

EEL 4914C Senior Design

Final Report

Fall 2007

EEgrip

Team: NiteFlex

Submitted by:

Sean Nelson
galagher@ufl.edu

(407) 234-1173

Gina Wansor
gwansor@ufl.edu

(561) 702-0411

mailto:galagher@ufl.edu
mailto:gwansor@ufl.edu

Gina Wansor & Sean Nelson 2

Table of Contents

Table of Contents ... 2

Project Abstract .. 3

Introduction .. 3

Project Features/Objectives ... 3

Project Concept/Technology Selection ... 7

Design Procedure and Setbacks .. 8

Prototype Cost Analysis ..10

Project Task Breakdown ...11

Timeline ..12

Appendix A – Project Code C Programming ...13

Appendix B – Project Flowcharts and Diagrams ..46

Appendix C – Datasheets ...48

Appendix D – Project Resources ..49

Appendix E – Pictures of Prototype Development ...49

Gina Wansor & Sean Nelson 3

Project Abstract

This project’s primary goal was to design an artificial hand that performs controlled movements,
and had a secondary goal of being able to grasp an object. This biologically inspired artificial
hand focused on the use of the Nitinol1 wire to act as “muscles” with a variety of electrical
components and sensors acting as the nervous system.

Introduction

This project has a multitude of applications in the engineering industry. With its focus on using
Nitinol wire as “muscles”, it creates an interesting path for further research for artificial hands in
the biomedical engineering field. The main purpose would be in the medical field, where the
artificial hand could be used for patients who have trouble with movement in their hand or for
patients who do not have a hand. Another possibility would be in a hazardous environment
where objects cannot be handled directly. The general idea of the EEgrip is to provide a proof-
of-concept of using the Nitinol wire to create an artificial hand that models the human hand.

Project Features/Objectives

1. EEgrip has three fingers – a pointer finger, a middle finger, and a thumb.

2. EEgrip is designed with Nitinol wire technology which is used to act as “muscles” to
move the hand. These “muscles” are located in the forearm and there are strings acting
as tendons, which are used to translate the motion to the digits, very similar to how a
human hand functions as seen in figure 1.

3. The artificial hand contains two kinds of sensors. The first, flex sensors, are used to
determine the positioning of the fingers. The processor reads from the input flex sensors
(on a glove) and tells the fingers on the hands where they should be. The second type of
sensors is the force sensor. These sensors are used to determine if the hand is holding
an object and if it is holding the object too tightly, not to close anymore.

4. The microprocessor, Atmega2560, is used to model the nervous system. The
microprocessor acts as the brain, while the sensors serve as the nervous system. The
wires transmit the electrical signals from the “brain” and “nervous system” to the
“muscles”. This concept is shown in the block diagram given in figure 2.

1
 Nitinol indicates any nickel-titanium shape memory alloy.

Gina Wansor & Sean Nelson 4

Performance Objectives

1. The artificial hand
performs controlled
motions via
commands given by
the microprocessor.
This is demonstrated
by having a user wear
the glove and control
the movement of the
three fingers.

2. The artificial hand also
performs gripping
motions that will allow
it to hold certain
objects. This shall be
demonstrated by
activating the hand to
grip around some
large object. Sensors
will provide the feedback necessary for the microprocessor to control this gripping
motion.

Figure 1 Picture showing tendon and muscle attachments from the finger bones
on the hand to the muscles in the arm for a human hand. [3DScience.com]

Figure 2 Picture showing artificial hand system block diagram.

Gina Wansor & Sean Nelson 5

Electrical Design and System

A block diagram of the electrical design for the artificial hand is shown below in figure 3. The
artificial hand is run by a microcontroller, the Atmega2560, in combination with force sensors,
flex sensors, and Nitinol wire. This configuration enables closed loop control of the motion of the
hand demonstrated by the closed loop diagram provided in figure 4.

Figure 3 Artificial hand system block diagram.

Figure 4 Closed loop feedback diagram.

Microcontroller

ATMEL

Input (Glove/Flex
Sensors

SMA

-◊◊◊-

Force
Sensors

Flex
Sensors

Power

Source

Pulse
Width Mod

EEGrip

System Level
Drawing

LCD

(Debug)

Flex Sensors

(Glove)

Microprocessor

(Atmega2560)

Muscle Wire

(Nitinol Wire)

Flex Sensors

(Fingers)
-

Gina Wansor & Sean Nelson 6

A glove, containing the flex sensors, is connected to the base of the hand and provides input to
the microcontroller of the artificial hand. This input gives feedback from the user to control the
actions of the hand.

The main component of the artificial hand consists of the mechanical layout, which contains the
controller, sensors, and Nitinol wire. Flex and force sensors are placed in the fingers of the
artificial hand. These sensors provide input and feedback to the microcontroller to help
determine the position of the fingers and hand. The flex sensor’s position on each finger is
compared with the equivalent flex sensor that is on the glove and adjusts the finger accordingly.
The fingers are adjusted by the Nitinol wire by running a current through the wire. This is done
using Pulse Width Modulation (PWM) to control the current. If the fingers are grasping an object,
the force sensors allow for the hand to check if it is grasping the object too tightly. If it is
grabbing the object too tightly – the current to the wire is stopped by the controller. The
microcontroller will provide power to these sensors, as well as provide the control signal for the
current regulation circuit.

For a complete schematic of the electrical components of the artificial hand, please see
Appendix B.

Figure 4 Artificial hand control algorithm for one finger.

Gina Wansor & Sean Nelson 7

Project Concept/Technology Selection

Presently, there are a few products on the market that are comparable; however, most
concentrate on the use of motors to actuate the hand. Other technologies include
pneumatics or “Air Muscles” and hydraulics. Each requires pumps to move air or oil to
move the hand. The EEgrip implements a revolutionary option using Nitinol wire. This
idea was stumbled upon over the previous summer and sparked our interest.

Hardware

Nitinol provides “motor-less motion” to move the artificial hand very similar to the way
muscles work in the human body. When a current is run through this wire, it heats up
and causes the wire to contract by a percentage of the overall length; when the wire
cools it expands back to its original size. Using the Nitinol wire, this artificial hand
demonstrates a technology that has not been a standard in the industry for prosthetics.
This allows us to experiment with a technology that is innovative and cutting edge in the
field of electrical engineering, as well as biomedical engineering. This demonstrates the
simulation of muscles, which may allow improved actuation speed, realistic feedback
control, and usability.

For the processor, we chose to use the Atmega2560. We chose it for a number of
reasons, but mostly because this processor has the number of A/D converter ports that
were needed, as well as the capability to run PWM through the processor.

Flex sensors were chosen for the input and for positioning the fingers. These flex
sensors are actually a bend sensor technology, which work as potentiometer that works
on bend sensitive ink. This gives a way to provide a user interface with a glove, that can
provide feedback to the processor and tell the fingers how to position themselves. This
is done by controlling the amount of current or voltage that is run to the Nitinol wire
which pulls the finger open or closed.

The force sensors were added to the project to allow for the EEgrip to grasp objects
without squeezing too tightly, in case the object might be fragile or a different shape

Gina Wansor & Sean Nelson 8

than what might be grasped by the input. These sensors use a material called
Inastomer material, which changes resistance in response to forces like compression.

Software

C was used to run the software for the project. The C programming language has a lot of
flexibility and is one of the main languages used with the Atmel processors. This was also the
language that our team is the most familiar with.

 Design Procedure and Setbacks

At first, we came up with a general design that we wanted to use for the artificial hand. This
included picking a processor (the Atmega2560) and sensors (the flex sensors and force
sensors) that we wanted to use for our project. After talking with multiple people, we decided we
would like to run our wires with Pulse Width Modulation(PWM), using the processor.

For general testing and building, we used a main PCB board for the microprocessor and a few
smaller boards for the flex and force sensors. We also used an LCD for debugging purposes.
One of the first problems we encountered was hooking the LCD to the microprocessor. We were
attempting to use the LCD on port C; however, port C on the Atmega2560 is a special function
port. When moving the LCD to port A or D, it worked on both. Using the boards for the electrical
components was a good way to measure if the sensors and processor were working.

At the same time, the wire was tested. First, the 100 micrometer diameter wire was tested; this
one worked at a good speed, but the wire did not have enough strength for our purposes. The
300 micrometer diameter wire was also tested; this wire had the necessary strength, however
the contraction rate and cool down rate were too slow. We then began using Flexinol springs,
which are springs made from the Nitinol wire. They provided a good actuation speed, as well as
the strength needed for our artificial hand.

At this point, we began working on integrating software into our hardware. We programmed the
Atmega2560 to read analog data from each of the sensors using the A/D ports and read the
values to the LCD. We then programmed to output the PWM for one of the fingers. Here, we
varied the current, depending on the position of the flex sensors (comparing the glove flex
sensor to the finger flex sensor). After adding these features, we started testing the hardware
with the PWM, with the MOSFETs, and with the springs.

This is the point that we ran into a huge challenge and setback. We originally designed to have
one spring contract to close the finger and a second spring contract to open the finger.
However, when testing this all of the hardware together, the actual rate was very slow. The
springs needed about 45 seconds to cool down, and essentially, the two springs were

Gina Wansor & Sean Nelson 9

competing against each other. To work with that setup, we tried several methods to cool down
the wire. The following methods were used in attempts of improving the spring reaction:

● adjusting the code by cutting out delays and turning off current at certain points
● using a small fan to cool down the springs
● putting the springs in parallel
● temperature sensors to record temp of the spring

Adjusting the code and using a small fan to cool down the springs showed little improvement
with the hand movement. Putting the springs in parallel made the actuation difficult, since the
springs seemed to be different lengths (depending if one had an extra coil). The temperature
sensors showed some improvement, as we cut off the current when the wire reached a certain
temperature. However, this was not enough improvement for our purposes.

At this point, we switched to the 200 µm diameter wire. This wire proved to actuate quick
enough for our purposes, be strong enough to allow the fingers to grasp an object, and did not
heat up as much as the previous wires.

We then made a PCB board containing all of our electrical components, designed with Protel,
the design software provided in the senior design lab. It took about four total boards to get the
final working board. There were challenges with putting 100-pin microprocessor on the board,
and some of the design specs changed.

We seemed to have some software issues with the PWM at this point. The PWM was letting out
a signal at the end of each period, which affected our application, because the MOSFET would
read about 10V (out of the 18V supply) which would make the wire actuate. We tried adjusting
the period or settings of the PWM, but the best solution seem to be only turning on the ports for
the PWM when actually needing the PWM.

After this was fixed, the MOSFET gates were left floating, and resistors were added to tie them
low. This completed the hardware and software components of the artificial hand.

Mechanical Design

For the mechanical layout, we started out testing on a toy hand. With this particular model, there
was a lot of resistance, but worked for testing purposes. We then found a finger that was made
from a mold, and chose to use these fingers in our project. We used three fingers to create a
“hand’ with a pointer finger, middle finger, and thumb. For the palm and the forearm, we used a
metal bracket to hold the fingers and connected it with a metal frame. With this project, there
were a lot of mechanical challenges. The first became the resistance of the fingers, which was
generally fixed by the new finger mold.

The second challenge came when tying the finger with the wire. The challenge comes when
using 1 meter of the wire, and compacting it into a smaller space, our forearm. For this, we
implemented a “pulley” system using thread spindles and a limited number of bearings.
Although this method worked, it still caused a lot of friction. With more bearings, this method
could be improved. Some additional friction is added in various spots of the mechanical setup.
With some mechanical study, the finger movement could be improved.

For more specific diagrams of our mechanical parts, see Appendix B.

Gina Wansor & Sean Nelson 10

Prototype Cost Analysis

Figure 5 shows a compilation of components and estimated cost for the assembling our
prototype for the artificial hand. This is just of the basic components that were actually
used in the prototype. Many other supplies were bought and tested, but did not fit what
we were looking for. With total parts bought and tested, building the prototype cost
between 400 and 500 dollars.

Item Parts Quantity Units
Market

Cost Each
Our Cost
Each

Estimated
Cost

1 Microprocessor (Atmega2560) 1 Per $14.00 $0.00 $0.00

2 Flex sensors 6 Per $6.00 $0.00 $0.00

3 Force sensors 3 Per $10.00 $0.00 $0.00

4 MOSFETs 6 Per Varies $0.00 $0.00

5 Terminal Blocks 6 Per 4 $6.00 $12.00 $12.00

6 Resistors, BJTs, LEDs, Caps, etc. n/a Per Varies $0.00 $0.00

7 LCD screen 1 Per $12.00 $0.00 $0.00

8 Switches 2 Per $1.00 $0.00 $0.00

9 IC sockets 4 Per $1.00 $0.00 $0.00

10 PCB board 1 Per $20.00 $0.00 $0.00

11 Nitinol [Flexinol Wire] 6 1 meter $4.50 $4.50 $27.00

13 Cloth glove 1 Per $5.00 $5.00 $5.00

14 Molded Fingers 3 Per $55.00 $5.00 $165.00

15 Metal Frame 1 Per $10.00 $5.00 $5.00

16 Misc Mechanical Parts n/a Per $50.00 $10.00 $10.00

 Total Estimated Cost for Prototype $224.00

Figure 5 Parts list.

.

Gina Wansor & Sean Nelson 11

Project Task Breakdown

Task
Team
Member

Introduction GW, SN

Research/Preliminary Design GW, SN

Design Overview and Layout GW, SN

Acquire and Test Parts

Order Mechanical Parts GW, SN

Test Mechanical Parts SN

Order Electrical Parts SN

Test Electrical Parts (Breadboard) SN

Test Electrical Parts with Software GW
Build Breadboard Design/Functional
Component

Electrical Hardware Prototype SN

Software Prototype GW

Mechanical Prototype SN

Develop Software for Design GW

Develop Hardware for Design SN

Merge Hardware and Software Designs GW, SN

Debug GW, SN

Fine tune GW, SN

Demo (team) GW, SN

Figure 6 Task breakdown.

Gina Wansor & Sean Nelson 12

Timeline

Figure 7 uses a Gantt chart to show an estimated time schedule of the project development and
assembly. Figure 8 provides a more detailed breakdown of the schedule.

This schedule was designed to be flexible to allow for unexpected delays and for the
most part was followed, give or take a week.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Introduction

Research/Preliminary Design

Design Overview and Layout

Acquire and Test Parts

Build Breadboard Design/Functional Component

Develop Software for Design

Develop Hardware for Design

M erge Hardwarel and Software Designs

Debug

Fine tune

Demo (team)

Available Weeks in Fall 2007

Planned Extension Down time

Figure 7 Gantt Chart.

Team: NiteFlex Project: EEgrip

Task Name Planned Extension
Down
time

Introduction 0 1 1.5 0 2.5

Research/Preliminary Design 0 2.5 0.5 0 4

Design Overview and Layout 2 3 0 0 5

Acquire and Test Parts 4 2 3 0 9 9/30/2007

Build Breadboard Design/Functional
Component 5 3 0 0 8 9/30/2007

Develop Software for Design 5 3 1 0 9 10/31/2007

Develop Hardware for Design 5 3 1 0 9 10/31/2007

Merge Hardware and Software Designs 7 2 0 0 9 11/19/2007

Debug 8 3 1 0.5 12.5 11/19/2007

Fine tune 11 2 1 0 14 11/28/2007

Demo (team) 13 2 0 0 14 11/28/2007

Figure 8 Gantt Chart details.

Gina Wansor & Sean Nelson 13

Appendix A – Project Code C Programming

List of included .c files:
test1.c : Main file for calling functions
fwire.c : File to call functions to operate PWM & movement of fingers
flex.c : File for flex sensors (reading in, AtoD, and converting for LCD)
force.c : File for force sensors (reading in, AtoD, and converting for LCD)
LCD.c : File for LCD functions
avrutil.c : File for functions of processor --- including AtoD ports

//Filename : test1.c

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <inttypes.h>

#include "string.h"

#include "stdio.h"

#include "stdlib.h"

#include "math.h"

#include "avrutil.h"

#include "lcd.h"

#include "fwire.h"

#include "force.h"

#include "flex.h"

int main()

{

 //Initialize AtoDs, Timer, LCD, and wire functions

 init_AtoD();

 init_timer();

 init_LCD();

 init_fwire();

Gina Wansor & Sean Nelson 14

 timer_bdelay(100);

 lcd_clrscr();

 char buffer3[25];

 char buffer4[25];

while(1)

 {

 timer_bdelay(100);

 //initialize force & flex sensors prior to running the finger movement

 run_force();

 run_flex();

 //run_temp();

 //initialize movement of fingers

 closePointerFinger();

 closeMiddleFinger();

 closeThumb();

 //print to LCD screen for purposes of debugging

 lcd_home(0);

 //lcd_clrscr(); //clear screen or go back to home

 //flx = read_adc(0); //read AtoD values of ADC0

 //sprintf(buffer0,"ADC0=%4d", flx); //converts values to decimal

 //flx1 = read_adc(1); //read AtoDvalues of ADC0 from the 2nd flex sensor

 //sprintf(buffer1, " ADC1=%4d\n" , flx1);

 //Conversion of PWM numbers for fingers for output to LCD screen

 //sprintf(buffer3, "PWMTO=%4d", OCR1A); //thumb

 //sprintf(buffer4, "PWMTC=%4d", OCR1B);

 //sprintf(buffer3, "PWMMO=%4d", OCR3B); //middle

Gina Wansor & Sean Nelson 15

 //sprintf(buffer4, "PWMMC=%4d", OCR3C);

 //sprintf(buffer3, "PWMPO=%4d", OCR5A); //pointer

 //sprintf(buffer4, "PWMPC=%4d", OCR5B);

 //Print test to screen

 //lcd_print(buffer0);

 //lcd_print(buffer1);

 //lcd_print(buffer3);

 //lcd_print(buffer4);

 }

 return 0;

}

//Filename: fwire.c

#ifdef FWIRE_H

#ifndef FWIRE_C

#define FWIRE_C

int pointerG; //flx=pointerG

int pointerF; //flx=pointerF

int middleF;

int middleG;

int thumbF;

int thumbG;

int forcep;

int forcem;

Gina Wansor & Sean Nelson 16

int forcet;

/*===
====================================*/

//Description: Setup PWM generation to control current/voltage for movement of flexinol
wire [fingers]

//Precondition: Voltage = 5V, Period of 20ms, current (I) in wire begins at 0A.

//Postcondition: The closing and opening flexinol wire is setup to output PWM on PORTB,
PORTE, and PORTL

//Returns:

void init_fwire()

 {

 //Setup PWM using PORTB,PORTE,PORTL as outputs

 //DDRB |= 0x60; //Set B5:6 to output for PWM Thumb

 //DDRE |= 0x30; //Set E4:E5 to output for PWM Middle

 //Setup Fast PWM, Mode 14 [Page 148]

 TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM11);
 //Clear OC1A/B when TCNT1 == OCR1A/B, Set when TCNT1 == 0x0000

TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS11) | _BV(CS10); //Clear
TCNT1 when TCNT1 == ICR1

Gina Wansor & Sean Nelson 17

 //TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM11);
 //Clear OC1A/B when TCNT1 == OCR1A/B, Set when TCNT1 == 0x0000

//TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS11) | _BV(CS10); //Clear
TCNT1 when TCNT1 == ICR1

 TCCR3A = _BV(COM3B1) | _BV(COM3C1) | _BV(WGM31);
 //Clear OC3B/C when TCNT3 == OCR3B/C, Set when TCNT1 == 0x0000

 TCCR3B = _BV(WGM33) | _BV(WGM32) | _BV(CS31) | _BV(CS30); //Clear
TCNT3 when TCNT3 == ICR3

 TCCR5A = _BV(COM5A1) | _BV(COM5B1) | _BV(WGM51);
 //Clear OC5A/B when TCNT5 == OCR5A/B, Set when TCNT4 == 0x0000

 TCCR5B = _BV(WGM53) | _BV(WGM52) | _BV(CS51) | _BV(CS50); //Clear
TCNT4 when TCNT4 == ICR4

 ICR1= 2500; //Set TOP

 ICR3= 2500;

 ICR5= 2500;

 OCR1A = 0; //Closing spring at rest

 OCR1B = 0; //Opening spring at rest

 OCR3B = 0; //Closing spring at rest

 OCR3C = 0; //Opening spring at rest

 OCR5A = 0; //Closing spring at rest

 OCR5B = 0; //Opening spring at rest

 }

Gina Wansor & Sean Nelson 18

//===
==============

//Description: Control movement of pointer finger by output of the PWM generation

//Precondition: init_fwire, run_force, and run_flex were called

//Postcondition: Current will be on or off depending on the position of flex sensors

//Returns:

void closePointerFinger()

 {

 if ((pointerG > (pointerF + 4)) && (OCR5A <= ICR5) && (forcep>=230))

 {

 DDRL |= 0x08; //Set L3 to output for PWM Pointer

 OCR5A = abs(pointerG - pointerF)*100 + 450;

 OCR5B = 0;

 }

 else if ((pointerG < (pointerF - 4)) && (OCR5B <= ICR5))

 {

 DDRL |= 0x10; //Set L3 to output for PWM Pointer

 OCR5B = abs(pointerG - pointerF)*100 + 450;

 OCR5A = 0;

 }

 else

 {

Gina Wansor & Sean Nelson 19

 DDRL &= 0x00;

 OCR5A = 0;

 OCR5B = 0;

 }

 }

/*===
====================================*/

//Description: Control movement of middle finger

//Precondition: init_fwire, run_force, and run_flex were called

//Postcondition: Middle finger opens or closes

//Returns:

void closeMiddleFinger()

 {

 if ((middleG > (middleF + 4)) && (OCR3B <= ICR3) && (forcem>=230))

 {

 DDRE |= 0x10; //Set E4 to output for PWM Pointer

 OCR3B = abs(middleG - middleF)*100 + 450;

 OCR3C = 0;

 }

 else if ((middleG < (middleF - 4)) && (OCR3C <= ICR3))

 {

Gina Wansor & Sean Nelson 20

 DDRE |= 0x20; //Set E5 to output for PWM Pointer

 OCR3C = abs(middleG - middleF)*100 + 450;

 OCR3B = 0;

 }

 else

 {

 DDRE &= 0x00;

 OCR3B = 0;

 OCR3C = 0;

 }

 }

/*===
====================================*/

//Description: Control movement of Thumb

//Precondition: init_fwire, run_force, and run_flex were called

//Postcondition: Thumb opens or closes

//Returns:

void closeThumb()

 {

 if ((thumbG > (thumbF + 4)) && (OCR1A <= ICR1) && (forcet>=230))

 {

Gina Wansor & Sean Nelson 21

 DDRB |= 0x20; //Set B5 to output for PWM Pointer

 OCR1A = abs(thumbG - thumbF)*100 + 450;

 OCR1B = 0;

 }

 else if ((thumbG < (thumbF - 4)) && (OCR1B <= ICR1))

 {

 DDRB |= 0x40; //Set B6 to output for PWM Pointer

 OCR1B = abs(thumbG - thumbF)*100 + 450;

 OCR1A = 0;

 }

 else

 {

 DDRB &= 0x00;

 OCR1A = 0;

 OCR1B = 0;

 }

 }

#endif

#endif

//Filename: force.c

#ifdef FORCE_H

#ifndef FORCE_C

#define FORCE_C

Gina Wansor & Sean Nelson 22

int forcep;

int forcem;

int forcet;

char buffer6[25];

void run_force()

{

 forcep = read_adc(6); //read AtoD values of ADC4 of force sensor

 sprintf(buffer6, "ADC6=%4d", forcep);

 //lcd_print(buffer6);

 forcem = read_adc(7); //read AtoD values of ADC7 of force sensor

 //sprintf(buffer6, "ADC7=%4d", forcem);

 //lcd_print(buffer6);

 forcet = read_adc2(0); //read AtoD values of ADC8 of force sensor

 //sprintf(buffer6, " ADC8=%4d", forcet);

 //lcd_print(buffer6);*/

}

#endif

#endif

Gina Wansor & Sean Nelson 23

//filename is flex.c

#ifdef FLEX_H

#ifndef FLEX_C

#define FLEX_C

int pointerG;

int pointerF;

int middleG;

int middleF;

int thumbG;

int thumbF;

char buffer0[25];

char buffer1[25];

void run_flex()

{

 pointerG = read_adc(0); //read AtoD values of ADC0

 sprintf(buffer0,"poiG =%4d", pointerG); //converts values to decimal

 //lcd_print(buffer0); //print values to LCD screen

 middleG = read_adc(1);

 //sprintf(buffer0, "midG=%4d" , middleG);

 //lcd_print(buffer0);

Gina Wansor & Sean Nelson 24

 thumbG = read_adc(2);

 //sprintf(buffer0, "thuG=%4d" , thumbG);

 //lcd_print(buffer0);

 pointerF = read_adc(3);

 sprintf(buffer1, " poiF=%4d\n" , pointerF);

 //lcd_print(buffer1);

 middleF = read_adc(4);

 //sprintf(buffer1, " midF=%4d\n" , middleF);

 //lcd_print(buffer1);

 thumbF = read_adc(5);

 //sprintf(buffer1, "thuF=%4d\n" , thumbF);

 //lcd_print(buffer1);

}

#endif

#endif

//Filename : lcd.c

//Author : Thomas A. McDonley (darkeyes@ufl.edu, darkeyes_z@hotmail.com)

//Description:

//Copyright : (C) 2007

Gina Wansor & Sean Nelson 25

//EULA : GNU

/* LCD Hitachi HD44780u in 4bit mode

 Copyright (C) 2007 Thomas A. McDonley

 This program is free software; you can redistribute it and/or

 modify it under the terms of the GNU General Public License

 as published by the Free Software Foundation; either version 2

 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

*/

/*Modified by Gina M. Wansor Fall 2007*/

#ifdef LCD_H

#ifndef LCD_C

#define LCD_C

Gina Wansor & Sean Nelson 26

//===

//Description:

//Precondition:

//Postcondition:

//Returns:

void init_LCD()

{

 DDRD |= 0x7F; //PORTD(6) is Enable

 //PORTD 5-0 = R/W | RS |
DB7 | DB6 | DB5 | DB4

 timer_bdelay(15); //Delay for 15ms to allow VCC to settle

 lcd_writeCmd(0x33, 5, 1); //Manual Initialization of LCD Driver

 lcd_writeCmd(0x32, 5, 2); //Four bit operation

 lcd_writeCmd(0x28, 1, 2); //Enable 2 lines

 lcd_writeCmd(0x0F, 1, 2); //Display on; Cursor On; Blink On

 lcd_writeCmd(0x01, 1, 2); //Clear Screen; Cursor Home

}

//===
==========================

//===
==========================

//Description: Abstracts how commands are written to the LCD driver

//Precondition: The lcd has been init and is in 4 bit mode

Gina Wansor & Sean Nelson 27

//Postcondition: The command has been executed

//Returns:

void lcd_writeCmd(char cmd, unsigned int wdelay, unsigned int edelay)

{

 PORTD = ((cmd & 0xF0) >> 4) | 0x40; //Write upper nibble to cmd register

 PORTD ^= 0x40; // Enable = 0... Falling edge
signals to read bus

 timer_bdelay(wdelay); //Delay 1ms for write to settle
[Hold time > 100us]

 PORTD = ((cmd & 0x0F)) | 0x40; //Write lower nibble to cmd register

 PORTD ^= 0x40;

 timer_bdelay(edelay); //Delay 2ms (Wait for
instruction to execute)

}

//===
==========================

//===
==========================

//Description: Abstracts how data is written to the LCD

//Precondition: the lcd has been init and is in 4 bit mode

//Postcondition: The character appears on the screen at the current cursor posistion

//Returns:

void lcd_writeData(char data, unsigned int wdelay, unsigned int edelay)

{

Gina Wansor & Sean Nelson 28

 PORTD = ((data & 0xF0) >> 4) | 0x40 | 0x10;//Write upper nibble to cmd register... Enable =
1... RS = Data register

 PORTD ^= 0x40; // Enable = 0... Falling edge
signals to read bus

 timer_bdelay(wdelay); //Delay 1ms for write to settle
[Hold time > 100us]

 PORTD = ((data & 0x0F)) | 0x40 | 0x10; //Write lower nibble to cmd register

 PORTD ^= 0x40;

 timer_bdelay(edelay); //Delay 2ms (Wait for
instruction to execute)

}

//===
==========================

//===
==========================

//Description: Shifts the display either right or left

//Precondition: dir is equal to 0 to shift left and 1 to shift right

//Postcondition: display has been shifted

//Returns:

void lcd_shiftDisplay(unsigned short int dir)

{

 if(dir == 0)

 lcd_writeCmd(0x1C, 1, 2);

 else

Gina Wansor & Sean Nelson 29

 lcd_writeCmd(0x18, 1, 2);

}

//===
==========================

//===
==========================

//Description: Turns the lcd display off

//Precondition:

//Postcondition: The display is off

//Returns:

void lcd_off()

{

 lcd_writeCmd(0x08, 1, 2);

}

//===
==========================

//===
==========================

//Description: Turns the lcd display on

//Precondition: Cursor and blink are set according to what is desired to be on

//Postcondition: The display is on

//Returns:

void lcd_on(unsigned short int cursor, unsigned short int blink)

Gina Wansor & Sean Nelson 30

{

 if(!cursor && !blink) lcd_writeCmd(0x0C, 1, 2);

 else if(cursor && blink) lcd_writeCmd(0x0F, 1, 2);

 else lcd_writeCmd(0x0E, 1, 2);

}

//===
==========================

//===
==========================

//Description: Take the cursor to the beginning of a line

//Precondition: home = 0 for first line, 1 for second

//Postcondition: The cursor is at the beginning of a line

//Returns:

void lcd_home(unsigned short int home)

{

 if(home == 0) lcd_writeCmd(0x02, 1, 2);

 else lcd_writeCmd(0xC0, 1, 2);

}

//===
==========================

//===
==========================

//Description: Prints a null terminated character array to the LCD. '\n' will cause it to
goto line 2

Gina Wansor & Sean Nelson 31

//Precondition: string != NULL and is a pointer to a character array. ex: lcd_print("Hello
/nWorld!")

//Postcondition:

//Returns:

void lcd_print(char* string)

{

 int i=0;

 if(string == 0) return; //Error: Dereferencing a Null pointer

 while(string[i] != '\0')

 {

 if(string[i] == '\n')

 lcd_home(1);

 else

 lcd_writeData(string[i], 0, 1);

 i++;

 }

}

//===
==========================

//===
==========================

//Description: Clears the LCD screen and moves the cursor to line0 home

//Precondition:

//Postcondition:

//Returns:

Gina Wansor & Sean Nelson 32

void lcd_clrscr()

{

 lcd_writeCmd(0x01, 0, 2);

}

//===
==========================

#endif

#endif

//Filename : avrutil.c

//Author : Thomas A. McDonley (darkeyes@ufl.edu, darkeyes_z@hotmail.com)

//Description:

//Copyright : (C) 2007

//EULA : GNU

/* AVR Utilities

 Copyright (C) 2007 Thomas A. McDonley

 This program is free software; you can redistribute it and/or

 modify it under the terms of the GNU General Public License

 as published by the Free Software Foundation; either version 2

 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

Gina Wansor & Sean Nelson 33

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

*/

#ifdef AVRUTIL_H

#ifndef AVRUTIL_C

#define AVRUTIL_C

//===
==========================

//Description:

//Precondition:

//Postcondition:

//Returns:

void init_AtoD()

{

 ADMUX = ADC_VREF_TYPE; //Internal 5V Reference, Left Aligned

 ADCSRA = 0x85; //Enable AtoD @ 125.000 kHz

}

//===
==========================

Gina Wansor & Sean Nelson 34

//===
==========================

//Description:

//Precondition: adc_input is the pin0-7 that we would like to sample

//Postcondition:

//Returns:

unsigned char read_adc(unsigned char adc_input)

{

 ADCSRB &= ~_BV(MUX5); //Select Portf0-7

 ADMUX = adc_input | ADC_VREF_TYPE;

 ADCSRA |= 0x40; // Start the AD conversion

 while ((ADCSRA & 0x10)==0) ; // Wait for the AD conversion to complete

 ADCSRA |=0x10; // Clear Conversion Complete Flag

 return ADCH;

}

//===
==========================

//===
==========================

//Description:

//Precondition: adc_input is the pin8-15 that we would like to sample

//Postcondition:

//Returns:

unsigned char read_adc2(unsigned char adc_input)

Gina Wansor & Sean Nelson 35

{

 ADCSRB |= _BV(MUX5); //Select Portk0-7

 ADMUX = adc_input | ADC_VREF_TYPE;

 ADCSRA |= 0x40; // Start the AD conversion

 while ((ADCSRA & 0x10)==0) ; // Wait for the AD conversion to complete

 ADCSRA |=0x10; // Clear Conversion Complete Flag

 return ADCH;

}

//===
==========================

//===
==========================

//Description:

//Precondition:

//Postcondition:

//Returns:

void write_16reg(int regAddress, int i) // avr/iom128.h

{

 unsigned char sreg;

 /* Save global interrupt flag */

 sreg = SREG;

 cli();

 _SFR_IO16(regAddress) = i;

Gina Wansor & Sean Nelson 36

 /* Restore global interrupt flag */

 SREG = sreg;

}

//===
==========================

//===
==========================

//Description:

//Precondition:

//Postcondition:

//Returns:

int read_16reg(int regAddress)

{

 unsigned char sreg;

 int i;

 /* Save global interrupt flag */

 sreg = SREG;

 cli();

 i = _SFR_IO16(regAddress);

 /* Restore global interrupt flag */

 SREG = sreg;

Gina Wansor & Sean Nelson 37

 return i;

}

//===
==========================

//===
==========================

//Description: Setup a general purpose timer on Timer0

//Precondition: none

//Postcondition: Timer0 will count in 1ms intervals

//Returns:

void init_timer()

{

 //TIFR0 |= _BV(OCF0A);

 TCCR0B = _BV(WGM01) |_BV(CS00)| _BV(CS01);
 //CTC

 TCNT0 = 0; //Start our count at
zero

 TIMSK0 |= _BV(OCIE0B); //enable output compare
interrupt [pg 140]

 OCR0B = 125; //Match in 1ms

 sei();

}

Gina Wansor & Sean Nelson 38

//===
==========================

//===
==========================

//Description:

//Precondition:

//Postcondition: Modifies the current according to the time passed

//Returns:

SIGNAL(SIG_OUTPUT_COMPARE0B)

{

 ms_count++;

}

//===
==========================

//===
==========================

//Description: Returns the current Timer count (ms_count)

//Precondition: init_timer() was called

//Postcondition:

//Returns: ms_count

unsigned int timer_gettime()

{

 return ms_count;

}

Gina Wansor & Sean Nelson 39

//===
==========================

//===
==========================

//Description: Returns the difference between ms_count and stime

//Precondition: stime is the start time given as a return value from timer_gettime()

//Postcondition:

//Returns: Time Elapsed in ms

unsigned int timer_getelapsedtime(unsigned int stime)

{

 return ms_count - stime;

}

//===

//==

//Description: Does a blocking delay for the specified amount of time (in ms)

//Precondition: time is in ms

//Postcondition:

//Returns: Time Elapsed in ms

void timer_bdelay(unsigned int time)

{

 unsigned int start;

 start = timer_gettime();

 while(timer_getelapsedtime(start) < time)

 ; //Block

Gina Wansor & Sean Nelson 40

}

//===
==========================

#endif

#endif

#ifndef FWIRE_H

#define FWIRE_H

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <inttypes.h>

void init_fwire();

void closePointerFinger();

void closeMiddleFinger();

void closeThumb();

#include "fwire.c"

#endif

#ifndef FLEX_H

#define FLEX_H

Gina Wansor & Sean Nelson 41

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <inttypes.h>

void run_flex();

#include "flex.c"

#endif

//Filename : lcd.h

//Author : Thomas A. McDonley (darkeyes@ufl.edu, darkeyes_z@hotmail.com)

//Description:

//Copyright : (C) 2007

//EULA : GNU

/* LCD Hitachi HD44780u or LC7985 compatiable in 4bit mode

 Copyright (C) 2007 Thomas A. McDonley

 This program is free software; you can redistribute it and/or

 modify it under the terms of the GNU General Public License

 as published by the Free Software Foundation; either version 2

 of the License, or (at your option) any later version.

Gina Wansor & Sean Nelson 42

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

*/

#ifndef LCD_H

#define LCD_H

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <inttypes.h>

#include "avrutil.h"

void init_LCD();

void lcd_writeCmd(char cmd, unsigned int wdelay, unsigned int edelay);

void lcd_writeData(char data, unsigned int wdelay, unsigned int edelay);

Gina Wansor & Sean Nelson 43

void lcd_shiftDisplay(unsigned short int dir);

void lcd_off();

void lcd_on(unsigned short int cursor, unsigned short int blink);

void lcd_home(unsigned short int home);

void lcd_print(char* string);

#include "lcd.c"

#endif

//Author : Thomas A. McDonley (darkeyes@ufl.edu, darkeyes_z@hotmail.com)

//Description:

//Copyright : (C) 2007

//EULA : GNU

/* AVR Utilities

 Copyright (C) 2007 Thomas A. McDonley

 This program is free software; you can redistribute it and/or

 modify it under the terms of the GNU General Public License

 as published by the Free Software Foundation; either version 2

 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Gina Wansor & Sean Nelson 44

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

*/

#ifndef AVRUTIL_H

#define AVRUTIL_H

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <inttypes.h>

#define NULL 0;

#define ADC_VREF_TYPE 0x60 //Internal 5V
Reference, Left Aligned

void init_AtoD();

unsigned char read_adc(unsigned char adc_input); //Run one sample of the A/D System

int read_16reg(int regAddress); //Register Addresses can be found
in avr/iom2560.h

void write_16reg(int regAddress, int i); // For example TCNT1 is 0x2C

volatile unsigned int ms_count=0;

void init_timer();
 //A general purpose timer with a resolution of 1ms

Gina Wansor & Sean Nelson 45

 unsigned int timer_gettime(); //Returns the
current timer count

 unsigned int timer_getelapsedtime(unsigned int stime); //Returns the difference
between stime and the current time

 void timer_bdelay(unsigned int time); //Does a blocking delay for
the specified amount of time

int str_length(char* str);
 //Returns the number of characters in a NULL terminated string

#include "avrutil.c"

#endif

Gina Wansor & Sean Nelson 46

Appendix B – Project Flowcharts and Diagrams

Overall Schematic – Designed in Protel

Gina Wansor & Sean Nelson 47

Design for PCB Board

Gina Wansor & Sean Nelson 48

Mechanical Design
Bracket to hold fingers

Designed in Pro-E

Appendix C – Datasheets

Links:

Atmega2560 - Microprocessor
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf

Bend Sensor Technology – Flex Sensors
http://www.flexpoint.com/technicalDataSheets/electronicDesignGuide.pdf

Force Sensors
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/vhl4/juicer_webpage/datashee
t/InastomerRTechApp.pdf

Op Amps
http://www.datasheetcatalog.com/datasheets_pdf/L/M/3/5/LM358.shtml

http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
http://www.flexpoint.com/technicalDataSheets/electronicDesignGuide.pdf
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/vhl4/juicer_webpage/datasheet/InastomerRTechApp.pdf
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/vhl4/juicer_webpage/datasheet/InastomerRTechApp.pdf
http://www.datasheetcatalog.com/datasheets_pdf/L/M/3/5/LM358.shtml

Gina Wansor & Sean Nelson 49

Nitinol Wire

Appendix D – Project Resources

Senior Design Lab
Senior Design T.A.’s – Andy Sciullo and Thomas McDonley
Scott Payne – Mechanical Engineering, Graduate Program
Milind Shastri – Mechanical Engineering, Graduate Program

Joshua Childs, Nick Karlovich
Mike Stapleton

Appendix E – Pictures of Prototype Development

