 manual.
	pre-lab exercises

	1.2. Determine which ADC module must be used to interface with the CdS cell located on the OOTB Analog Backpack. Refer to the OOTB Analog Backpack Schematic.
	1.3. Write a “C” function, void adc_init(void), to initialize the ADCA module as follows:
	 12-bit signed, right-adjusted
	 Normal, i.e., not freerun mode
	 2.5 V voltage reference
	pre-lab exercises

	1.4. Write a main routine for your program that continually does the following:
	1.5. Verify that some ADC conversion results are accurate. This can easily be achieved by placing a breakpoint after you save the conversion result and viewing its contents in the Watch window.
	2. sampling at a specific rate using events
	2.1. Read § 6 (Event System) of the doc8331 manual as well as the AVR1001 application note, which is provided in the Supplemental Materials section of this document.
	2.2. Write a “C” function, void tcc0_init(void), to initialize the TCC0 timer/counter module to overflow at 0.213 seconds.
	2.2.1 Use any valid prescaler/period combination to achieve an overflow time 0.213 seconds.
	2.2.2 Use the TCC0 overflow to trigger an event on Event Channel 0. This can be done using the CH0MUX register within the Event System.
	2.3. Make the following additions to the adc_init function you wrote in § 0:
	2.4. Write the ADC interrupt service routine that is executed when a conversion is complete. It should do the following:
	NOTE: The rate at which the LED toggles should be identical to your sampling rate, i.e., 4.7 Hz.
	3. outputting sampled data with uarT
	PRE-LAB EXERCISES

	3.1. Using everything from the previous two sections, create a voltmeter program, lab7_3.c, that outputs the voltage at the CdS cell to a serial terminal program every second.
	3.2. In your ADC ISR, update a global variable with the new ADC conversion result, and set a global flag that indicates a new conversion has been made.
	3.3. Create a “C” function, void usartd0_init(void), that initializes the USARTD0 module to operate at 116,500 bps, with eight data bits, odd parity, and one stop bit.
	3.4. In your main routine, when the flag gets set, do the following:
	3.4.1 Clear the global flag.
	3.4.2 Output the voltage to the serial terminal.
	4. visualizing the adc conversions
	4.1. Modify your tcc0_init function to make the timer overflow at 152 Hz instead of 4.7 Hz. You may need to make changes to your prescaler.
	4.2. In your main routine, instead of outputting the decimal voltage value as done in § 3, you will output the raw 16-bit signed values via UART using Simple Binary data format that SerialPlot understands. Now, since you are only outputting one type o...
	5. switching between multiple inputs
	5.1. Modify your previous usartd0_init function to enable interrupts for the UART receiver.
	pre-lab procedure summary

	APPENDIX
	A. Troubleshooting Serial Plot

