
University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 1/6 Revision 1 Wesley Piard, Instructor

OBJECTIVES
• Understand how to utilize a digital-to-analog converter (DAC), also known as a D/A system.
• Learn how to effectively recreate a waveform with a lookup table (LUT) and TC/DAC systems.
• Understand why and how to free up CPU utilization with a Direct Memory Access (DMA) system.
• Create a functional piano synthesizer keyboard using your computer keyboard and the USART, DMA, and DAC systems available

within the ATxmega128A1U microcontroller.

INTRODUCTION
As seen in a previous lab, a microprocessor can use an analog-to-digital converter (ADC) to interpret analog signals. Conversely, a digital-
to-analog converter (DAC) allows a microprocessor to convert a digital value, whose limits are also determined by the hardware and
software configurations of the system, into an analog signal, i.e., a voltage waveform. This ability to generate analog voltage waveforms
allows a microprocessor yet another method of communication with external devices.

Separately, as mentioned before, timing is generally imperative in digital systems. Throughout this course, the majority of all operation
and computation performed within a microcontroller has been performed directly by a central processing unit (CPU). Even though the
peripherals within the microcontroller execute independently from the CPU, with exception to when using the event system, all input and
output (I/O) between systems up to this point has been handled by the central processing unit. In other words, the CPU has been almost
completely responsible for reading/writing data, waiting for asynchronous events, executing interrupt service routines, etc. In applications
that require a lot of computation, or those that are known to be CPU-bound, this tight coupling between systems can cause CPU execution
time to be wasted on I/O.

Many applications rely on moving a large amount of data between application subsystems. This desire for flexible data transfer motivated
the creation of the Direct Memory Access (DMA) system. Simply put, a DMA system allows data to move from one system to another via
a data bus, without processor intervention.

LAB STRUCTURE
In this lab, you will begin to utilize the DAC and DMA systems within the ATxmega128A1U. In order to do so, you will first learn the
basics of the DAC system by generating a waveform with a constant voltage. Then, you will generate (or more specifically, emulate) a
sine waveform at various frequencies, with a table of predefined data points. This method of using a table of predefined data, otherwise
known as a lookup table (LUT), to generate a waveform is quite common and efficient, although it should not be surprising that with only
a finite amount of data points, the generated waveform will amount some degree of (possibly negligible) error. Around this point within
the lab, the need for a DMA system will be apparent, and you will begin to use such a system available within the ATxmega128A1U.

Following this, you will use your emulated sine waveform to output a musical note from the speaker on your OOTB Analog Backpack,
after learning some fundamental music terminology. Finally, you will learn some basic music theory regarding pianos, and then finish the
lab by creating a simple keyboard synthesizer program. This program will allow you to use twelve of your computer keyboard keys to
generate specific musical notes within two selected musical octaves, namely the 6th and 7th octaves.

REQUIRED MATERIALS
• Atmel ATxmega128A1U AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• OOTB µPAD v2.0 with USB A/B cable
• Digital Analog Discovery (DAD) kit, with WaveForms
• OOTB Analog Backpack, with accompanying schematic
• IS31AP4991 Audio Power Amplifier Datasheet (local copy)
• Waveform calculators: sine wave, triangle wave, and

exponentially decaying wave
o If the above waveform calculators continue to fail, use

the wave form calculators at the below URL:
https://ppelikan.github.io/drlut/
 To get a sine wave between 0 and 2047, use the

following setting:
• Amplitude: 2047.5
• Offset: 2047.5

• SUPPLEMENTAL MATERIALS

• Atmel 8046D - AVR1304 (DMA Controller)
• Create, Simulate, and Emulate a Project tutorial
• HW 4: System Clock Configuration assignment

https://mil.ufl.edu/4744/docs/XMEGA/doc8331_%20XMEGA_AU_Manual.pdf
https://mil.ufl.edu/4744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
http://www.issi.com/WW/pdf/IS31AP4991.pdf
https://mil.ufl.edu/4744/docs/uPAD2p0/IS31AP4991_Audio_Amplifier.pdf
https://daycounter.com/Calculators/Sine-Generator-Calculator.phtml
https://daycounter.com/Calculators/Triangle-Wave-Generator-Calculator.phtml
https://daycounter.com/Calculators/Decaying-Wave-Generator-Calculator.phtml
https://ppelikan.github.io/drlut/
https://mil.ufl.edu/4744/docs/XMEGA/Atmel-8046-Using-the-XMEGA-DMA-Controller_Application-Note_AVR1304.pdf
https://mil.ufl.edu/4744/docs/Create_Simulate_Emulate_Atmel.pdf
https://mil.ufl.edu/4744/hw/hw4_system_clock_configuration.pdf

University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 2/6 Revision 1 Wesley Piard, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
As required, you must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

NOTE: All software written in this lab must first configure your microcontroller system clock frequency to 32 MHz! See HW 4: System Clock
Configuration for information on how to change the clock frequency.

1. INTRODUCTION TO DAC

As you will soon discover, using a DAC system is very
straightforward after having utilized an ADC system.

1.1. Read § 29 (DAC – Digital to Analog Converter) of the 8331
manual to learn how to configure and use the DAC system
within the ATxmega128A1U.

Now, to demonstrate your understanding of the DAC system,
you will generate a waveform with a constant voltage, and then
measure this waveform with the Scope feature of your
Waveforms software.

1.2. Create a program, lab8_1.c, to generate a waveform
with a constant voltage of 1.8 V, using a DAC module for

which you have access to probe via the µPAD. Measure
the generated waveform with your DAD and the Scope
feature of Waveforms, and then take a screenshot of the
relevant waveform.

HINT: You do not need (and should not use) the OOTB Analog
Backpack for this section and the next two sections, i.e., use a
PortA DAC pin available on the µPAD. Look at the OOTB
Analog Backpack and the pin used for § 4 and 5; use the other
DAC pin for § 1, 2, and 3.

2. GENERATING A WAVEFORM WITH A LOOKUP TABLE

Sometimes, a DAC system may be used to output analog
voltages based on sampled ADC values. In other cases, instead
of sampling a waveform first, it may be desired to simply
recreate a known waveform. In either case, timing requirements
are often imposed, and the capabilities of the microcontroller
completely dictate whether or not these requirements can be met.

When it is desired to recreate a known waveform, the data of the
waveform is often stored within a data structure such as an array
or table, to avoid approximating the waveform with (potentially)
computationally expensive operations. When a data structure
such as an array or table is used for this purpose, the data
structure is often referred to as a lookup table (LUT).

NOTE: A data structure refers to a format of organizing some
unit(s) of data e.g., an array in the “C” programming language is
a data structure that represents a contiguous block of memory
(either program, data, BSS, stack, or heap memory), where a
reference to an array is a pointer to the first element within the
relevant block of memory.

Although lookup tables can allow a microprocessor to avoid
approximating waveform data, they can also require a
considerable amount of memory, depending on the desired
accuracy of the waveform.

In this part of the lab, you will use some “C” array to create a
lookup table for a specified sine wave. Then, you will utilize this
lookup table along with a DAC and TC system to continually
recreate the sine waveform at a given rate.

To generate the necessary data points for your lookup table, you
may use MATLAB, Excel, or an online lookup table calculator
such as the following: Sine Waveform Data Calculator.

Make sure that the lookup table data in the same format expected
by your DAC, i.e., left-adjusted or right-adjusted.

2.1. Write a “C” program, lab8_2a.c, to generate a sine
wave of at least 256 data points, with voltages ranging

between 0V and AREFB, and with a frequency of 698 Hz
(a F5 note in music, more precisely 698.46 Hz), where an
error of up to 2% is permitted for the generated frequency.
(Do not worry if there are any slight voltage errors.) Your
program must utilize some built-in DAC and TC module,
and interrupts must be used to handle the relevant timing.
Remember that, for the purposes of this course, the
optimization tool within the relevant “C” compiler must be
turned off. (Refer to the Create, Simulate, and Emulate a
Project tutorial for more information on altering
optimization levels.)

2.2. Use the Scope feature of your Waveforms software to
measure the created sine waveform. Take a screenshot of
the waveform, identifying its frequency.

2.3. In increments of 50 Hz, increase the target frequency until
you cannot meet the desired accuracy of ±2%. Take a
screenshot of the first waveform that fails to meet this
criterion and include a precise frequency measurement of
the waveform within this screenshot.

PRE-LAB EXERCISES
i. Why might you be unable to generate a desired frequency

with this method of using an interrupt? Refer to the
disassembly of the interrupt service routine. Additionally,
temporarily change the optimization level of your compiler
to -O1. Are the results any different? Why or why not?

ii. Would a method of synchronous polling (i.e., a method with
no interrupts) result in the same issue identified in the
previous exercise? In other words, would the desired
frequency not initially met now be achieved? Alter your
program to check your answer, and then take a screenshot
of the waveform generated, again denoting a precise
frequency measurement of this waveform within the
screenshot.

https://mil.ufl.edu/4744/admin/lab_rules_and_policies.pdf
https://mil.ufl.edu/4744/hw/hw4_system_clock_configuration.pdf
https://mil.ufl.edu/4744/hw/hw4_system_clock_configuration.pdf
https://www.daycounter.com/Calculators/Sine-Generator-Calculator.phtml

University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 3/6 Revision 1 Wesley Piard, Instructor

In the final section of this part, you will use events to generate a
sine waveform of a specified frequency. An event should be
configured to trigger upon an appropriate timer/counter
overflow, which should then start a digital-to-analog conversion
within the appropriate DAC module.

2.4. Write a “C” program, lab8_2b.c, to generate a sine
wave of at least 256 data points, with voltages ranging
between 0V and AREFB, and with a frequency of
1567.98 Hz (a G6) where an error of up to 2% is permitted
for the generated frequency. (Do not worry if there are any
slight voltage errors.) Your program must utilize events.

Again, remember that optimization within the “C”
compiler tool must be turned off.

2.5. Use the Scope feature of your Waveforms software to
measure the created sine waveform. Take a screenshot of
the waveform and include a precise frequency
measurement of the waveform within this screenshot.

PRE-LAB EXERCISES
iii. What is the correlation between the amount of data points

used to recreate the waveform and the overall quality of the
waveform?

3. INTRODUCTION TO DMA

By now in this course, you hopefully are starting to understand
that writing software for a microprocessor requires a good
understanding of computer hardware and, if programming with
any language more abstract than assembly, how some compiler
may generate machine code for a given processor.

In the previous parts of this lab, you generated various
waveforms with a DAC and TC module. In general, using a
timer/counter system is the best way to generate a precise
waveform, but as you probably have noticed, the output
waveform has still been somewhat inaccurate. This is often
because some amount of latency will likely occur whenever our
processor needs to execute some particular code, ultimately
delaying our time-contingent program. A more effective way to
generate the same waveform would be to utilize a Direct
Memory Access (DMA) system along with a timer/counter. A
DMA system allows data to move from one of our systems to
another via the data bus, without processor intervention.

In the remaining parts of this lab, you will use a timer and a set
of events to accurately “trigger” the DMA system within your
microcontroller to move data from your lookup table (located
within data memory) to the DAC system, as to avoid CPU
utilization.

When configuring the DMA system, there are a few things that
need to be considered:

 How many bytes will be transferred in a burst (one piece of
data)?

 How many bytes will be in a complete transfer (i.e., is there
more than one burst)?

 How many times will the specified set of data be
transferred?

 From where should the DMA get the necessary data? If
more than one byte is to be transferred, after a byte is
retrieved, where should the DMA retrieve the next one?

 To where should the DMA transfer the data? Again, if there
is more than one byte to be sent to the destination, where
should the DMA transfer each additional byte after the first?

 Regarding the source and destination of the DMA transfer,
does the DMA ever need to point back to the original
memory location(s) after some transfer?

 What will trigger the DMA transfer? A completed ADC
conversion? Some other interrupt? Some event?

NOTE: Be careful to note that when configuring the DMA,
there are several registers that can only be configured when the
DMA is disabled. Also, be aware that for many configurations,
the DMA channel will be automatically disabled after a certain
number of bursts or blocks.

3.1. Read § 5 (DMAC – Direct Memory Access Controller) of
the 8331 manual, and the Atmel 8046D - AVR1304 (DMA
Controller Application Note) document.

3.2. Write a “C” program, lab8_3.c, to utilize the DMA and
event systems within the ATxmega128A1U to emulate the
same sine waveform described in § 2, with a frequency of
1567.98 Hz (a G6). Note that an event other than that
configured in the previous part will need to be used. Again,
the frequency generated should have no more than ± 2%
error.

3.3. Use your DAD and Waveforms software to measure the
newly created sine waveform. Take a screenshot, including
an appropriate measurement of the waveform’s frequency.

4. INTRODUCTION TO MUSIC

In a previous part of this lab, you created a sine wave with a
frequency of 1567.98 Hz. In musical contexts, this waveform
represents the note G6, one of the 12 notes in the 6th octave. To
further understand what this means, some basic music
terminology is defined below.

In music, a note is a sound defined by a pitch and duration, where
a pitch is a frequency of vibration (Hz), and where sound is
created from vibrations that travel through the air or some other
medium.

A special collection of notes, ordered by pitch, defines a musical
scale, where a single scale can be manifested at many different

pitch levels. The most common musical scales are typically
written using eight notes, where the first and last notes are an
octave apart. An octave is defined to be an interval of notes
where any given base note within the interval has a frequency of
vibration twice that of the same base note in the previous octave
(or half of the same base note in a following octave). For
example, note A in the 6th octave (A6, two full notes above F6,
and one full note above G6, known as a major 2nd), has a
frequency of 1760.00 Hz (as shown in Table 1), whereas the note
A in the 5th octave (A5) has a frequency 880.00 Hz. Similarly,
the note A in the 7th octave (A7) has a frequency of 3520.00 Hz.
(Note that notes in successive octaves double in frequency.)

University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 4/6 Revision 1 Wesley Piard, Instructor

Now, you will begin to utilize the speaker located on the OOTB
Analog Backpack, to create your processor’s first musical tone!
(They grow up so fast.) However, to be able to use your on-board
speaker, a few points regarding audio electronics will first be
mentioned.

In the field of audio electronics, the main goal is to interpret and
produce either sound or pressure wave signals. For a device to
interpret such signals, an analog signal must first be encoded into
a digital signal, with an analog-to-digital converter. (Often, a
preamplifier is used to amplify any weak digital signals into
more manageable signals for any processing components.)
Conversely, to produce sound or pressure wave signals, a digital
signal must be sent from a digital-to-analog converter to a
speaker system. To be able to drive a speaker system with
enough power, an amplifier circuit is almost always needed.

NOTE: Normally, audio applications, as well as other digital
signal processing applications, are handled by a specialized
microprocessor known as a digital signal processor (DSP). Such
a processor is generally built with specialized ADC and DAC
systems, along with other specialized components.

On your OOTB Analog Backpack, there exists an IS31AP4991
audio power amplifier used to drive your on-board speaker
(labeled J4 on your Analog Backpack schematic) with enough
power, by amplifying any signals sent from an internal DAC
system within your processor. Since amplifiers are not
completely efficient, i.e., the level of power output is less than
that of what is input, your amplifier component will need to be
supplied with additional power than that of what is input. To
provide the IS31AP4991 component located on your OOTB
Analog Backpack with additional power, you will need to
connect your DC Barrel Jack power adapter to the VIN supply,
and also connect the other end of the adapter to an AC wall
outlet.

NOTE: Do not use any power supply other than the one
provided in your µPAD kit. Many similar-looking power
supplies have reverse polarity, which would damage you PCBs.

Furthermore, the amplifier component on your OOTB Analog
Backpack has a pin used to enable shutdown. To utilize the
IS31AP4991, shutdown will have to be prevented.

4.1. Locate the IS31AP4991 audio power amplifier within your
OOTB Analog Backpack schematic. Identify the DAC
system that the amplifier input originates from. Identify
how you will prevent the IS31AP4991 from entering its
shutdown mode.

4.2. Create a program, lab8_4.c, to continually output a G6
note (1567.98 Hz) to your on-board speaker.

5. MAKING A MUSICAL INSTRUMENT

In this part of the lab, you will create a small interactive
synthesizer keyboard, using your computer’s keyboard, and the
appropriate USART, DAC, TC, and DMA modules within your
microcontroller.

A synthesizer (often abbreviated as synth) is an electronic
musical instrument that generates electric signals which are then
converted to sound through amplifiers and speakers.
Synthesizers typically imitate traditional musical instruments
like pianos, organs, flutes, or even vocals; they may also imitate
any other wide range of sounds such as ocean waves, animal
noises, simple electronic timbres, etc. The interface for a
synthesizer is commonly in the form of a piano keyboard.

Within a synthesizer keyboard (as well as a piano keyboard),
sound is generated electronically, with either simple switches or
dedicated circuits associated with each key, which is unlike a
normal acoustic piano, where upon a key being pressed, sound
is generated by hammers hitting finely tuned strings.

Most modern pianos contain 88 keys. This means that the piano
can generate around 88 different pitches (with each pitch
corresponding to a musical note). Each key’s frequency can be
calculated through the following equation, where n represents
the nth key (for n = 1, …, 88):

𝑓𝑓(𝑛𝑛) = 440 × 2
𝑛𝑛−49
12 Hz

NOTE: A4 is a standard pitch that is often used to tune various
musical instruments. A4 is generally the 49th key on a keyboard,
i.e., n = 49 in the above equation.

Every twelve keys on the piano make up an octave (see the
previous part of this lab for the definition of an octave). Each
octave on a piano is organized into a group of two black keys, a
group of three black keys, and a group of seven white keys. The
“C” note within each octave generally designates the start of the
octave (when using a “C” scale) and is always placed before the
group of two black keys.

When you create your synthesizer keyboard later in this part, you
will emulate notes from the 6th octave. The 6th octave is chosen
because it is the lowest octave in which all twelve notes have
frequencies within the allowable range of our speaker’s rated
frequencies. To play each of these twelve notes, you will use
specific keys on a connected computer keyboard. For a list of the
the specified key/note pairs and their corresponding frequencies,
see Table 1. Additionally, see Figure 1 for a graphic depicting a
layout of the 6th octave with piano keys (with the first note from
the 7th octave also displayed).

Table 1: Computer synthesizer keyboard details

Computer
Key

Musical
Note

Note Frequency
(Hz)

‘E’ C6 1046.50
‘4’ C#

6/Db
6 1108.73

‘R’ D6 1174.66
‘5’ D#

6/Eb
6 1244.51

‘T’ E6 1318.51
‘Y’ F6 1396.91
‘7’ F#

6/Gb
6 1479.98

‘U’ G6 1567.98
‘8’ G#

6/Ab
6 1661.22

‘I’ A6 1760.00
‘9’ A#

6/Bb
6 1864.66

‘O’ B6 1975.53
‘P’ C7 2093.00

University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 5/6 Revision 1 Wesley Piard, Instructor

Beyond being able to play each of these note frequencies, the
synthesizer must also support two different modes: Sine, where
all notes must be output with a sine waveform (sinusoid), and
Triangle, where all notes must be output with a triangle
waveform. Note that Waveforms can generate a sine and triangle
waveforms with Wavegen’s Sine and Triangle functions,
respectively. Waveforms can also generate various Sawtooth
waveforms (with RampUp or RampDown). To accomplish the
sine waveform and triangle waveform, your program should
utilize two separate lookup tables. In addition, to switch between
each of the two modes, the ‘s’ key (with ‘s’ for switch) on a
connected keyboard must be utilized.

Website apps are available for generating the required data for
each of the following waveforms (two of which are needed for
this lab): sine wave, triangle wave, and exponentially decaying
wave. If the above waveform calculators continue to fail, use the
wave form calculators at the below URL:

https://ppelikan.github.io/drlut/. To get a sine wave (or triangle
wave) with values between 0 and 2047, use the following
setting: Amplitude: 2047.5; Offset: 2047.5. This link can also
generate a sawtooth waveform.

If the above programs do not work, use Just specify the number
of points, the maximum, the number of elements per row, and
whether you want the numbers in hex or decimal. You are free
to generate your own data instead.

Finally, each note on your synth should only play for roughly as
long as you hold the corresponding key, and there must be no
noticeable delay from the time a key is pressed to the time the
corresponding note is output to your speaker. There will be a
minimum note length required to achieve a continuous tone
while the key is held, which will limit the responsiveness of your
program to new key presses during that interval. This
phenomenon is dependent on the computer that you are using to
send commands to the ATxmega128A1U. (See the appendix for
more details). You are not expected to play more than one key
at the same time.

NOTE: Before you attempt to complete the entire program, it is
recommended that you try to output a single frequency of both a
sine and triangle waveform, switching between the two when the
‘s’ key on a connected computer keyboard is pressed.

5.1. Write a “C” program, lab8_5.c, to create the specified
synthesizer keyboard program. Each of the outputted note
frequencies must have no more than ±2% error from the
given frequency/period.

PRE-LAB PROCEDURE SUMMARY
1) Answer any pre-lab exercises, when appropriate.
2) In § 1, configure a DAC system for the first time, and then generate a constant voltage waveform. Measure this waveform with your

DAD, and then take a screenshot of the measured waveform.
3) In § 2, emulate sine waveform with a lookup table, DAC system, and various timing techniques. Take screenshots when appropriate.
4) In § 3, learn how to utilize the DMA system within the ATxmega128A1U, and then output the required sine waveform. Take a

screenshot when appropriate.
5) In § 4, first learn music terminology, before outputting a G6 note to the speaker on your OOTB Analog Backpack.
6) In § 5, create a synthesizer keyboard program using the appropriate USART, DAC, TC, and DMA modules.

Figure 1: Piano key layout for 6th octave (plus C7).

https://daycounter.com/Calculators/Sine-Generator-Calculator.phtml
https://daycounter.com/Calculators/Triangle-Wave-Generator-Calculator.phtml
https://daycounter.com/Calculators/Decaying-Wave-Generator-Calculator.phtml
https://daycounter.com/Calculators/Decaying-Wave-Generator-Calculator.phtml
https://ppelikan.github.io/drlut/

University of Florida EEL4744C – Spring 2024 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 8: DAC, DMA Christopher Crary, Instructor
Page 6/6 Revision 1 Wesley Piard, Instructor

APPENDIX
A. COMPUTER KEYBOARD REPEAT DELAY

Your computer can most likely detect a keypress made to a
connected keyboard in the order of picoseconds. To prevent a
single keypress from being repeated unintentionally, your
computer’s operating system likely has a built-in repeat delay
for any connected keyboard. Sometimes, like within this lab, we
want our computer to recognize a single keypress multiple times,
as quickly as possible.

To change the “Repeat delay” setting within the Windows
operating system, perform the following steps:

1. Navigate to the Keyboard Properties dialog box from the
Start menu (or alternately, through Devices and Printers).
(In Windows 10, type Run at a Cortona prompt, then type
main.cpl @1. The third letter in cpl is a lowercase L and the
number 1 follows the @.)

2. Click on the Speed tab (see Figure 2).

3. Use the sliders beneath Repeat delay to increase/lower the
delay used before a single keypress is detected multiple
times.

4. Click Apply to confirm any changes made.

NOTE: The “Repeat rate” setting also available in the Speed tab
is the frequency at which a single keypress is repeated, after the
initial repeat delay. The configuration of this setting is not vital
to this lab.

Figure 2: Repeat delay setting in Keyboard Properties

	Objectives
	Introduction
	Lab structure
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	1. Introduction to DAC
	1.1. Read § 29 (DAC – Digital to Analog Converter) of the 8331 manual to learn how to configure and use the DAC system within the ATxmega128A1U.
	1.2. Create a program, lab8_1.c, to generate a waveform with a constant voltage of 1.8 V, using a DAC module for which you have access to probe via the µPAD. Measure the generated waveform with your DAD and the Scope feature of Waveforms, and then ta...
	2. Generating a waveform with a lookup table
	2.1. Write a “C” program, lab8_2a.c, to generate a sine wave of at least 256 data points, with voltages ranging between 0V and AREFB, and with a frequency of 698 Hz (a F5 note in music, more precisely 698.46 Hz), where an error of up to 2% is permitt...
	2.2. Use the Scope feature of your Waveforms software to measure the created sine waveform. Take a screenshot of the waveform, identifying its frequency.
	2.3. In increments of 50 Hz, increase the target frequency until you cannot meet the desired accuracy of ±2%. Take a screenshot of the first waveform that fails to meet this criterion and include a precise frequency measurement of the waveform within ...
	pre-lab exercises

	2.4. Write a “C” program, lab8_2b.c, to generate a sine wave of at least 256 data points, with voltages ranging between 0V and AREFB, and with a frequency of 1567.98 Hz (a G6) where an error of up to 2% is permitted for the generated frequency. (Do no...
	2.5. Use the Scope feature of your Waveforms software to measure the created sine waveform. Take a screenshot of the waveform and include a precise frequency measurement of the waveform within this screenshot.
	pre-lab exercises

	3. Introduction to Dma
	3.1. Read § 5 (DMAC – Direct Memory Access Controller) of the 8331 manual, and the Atmel 8046D - AVR1304 (DMA Controller Application Note) document.
	3.2. Write a “C” program, lab8_3.c, to utilize the DMA and event systems within the ATxmega128A1U to emulate the same sine waveform described in § 2, with a frequency of 1567.98 Hz (a G6). Note that an event other than that configured in the previous ...
	3.3. Use your DAD and Waveforms software to measure the newly created sine waveform. Take a screenshot, including an appropriate measurement of the waveform’s frequency.
	4. Introduction to music
	4.1. Locate the IS31AP4991 audio power amplifier within your OOTB Analog Backpack schematic. Identify the DAC system that the amplifier input originates from. Identify how you will prevent the IS31AP4991 from entering its shutdown mode.
	4.2. Create a program, lab8_4.c, to continually output a G6 note (1567.98 Hz) to your on-board speaker.
	5. making a musical instrument
	5.1. Write a “C” program, lab8_5.c, to create the specified synthesizer keyboard program. Each of the outputted note frequencies must have no more than ±2% error from the given frequency/period.
	pre-lab procedure summary

	appendix
	A. Computer keyboard repeat delay

