Introduction to Software
Engineering

by
Josh Hartman

Topics in Software Engineering

.8 ‘e
. L]
® . :
oftware Reauirements - What € ' Wware have
to do?

Software Design - How to design the structure and layout of
software

Software Development - How will we implement the design
Software Testing - Do we know our code Is correct?

Software Maintenance
Software Quality

* Product Requirements - Describe a produce which is one way
to solve the business requirements

* Process Requirements - Things limiting the product
requirement, like what processor to use or the budget

. | describe the system capabilities
and functions the system performs
. constrain the system Iin terms
of performance, reliability, etc.
Good requirements should be
- Cohesive (only address 1 thing)
- Correct (actually meet the business need)
- Observable (a requirement should be visible to a user, it
should not specify software architecture)
- Feasible
- Mandatory
- Verifyable
- Unambiguous

Requirement Analysis

* Prototyping

* Use cases - A seguence of simple steps between an actor and
the system. Actors could be end users or other systems. They
are describe from the point of view of the actor.

Started within a session when the customer chooses a transaction type from a
menu of options. The customer will be asked to furnish appropriate details (e.qg.
account(s) involved, amount). The transaction will then be sent to the bank, along
with information from the customer's card and the PIN the customer entered.

If the bank approves the transaction, any steps needed to complete the
transaction (e.g. dispensing cash or accepting an envelope) will be performed, and
then a receipt will be printed. Then the customer will be asked whether he/she
wishes to do another transaction.

If the bank reports that the customer's PIN is invalid, the Invalid PIN extension
will be performed and then an attempt will be made to continue the transaction.
If the customer's card is retained due to too many invalid PINs, the transaction
will be aborted, and the customer will not be offered the option of doing another.

If a transaction Is cancelled by the customer, or fails for any
reason other than repeated entries of an invalid PIN, a screen
will be displayed informing the customer of the reason for the
fallure of the transaction, and then the customer will be offered
the opportunity to do another.

The customer may cancel a transaction by pressing the Cancel
key as described for each individual type of transaction below.

All messages to the bank and responses back are recorded In
the ATM's log.

Tranzaction Sequence Diagram

TR

—— e e e ww e .

[status ok | mosipt = 0 cnplate Trensation{]
ness

time.

e Robustness - The software is able to operate under stress or
tolerate unpredictable or invalid input. For example, it can
be designed with a resilience to low memory conditions.

e Extensibility - New capabilities can be added to the software
without major changes to the underlying architecture.

" Modularity - the resulting software comprises well defined,
Independent components. That leads to better

maintainability. The components could be then
Implemented and tested in isolation before being integrated

to form a desired software system. This allows division of
work In a software development project.

The Alternate path

@ .
paths. These are things that may not happen often, but could
disrupt your system.

?ﬁips for Software Modularity in C

Ll
. l' g
= L *

* Break software into "modules”, like ADC routines, LCD
routines, motor routines, and so on.

* Use functions AS MUCH AS POSSIBLE. This allows for much
easier testing and more readable code. Functions (including
main) should be <15 lines most of the time.

* Data should correspond to actors in use cases
* Functions should be the actions taken

Seftware Portability cont.

't @ "-
s o 0.
* Software portability is also a consideration. What if you want
to change uC families or migrate from PIC -> Atmel?

* Use #defines to rename specific ports and registers
define ADC_PORT PORTC

* Can use #ifdef, #if, etc. to do conditional compilation

#define DEBUG 1

// some code here...

#ifdef DEBUG
LCD_STRING("message");
#Hendif

UML / object oriented programmiing . -

'+ .8 e,
s o o .

* Object oriented programming is all the rave -
* Use classes (‘available in C++, Java, etc)
* Classes group data with behavior and hence are great ways to
store state in a program
* Classes can be extended for customization
* Classes can be composed of other classes for more advanced
behavior

- Come up with things like an extendable list of strings, etc.

Software Development Process

9
* Each have several benefits and drawbacks

Iterative Process

|n|t|aIIy small but ever larger portions of a software prOJect to
help all those involved to uncover important issues or faulty

assumptions.

Iterative processes are preferred by commercial developers
because It allows a potential of reaching the design goals of a
customer who does not know how to define what they want.

Several requirements are planned for completion during each
Iiteration.

Similar to an Iterative process. Agile processes use feedback,
rather than planning, as their primary control mechanism. The
feedback is driven by regular tests and releases of the evolving
software.

Iterative/agile processes are great for senior design. You can
start writing testing code and at each iteration, integrate parts
together to create new modules with more functionality.

Also, most of you are not sure what your final product will do or
how it will be done when you start coding!

* First automated tests of software functionality are written

* Coding Is then done with a very small team. It is finished
when all tests are passed and no more useful tests can be
thought of.

* Design and architecture are created after refactoring becomes
necessary.

LC 2

1. Requirements specification
2. Design

3. Implementation

4. Integration

5. Testing and cchuooing

6. Installation

7. Maintenance

In this model, much of the work is spent in requirements and
design, ensuring everyone Is on the same page. However, it can
be a rigid model In the case of changing requirements or new
Influences.

NIST reports software bugs cost the economy $59.5 billion
annually

Two of the most common sources for bugs in software are:

Lack of compatability: Software is only fully compatible with 1
web brower, OS, or other software package.(Try running a DOS
program on Windows Vista)

Uncommon inputs: Programs that do not carefully check for
unusual input are vulnerable to bugs. Exception handling can
help a lot with this (not available in C)

Static testing: Consists of code reviews, walkthroughs, or
Inspections. May include the use of code analysis tools.

Dynamic Testing: Actually running the code against test suites
or test cases

Verification: Does the software match the specification?
Validation: Is the software actually what the user wants?

Quality Assurance: Implementing practices to reduce bugs In
previous stages (like pair programming and scheduled code
reviews)

-

"'B;léck—box / White boxTesting

— ‘e

S o

Black Box: Essentially the tester runs code attempting to crash
It. He has no access to the internal workings. This has the

advantage of finding unexpected bugs, but the disadvantage of
blind exploring

White box: Tester has access to program internals.

- Code coverage: What percentage of the code is actually
executed (not all code is executed or tested due to conditional
logic!)

- Function coverage

Regression testing

-

s WY
9
-,
-

A N a

testing an LCD library.

Integration tests: Tests if two modules can work together
System testing: Testing the whole system

System Integration testing: Testing if the system works
properly with external software

Testing tools

ode coverage / analysis tools
Performance toolkits

Cost of bugs
Time Detected
Requirements Architecture Construction System Test Post-Release
Requirements % 3 o-10x 10x 10-100x
Architecture |x 10x 15 25-100x
Construction 1% 10x 10-25x

