zi.. UNIVERSITY OF

% FLORIDA

EEL 4914 Senior Design

Final Design Report

April 21%, Spring 2008

Auto Rev Matcher

Team Name: “The Cowboys Lost Again”
Submitted by:

Monique Mennis
moniki@ufl.edu

Brad Atherton
masscles@ufl.edu

Abstract

Our device minimizes the frequency differential between the engine and transmission of a manual
automobile for increased longevity of the clutch plate. In human terms our device can be seen as an
automated RPM matcher. Technical challenges may entail finding an appropriate sampling rate for the
inputs of our microprocessor, and correctly calibrating the appropriate RPM value for each gear from a
series of tests. We expect our product to be a valuable asset in the car performance industry.

mailto:masscles@ufl.edu

ADSIACt et 0

Introduction............cooiiiiiiiiiii [
Project Features. ... II
Concept Technology..........ccoeveeiiiiiiiiiiiiiiin.., M1
Product Comparison............c.ceeeeeiiiiiniiinneennn... IV
Project Architecture................cccovL, V
Flowcharts and Diagrams..............ccccooeennriniininnennnenn. VI
Debugging ISSUES.......cccccvuviiiiiiiiiiiiieieeeeeeeee e e e VII
MeEasurements.........ovvviiiiiiiie e, VIII
Hardware/Software....... ..., IX
Bill of Materials............coocoiiii X
Gantt Chart........ ... e, XI

APPendiCeS.vvviiiiiiii e XII

I. Introduction

In the high performance vehicle industry there is a strong demand for additional features that allow a
driver to perform gear changes within milliseconds without having to reduce speed, decrease engine
power or overuse the clutch. Current technology allows the driver to select the gear he / she wishes to
shift into directly before or after the gear is currently engaged. Usually a shift lever is used to select the
adjacent higher or lower gear. The shift lever operates like a ratchet mechanism that converts fore and
aft motion into rotary motion.

There are various different types of products installed in today’s high performance vehicles allowing
the driver greater control over the shifting mechanism of the vehicle. With our “Auto Rev Matcher” we
aim to allow the everyday driver similar control in their conventional vehicle.

I1. Project Features
Main Objectives
* Maximized lifetime of clutch plate

* Minimized jerk from clutch engagement

Input Sensors and Switches: Output Devices and Actuation:
* Speed sensor * Throttle body controller servo
« Up-shift / Down-shift switch motor
* Enter button » LCD display

* Clutch pedal switch

* Emergency disable switch

III. Concept / Technology
Atmega32 Microcontroller

We chose the Atmega32 over other microprocessors due to its wide availability and low cost. In the
development stage this processor was seen as the best option given our resources and prior experience
with other Atmel processors.

LCD Display

A basic LCD display is used to inform the user of their current speed and gear when the clutch is not
engaged. When the clutch is engaged the LCD enables the user to see which gear he / she is switching
into.

Speedometer Sensor

A 6.6 V powered speedometer senor signal is read in as an input to our microprocessor. This
transitional input allows us to calculate current speed and rpm ranges.

Clutch Sensor

The clutch sensor is read as an input into our microprocessor allowing software to determine whether
or not the clutch is depressed.

Up-shift / Down-shift Clicker

The up-shift / down-shift clicker input allows the user to specify which gear he / she intends to shift
into next.

Enter & Reset Button

The enter button input allows the user to confirm his / her gear selection. The reset button input allows
an emergency hardware reset that moves the servo motor controller back to its neutral position.

Servo Motor

The HS-985MG servo motor output allows the microprocessor control over the throttle cable on the
vehicle.

IV. Product Comparison
BMW

The BMW M5 Sedan offers a “7-speed M Drivelogic sequential gearbox system.” It features gear
change keys on the steering wheel and a selection lever on the central console. Gear changes are made
within milliseconds and special function features such as slip recognition or hill recognition adapt to
the gear shift points required in certain driving conditions.

Nissan

The Nissan r35 GTR has a 6-speed “Dual Clutch Transmission” with three driver-selectable modes.
Normal mode allows for maximum smoothness and efficiency while snow mode allows for gentler
starting and shifting on slippery surfaces. Lastly R mode gives the driver maximum performance with
fastest shifts. The “Dual Clutch” design changes gears in less than 0.5 seconds. Other features are
available such as “Downshift Rev Matching” (DRM) and the “Predictive pre-shift control” (in R-
mode).

VW / Audi

The Volkswagon DSG Transmission delivers identical acceleration while putting the driver in closer
contact with the rise and fall of the engine’s power curve. It allows manual shifting using a Tiptronic®
shift lever or, when equipped, buttons in the steering wheel. The interaction between the clutches and
shafts is such that the next higher gear is always permanently engaged and ready for activation.

Alfa Romeo

The Alfa Romeo Selespeed uses paddles or a joystick, with the joystick having a higher priority when
shifting. The speed of the gear changes depends on the engine revs and the system also has a rev
limiter to avoid over revving. The gearbox is made for sportive driving but a city mode option is also
available that simulates automatic driving.

Lamborghini Gallardo

The new 2009 Lamborghini Gallardo uses an “e-Gear sequential transmission system.” This system
now takes 40% less time to switch gears than previous models. The revised Gallardo can hit 60 mph in
3.7 seconds and can achieve a top speed of 202 mph.

Ferrari 599 GTB

The “F1-SuperFast Transmission” on the Ferrari 599 GTB is able to shift gears in 100 milliseconds.
By overlapping the clutching and shifting tasks, harshness in shifting is reduced along with shift time.

V. Project Architecture

The general I/O structure of the Auto Rev Matcher is shown in the figure below.

Speed Sensor—m:
Clutch Switch—»

Clicker Switches —»
Enter Button —»

Reset Button —»

uc

—* LCD Screen
(user feedback)

|, Servo Position
(Throttle Control)

VI. Flowcharts and Diagrams

The system flowchart is show below. For additional upper-level understanding and organization, each
box represents a subroutine in the software. Each subroutine has its own flowchart that can be found in
the appendix that describes how the software is able to accomplish the task.

Initiakze Stack, Ports, Timer,
Subroutine Parameters

LCD), Interupts, and | |—*| Disable Speed Interrupts |

| Dissble Clicker Intermupts |

Check starup .
variable in case Enalle Global interrupts
system has been -for semvo FWM

reset
Enable Chcker
: Intermupts for user
o ‘* to initialize:
gear variaole
ez 1
Enahble Chcker Chear LCD and send
Imtermupts for user the WFFELnggEIh th
to initizlize 3
gear vanabls No [
¥ Set the semvo
Clear LCD and send based on gear
& cument gear to = | and speed e
LCD. cutch N[Esm || - IF gear Oor 1: set
N [. > to neutral,
2 .l X ELSE: Get speed
Go back to and calc RPMs
Clutch_Top T Clutch -, sef se
b Exit

Goto |
Clutch_ T
= ‘fes

Get current speed
and calculate RPM
walues for 2ach gear

Send
Speec [| i
to LCD

VII. Debugging Issues

The primary challenges faced during the programming phase of the project were related to interrupt
timing and CPU issues. Hardware bugs discovered during the software stage also caused recursive
issues where the errors were undetermineable (whether they were due to hardware or software) until
a more detailed investigation of the hardware was performed.

General Interrupt Bugs
All stack operations (except for return addresses) in AVR microcontrollers are programmer controlled,
so all data that may be necessary for program operation must be handled accordingly in the interrupt
handler. This includes the status register and all registers that will be using in the handler. If interrupts
are enabled during a section of the program where branching or status flag testing occurs, then the
status register must be saved at the beginning of all the interrupt handlers that may be executed during
this part of the program. The AVR does not do this automatically! Extensive debugging was
performed until this was realized first through examination, and then validated by the microcontroller's
data sheet. Always read the data sheets, they are your friends.

Solving other interrupt bugs required a macro-micro examintation of the overall program and a
flowchart of interrupt timing to provide the macroscopic view of all possible interrepts and nested
interrupts. For example, the PWM signal for the servo is interrupt-generated, so global interrupts must
always be enabled for this to work properly, even during other interrupts. This places a significant risk
of unplanned nested interrupts, especially during clicker switch interrupts due to bouncing. These
problems were resolved by disabling the particular interrupts during their own interrupt handlers.
Modifications of when to re-enable the particular interrupts were added to the flowcharts and software,
with the minimal risk of possibly missing an interrupt. Thankfully humans are slow, the
microcontroller is fast, and most of the interrupts are man-generated, so this did not pose a problem.

Speed Sensor Bugs
The majority of programming time was spent on the speedometer section of the program. The speed
sensor does not feature much resolution; only four full sqaure waves represent one full revolution of the
sensor. Because the speed sensor turns very slowly (over 8 seconds for a full revolution at 1 mph),
initially two transition interrupts were used to catch a rising-then-falling or a falling-then-rising pair of
edges to minimize the time required to capture a speed sample. This method only worked partially; a
large percentage of the samples were spikes of speed changes that were not realistic values. After
checking the interrupt timing and timer values (to ensure the error was not in software), it was
determined that the sensor was causing the spikes. An initial attempt at signal averaging was
experimented with, but an excessive amount of samples were spikes instead of the real (expected)
value, so this method did not prove successful. Althought no datasheets were available to determine
the internal operations of the sensor, cscilloscope measurements showed that the voltage was dropping
out temporarily when the square was in a high state. Various capacitors were tested to hold the voltage
high during the moments of drop-out. Too much capacitance take excess time to charge, causing an
approximate ramp function at the signal pins. Too small of capacitance would not have enough energy
storage to sustain the votlage during the drop-out period. This problem was resolved with a 0.1 uF
capacitor. No further speed-code debugging was required after the capacitor was implemented.

Clicker Input Bugs
The bugs from the clicker switches were the typical bounce issues, but being momentary switches,
bouncing is prone to occur twice. A software delay of more than a 3/8 second was implemented with
the expectation that the user will press and release the momentary switch within that period.

VIII. Measurements

Speed Sensor
Voltage and current measurements supplied to and consumed by the speedometer sensor are show in
figure “Speed Sensor Measurements”. Measurements at 7.5 volts, 6.6 volts, and 6 volts were the most
important data. The sensor is supplied with 7.5 volts in Isuzu vehicles, but the signal voltage exceeds 5
volts, creating potential problems if connected directly to the uC. A 6.6 supply voltage provided a 5
volt (high) signal voltage which proved compatible with the sensor and uC. An LM317 voltage
regulator was used to realize this voltage.

Speed Sensor Measurements

Supply Voltage Signal Voltage Supply Current
(Volts) High Low High (mA) Low(mA)
3 0.57 0.565 1 1
4 0.58 0.58 2 2.5
5 3.7 0.59 3 4
6 4.52 0.59 4 5
6.6 5 0.6 5 5
7 5.35 0.6 5 6
7.5 5.78 0.6 6 6
8 6.26 0.61 6 6
9 7.21 0.61 6 6
10 8.16 0.61 6 6
11 9.12 0.615 6 7
12 10.07 0.62 6 7
13 11.02 0.62 6 7
14 11.98 0.62 6 7

Speed-RPM
The ratios (of each gear) of the speed:rpm coordinates were measured with the vehicle's dashboard
instrument panel gages. To reduce error, several points were recorded for each gear, and then a linear
regression was used to minimize human error from “eye-balling” the measurements. Since the
relationship between speed and rpm is linear and all lines converge at the null, the graph “RPM Map’
below shows two points for each line, the null and the nearest integer ratio point. Note the emphasis
on the nearest integer ratio point since

b

RPM Map
Gear — (RPM/100) .
Speed(mph) 1 2 3 4 5 £ W 1st Gear
0 0 0 0 0 O S ® 2nd Gear
§ V 3rd Gear
12 :i:)9(z i i & A 4th Gear
43 x X 35 x x § " ot Gear
50 x X X 27 X
21 x X X x 9

0 20 40 60 80 100 120
Speed (mph)

IX. Hardware / Software
Atmega32

We chose the Atmega32 microprocessor because of the following features:
— 131 Powerful Instructions — Most Single-clock Cycle Execution

— 32 x 8 General Purpose Working Registers

— Fully Static Operation

— Up to 16 MIPS Throughput at 16 MHz

— On-chip 2-cycle Multiplier

— 32K Bytes of In-System Self-programmable Flash program memory

— 1024 Bytes EEPROM

— 2K Byte Internal SRAM

— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
— Real Time Counter with Separate Oscillator

— Four PWM Channels

- 8 Single-ended Channels

- 7 Differential Channels in TQFP Package Only

- 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

— Byte-oriented Two-wire Serial Interface

— Power-on Reset and Programmable Brown-out Detection

— Internal Calibrated RC Oscillator

— External and Internal Interrupt Sources

— 32 Programmable I/O Lines

— 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

* Power Consumption at 1 MHz, 3V, 25°C for Atmega32L

—Active: 1.1 mA

— Idle Mode: 0.35 mA

- Power-down Mode: <1 pA

LCD Display

The LCD display provided us with two 16 character lines in 4-bit mode. Connecting to pins porta.0
through porta.6 on the Atmega32, current speed and gear options are displayed for the user while the
product is enabled.

Speedometer Sensor

The speedometer sensor four cables consist of ground, signal, a no-connect, and 6.6 V power. The
signal cable is connected to portb.2 of the Atmega32 microprocessor. With this signal cable as an input
we are able to keep track of the time between the transitions of a square wave and calculate the current
speed of the vehicle.

Clutch Sensor

On portd.5 of the Atmega32 the clutch sensor input is connected allowing software to determine when
the clutch is depressed enabling up-shifting or down-shifting options.

Up-shift / Down-shift Clicker
The up-shift / down-shift clicker allows the user to select which gear they would like to shift into.

Enter & Reset Button

The enter button is pulled low with registering true, allowing the user to confirm his / her gear
selection. A complete hardware reset is always available to the user by means of a reset button. When
clicked the reset button goes low and resets the Atmega32 microprocessor thus setting the servo motor
back to its neutral position.

Servo Motor

The HS-985MG servo motor from servo city provides us with 180 degree rotation of 172 oz-in. of
torque in 0.13 sec/60°. Using a pwm signal with a 3-5 volt peak to peak voltage we are able to control
the throttle on our manual car. With the 5:1 aluminum gear wheel we are able to gain the resolution
necessary to optimally operate.

X. Bill of Materials

Atrott Indwidual Price Tatal
HE-985MG Servo 1 $152.04 $15294
Iotor
Atrnega3? pP 1 $5.50 $5.50 (Free)
Servo IWournting $13.74
Brackets & Supplies
Audio Jack 10 $2.00 $20.90
Connectors
Audio Jack Plugs 10 $3.99 $39.90
LII317T Valtage 2 $2.29 $4 58
Fegulator
7505V dltage 1 £375 £3.75(Free)
F.egulator
PCE Container 1 $1.62 $1.62
Wood 3 $3.50 $10.50
Ilisc. 4 $0.98 $3.92
LCD Screen 1 $25.00 $25.00(Free)
24-Gauge Wire 1 $3.99 $3.99
Total $295 34

The total cost of our product came to be $270.34. This price is well under the range of more
sophisticated systems in high performance vehicles and allows a driver similar options. The servo
motor was the most expensive part in this design. In searching for high torque motors, ones that were
suited to our needs were in this higher price range. Additional costs may be incurred if our device were
to be installed on a different vehicle.

XI.Gantt Chart

Start

Task Hame & Assignment D ate Planned Extension Downtime

Intraduction /P rojed Proposal - B 7-Jan-03 7 1] 0

Research f Ahstract -B & M 9-Jan-03 10 o 0
12-Jan-

Preliminary Design Repart -B & MW 0s 16 i) 0
28-Jan-

Research & Data Gathering -B & M 03 14 u] 0
11 Feb-

System Level Design - B 03 10 10 0

Circuit Design & Purchaze Patz -B & 11Feh-

M IS 2 10 1
17 Feb-

Software Amegal2s - B 0s a2 i] 0

Breadboard Test f Troubleshoot - B & 24 Feh-

i s 1B 0 1

Protel - M S-Mar-05 10 0 1]
15 ar-

PCH & Populate - M 0g 5 0 I
200 ar-

Software Amegad? - M 0z 12 o 0

P hysical Apparstus Construction - B

& M 2-Aar-05 14 0 0
14-Apr-

Test Walidation -B & M 5 14 0 1]
18-Apr-

Repaort Write Up 'Demo -B & M 03 10 1] 0

Autonated Rev Matcher Spring 2008 Schedule
Brad (B) & Nonique (1)

= =i
j f\ﬁlﬂ’ '@'ﬁ fﬁ A 3 ?'b& .._;\?'bé .\H:efn‘h

a LR B A w e

Itroduction ¢ Project Proposal- £ [N
Research / dbetract- B & M
Prelmirary Design Report- B & M [—— R
Research & Data Gatherig- B & M 1
Syetem Lemel Design - B N |

Cicnak Design & Purchase Parts - B & M

Softwrare Atmem 123 - B -

Ereadboard Test / Troubkshoot- B & I
Pretel- M
PCE & Popubte - M L
SoftAnre ftmezail - M L —
Phopsical dparams Comstruction - B & M D ——
Test Validatin - B & M =
Report Write Tp / Demo - B & M —
W FPlanned OExtension ODowntime

Appendix A. Diagrams

PCE Layout

= | E;L_|1 1 |'_IIE|

*
L
=
-
-
]
-
-
]
&

s
*|
Clscth | Fn|

H

270 Clh et | AD 5
|

L1

Appendix B. Software

; Deno Code

; Brad At herton, Monique Mennis
; Sr Design EEL 4914

; 4-18-08

;port a for atnegal28

.equ porta = $3B

.equ ddra = $3A

;port b for atnega 128
.equ portbh = $38

.equ ddrb = $37

;port d for atnega 128

.equ portd = $32
.equ pind = $30
.equ ddrd = $31
;port e for atnega 128
.equ porte = $23
. equ pine = $21
.equ ddre = $22
;port f for atnega 128
.equ portf = $62
.equ pi nf = $20
.equ ddrf = $61

never put below $46 on atmegal28 b/c interrupt handlers
.equ strings = $60

.equ nmain = $80

.equ data_variables = $100

;stack for atnegal28

.equ sph = $5E

.equ spl = $5D

.equ stack_h = $10

.equ stack_| = $FF
;tinmer 1 equates

.equ TCCR1B = $4E
.equ TCNT1L = $4C
.equ TCNT1H = $4D
.equ TIFR = $56
.equ OC1AL = $4A
.equ OCl1AH = $4B

timer 3 equates
.equ TCNT3H = $89
.equ TCNT3L = $88
.equ OC3AH = $87
.equ OC3AL = $86
.equ TCCR3A = $8B
.equ TCCR3B = $8A
.equ ETIFR = $7C
timer 0 equates

.equ TI MBK = $57

.equ TCNTO = $52

.equ TCCRO = $53 ;bit 2,1,0 = 000 for 1024 prescaler
;out put conpare equates

.equ OQ0 = $51

;external interrupt equates
.equ ElI CRA = $6A

.equ EI CRB = $5A
.equ ElI MBK = $59
.equ EIFR = $58
status regi ster equat
. equ SREG = $5F
di stance equate
.equ d_UB = $a8
.equ d_LB = $2b
.equ d_UB = $FC
.equ d LB = $52
servo equates
.equ neutral = 27400
.equ offset =0
.equ neutral = 27500
. equ rpmo =
. equ rpm1l =
.equ el evenhundr ed
. equ rpm2 =
.equ t wel vehundr ed
. equ rpm3 =
.equ t hi rteenhundre
. equ rpmsé4 =
.equ fourt eenhundre
.equ rpm>S =
. equ fifteenhundred
. equ rpm6 =
.equ si xt eenhundr ed
. equ rpm?7 =
. equ svnt eenhundr ed
. equ rpma38 =
.equ at et eenhundr ed
. equ rpm9 =
.equ ni net eenhundr e
.equ rom10 =

. equ twenty = 27225

. equ romil =
.equ twentyone = 27
. equ rpmiz =
.equ twentytwo = 27
. equ romi3 =
.equ twentythree =
. equ rpmi4 =
.equ twentyfour = 2
.equ rom1i15 =
.equ twentyfive = 2
. equ romiée =
.equ twentysix = 27
.equ rpm1l7 =
. equ twentysvn = 27
. equ romi8 =
. equ twentyate = 27
. equ rom19 =
.equ twentynine = 2

. equ rpm20 =
.equ thirty = 27000
. equ romz21 =
.equ thirtyone = 26
.equ rpmz22 =
.equ thirtyfive = 2

e

0
11
= 27350
12
= 27338
13
d = 27325
14
d = 27316
15
= 27308
16
= 27300
17
= 27280
18
= 27256
19
d = 27242
20

21
200
22
125
23
27100
24
7090
25
7080
26
050
27
042
28
034
29
7025
30

31
950

35
6900

;. equ thirtyfive = 23710
;rpm cal cul ator equates

.equ first_num = 31
.equ first_den = 10
.equ second_num = 20; WAS 9
.equ second den =7
.equ third_num = 35
.equ third_den = 43
.equ fourth num= 27
.equ fourth _den = 50
.equ fifth_num =9
.equ fifth_den = 21

.def XL =r26
.def XH = r27
.def ZL =r30
.def ZH = r31
. dseg
.org data_vari abl es
oflo_cntr:
.byte 1
start _up:
.byte 1
edgecounter:
.byte 1
Speed H: ;tens digit to be converted to asci
.byte 1
Speed_L: ;ones digit to be converted to asci
.byte 1
Gear: ;ones digit to be converted to asci
.byte 1
RPM_Char : ;already in ascii just a black box
.byte 1
RS
.byte 1
LCDbyt e:
.byte 1
Speed_String_Count:
.byte 1
Gear _String Count:
.byte 1
RPM String_Count:
.byte 1
RPM Bar _Nunber :
.byte 1
RPM_Row_Count :
.byte 1
i nner _del ay:
.byte 1
out er _del ay:
.byte 1
edgel L:
.byte 1
edgel H:
.byte 1

edge2_L:

edge2_H:
.byte 1
speed:
.byte 1
speedl:
.byte 1
speed2:
.byte 1
speed3:
.byte 1
speed4:
.byte 1
speed5:
.byte 1
speed6:
.byte 1
speed_dec:
.byte 1
Hexbyt e:
.byte 1
Decbyt e:
.byte 1
Num H ; nunerator input variable for Division subroutine
.byte 1
Num L: ;nunerator input variable for Division subroutine
.byte 1
Den_H: ;denonmi nator input variable for Division subroutine
.byte 1
Den_L: ;denoninator input variable for Division subroutine
.byte 1
first_rpm ;variables for the rpm cal cul ator subroutine
.byte 1
second_rpm
.byte 1
third_rpm
.byte 1
fourth_rpm
.byte 1
fifth rpm
.byte 1
quoti ent:
.byte 1
sreg_tenp:
.byte 1
R | NTERRUPT VECTORS------------
oo | NTERRUPT VECTORS------------
cseg
.org $0000
jmp mai n
.org $0002
jmp downshi ft_i nterrupt ;int0
.org $0004
jmp upshi ft_interrupt ;intl

.byte 1

.org $0008 ;int 3 interrupt
RETI

.org $0010
jmp speed_interrupt ;int7

.org $0018 ;timerl OC A Match

jmp tnrO_OC ;tiner O output conpare

.org $001A ;tinerl OC B Match
reti

.org $001C ;tinmer 1 Oflow Interrupt

jmp tnr0_oflo

.org $001E

jmp tnmr0_OC ;tiner O output conpare

.org $0020 ; TIMER O OFLOW | NTERRUPT VECTOR

jmp tnrO_oflo
; I\I\I\I\I\I\I\I\l '\n’ERRUPT VEmmSAAAAAAAAA
. /\/\/\/\/\/\/\/\l NTERRUPT VEdeAAAAAAAAA

.org strings
speed_str:

.db "Speed: ", $D
gear _str:

.db "Gear: ", $D
enter_str:

.db "Enter? ", $D

.org mai n

R main program---------------
;---initialize stack
I di r23, stack _h
sts sph, r23
I di r23, stack_|
sts spl, r23
;---set port b0 for output

| di r16, 0b00000001
sts ddrb, rl16

;---set port fO for output for PWM wave
| di ri6, 0b00000001
sts ddrf, r16

;---set port e for input since speed and enter
;---are connected to E7 and EO

| di rie, O
sts ddre, r16
;---set port d for input to read clutch from D3
| di ri6é, O
sts ddrd, r16

;---initialize delay paranters--------

I di r23, Oxff ;initialize inner_delay paraneter

sts inner_delay, r23

I di r23, Oxff ;initalize outer_del ay paraneter

sts outer_delay, r23
call delay_sub

;---initialize timer 1 prescalers for servo
;clear the overflow counting variable

clr rl6
sts oflo_cntr, rl6
;set prescalers to 001 (1 divider)
| ds rl6, tccrib
andi r16, 0b11111000
ori r16, 0b00000001
sts tccrlb, ri16
;---clear timer 1 and set OC to neutral for servo-----
clr ri8
sts tcntlh, ri18
sts tentll, r18
| di ri18, high(neutral)
sts OCl1AH, r18
| di r18, low(neutral)
sts OCl1AL, r18

;---enable tiner 0 OC and ofl ow i nterrupts

;---intialize output conpare and overflow interrupts for tinmer 1
;bit 4 of TIMSK = OClI E1A
;bit 2 of TIMSK = TO E1

| ds r16, tinsk

andi r16, 0b11101011

ori r16, 0b00010100
sts TIMSK, rl16

call speed_disable
call disable clicker

sei ;olny pwmis enabl ed
e CHECKPQO NT- - - - - ;
; - - - CHECKPOI NT- - -

her eee:
Idi ri6, 1
sts porthb, rl6
| ds r16, pine
andi r16, 0b00000001
clz
cpi rie, 1
breqg hereee

; - - - CHECKPO NT- - -

ye---- CHECKPO! NT- - - - - ;
; TURN OFF LED
clr rl6
sts portb, ri16
; DELAY FOR SHI TS N G GGLES- -
| di rl6, $FF
sts i nner _del ay, r16 ;
sts out er _del ay, r16 ;
| di rl7z, 15

rpt:
call delay_sub
dec ri17
clz
cpi ri7z, 0

brne rpt

'END OF DELAY---------mmm--- :

i---initialize LCD screen-------------
call LCD.init

;---initialize clicker interrupts
;set int 1 and 0 to falling edge trigger
;bits 1,0 and 3.2 in EICRAto 1,0

| ds r16, EICRA
andi r16, 0b11111010
ori ri6, 0b00001010
sts El CRA, rl6
;---intialize start_up variable
| di ri6, $FF
sts start _up, ri6
; --set-gear-and- speed-to-zero
clr rie
sts gear, rl6
sts speed, rl6
; ---TESTCODESTARTSHERE- - - - - - - - - - - - - o e e e m - - -

;the only interrupt that should be enabl ed
;are the PWMinterrupts

X j mp her eee

; CLUTCH PRESSED?

LDS rl6, pind

andi r16, 0b00001000

clz

cpi ri6, 0 ;if clutch is pressed the z flag will be true (bit 1 of
sreg)

| ds rl6, sreg

sbrc r16, 1

call clutch_subroutine
;clutch is not pressed, check start up
;turn off servo

| di r18, high(neutral)
sts OClAH, r18
| di ri8, low(neutral)
sts CC1AL, r18
| ds rl6, start_up
clz
cpi rl6, $FF
brne normal _prog
;i f still in startup condition, use the clicker switches and enter

;to nmake sure current gear is acquired. Do not pass until enter has
; been pressed
call clear_screen
call send_enter
call send_gear
check_enter?2:

call enabl e _clicker ;now PWM and clicker are enabl ed
I ds r16, pine ;
andi r16, 0b00000001 ;the interrupt fromthe clicker will----

clz

cpi rl6, 0 ;occur during this |oop

br ne check_enter?2 ;routine sets the appropriate val ue-
;this point is only reached after the enter key is pressed
;clear the startup variable

clr rl6

sts start_up, rl6
fe--- - clear the lcd of the enter string

call clear_screen

: NORMAL - PROGRAM OPERATI ON- - - = = = == == oo mmmmmm e e e e o
nor mal _prog:

; CLUTCH PRESSED?

LDS rl6, pind

andi r16, 0b00001000

clz

cpi rl6, 0 ;if clutch is pressed the z flag will be true (bit 1 of
sreg)

| ds rl6, sreg

sbrc r16, 1

call clutch_subroutine

: CLUTCH | SNT PRESSED
;get current speed, REMEMBER, PWW | NTERRUPTS ARE ENABLED BUT CLI CKER | NTS
: ARENT BECAUSE THEY ARE DI SABLED AT
THE END OF THEIR i hr
cturn off servo

| di r18, high(neutral)
sts OCl1AH, r18
| di r18, low(neutral)
sts OCl1AL, r18

call disable_clicker

;get current speed

call get_speed ;the speed interrupt enable is in the get_speed subroutine
call speed_disable

;calcul ate the rpm

call rpmcalc

; CLUTCH PRESSED?

LDS rl6, pind

andi r16, 0b00001000

clz

cpi ri6, 0 ;if clutch is pressed the z flag will be true (bit 1 of
sreg)

| ds rl6, sreg

sbrc r16, 1

call clutch_subroutine

;turn off servo

| di r18, high(neutral)
X sts OCl1AH, r18

| di ri8, low(neutral)
X sts OCl1AL, r18

; CLUTCH | SNT PRESSED, SEND SPEED QUT TO LCD
call send_speed
; TEST CODE FOR THE SERVO

; START AT THE NEUTRAL AND | NCREMENT UPWARD TO THE MAX AND THEN BACK DOWN

;call set _servo

| di rl6, $FF
sts i nner _del ay, rl6
sts outer_delay, rl6
| di ri7z, 10
rpt2:
call delay_sub
dec ri7
clz
cpi ri7z, O
brne rpt2

;end
j mp normal _prog

; - Get - Speed- Subroutine------------

get _speed:
;set bits 7,6 to 01 in EICRB (for transition interrupt)
| ds rl6, EICRB
ori r16, 0b11000000 ;11 for rising edge
sts ElI CRB, rl16
;set tinmer3 prescalers to 1024 (bits 2,1,0 in the TCCR1B)
| ds ri6, TCCR3B ;to 101
andi rl16, 0b11111000
ori r16, 0b00000101
sts TCCR3B, r16
;cl ear the edge counter
clr rl6
sts edgecounter, rl6
; TEST PO NT- MAKE SURE THE TlI MER WAS RESET
| ds ri6, tcnt3
| ds rl7, tcnt3h

; check the edge counter

;i f 2nd edge hasnt been captured,

; dont continue

;set bit 7 in EIMSK (to enable int 7 interrupt)

check_edge:
call speed_enabl e
sei
;i f timer overflows, set speed to O
;timer 1 overflow flag: bit 2 of tifr

| ds rl6e, ETIFR

sbrc r16, 2

jmp zer o_speed

| ds rl6, edgecounter
clz

cpi rie, 2

br ne check_edge

; now two edges have been captured
;assune 16 bit time val ues for each
;edgel h, edgel |, and edge2_h, edge2_|

;clear port b soi knowit nmade it to this point
clr ri6
sts porth, ri6

;edge 2 | and h contain the time difference

; between edges. No subtraction is necessary
;since the timer was initialized at zero for edgel
| ds rl6, edge2_|

| ds rl7, edge2 h

;now the tinme difference is in rl7 and rl6

;divide the FC52 by the tine difference

| di r19, d_UB ; di stance upper byte ;.equ d_UB = $FC
| di ri8, d LB ;di stance | ower byte ;.equ d LB = $52
clr r20 ;clear the subtraction counter
i n_sub
;first check if the value is 00. if so, go to zero speed
X clz
; cpi r16, O
; | ds r21, sreg
; sbrc r21, 1
: cpi rl7, O
; sbrc r21, 1
; jmp zero_speed
;subtract the | ower bytes
; inc r20 ;increnent the counter
; sec ;clear the carry flag first
X sub rl8, ri6
; ;including the carry, subtract the higher bytes
; sbc ri9, rl7v
; ;check the carry flag, if not true, keep subtracting
;subtract the | ower bytes
inc r20 ;increment the counter
clc ;clear the carry flag first
sub ri8, rlé6
;including the carry, subtract the higher bytes
shc ri9, rl7v
; ;check the carry flag, if not true, keep subtracting
brcc in_sub
; SUBTRACTI ON- COVPLETE
dec r20
| sr r20
I'sr r20
; TEST LI NE TO SEE LARGER SPAN OF SPEED. do NOT PUT THI S IS FI NAL CODE
: I'sl r20
I'sl r20

; DI VI SI ON- COVPLETE
;120 containS the integer quotient
;check if r20 is greater than decinal
clc ;clear the carry
cpi r20, $63 ;check if r20 is greater than 99
;if the carry is low, r20 is greater than 99
;and needs to be corrected
brcs store_speed ;branch if carry is set
;if r20 is greater than 99, correct it
;to 99
| di r20, $63
st ore_speed:

sts speed, r20
; NOTE: the value of speed in nph is stored in r20
; -END-OF-DI VI SION- TECHNI QUE- - - - - - - - - - - - - - - - -
ret
zer 0_speed:
;clear the tiner overflow flag

| di r16, 0b00000100
sts etifr, ri16
clr r20
sts speed, r20
ret
X | ds rl6, etifr
: andi r16, 0b11111011
: ori r16, 0b00000100
: sts etifr, ril6
X clr r20
; sts speed, r20
; ret

;end of get speed subroutine------------------

;- 1--1 NTI ALI ZE- LCD- SUBROUTI NE- - - - - - - -

LCD init:

; STEP1: Enabl e PORTA(| ower 6 pins)

| di r23, ddra

ori r23, Ox7F ;

sts ddra, r23 ; PORTA 5-0 = RW| RS | DB7 | DB6 | DB5 | DB4

;delay for 15ns to allow VCC to settle

Idi r23, 200 ;200 x 75 x lus = 15ms

sts inner_delay, r23

Idi r23, 75 ;set inner_delay to |argest nunber to nmake nore
accurate

sts outer_delay, r23

call delay_sub ;delay 15 ns

; STEP2: Enabl e 4-bit Mde
; remenber, when witing to the LCD, first EERW & RS

;are low, then E goes high (no change to RWor RS) and the

;valid data is placed on db7:4, then E goes | ow again

;timng specs:

;RWnust fall lowfirst, with at |east 150 ns before E goes high
;then the data nmust be on the line for at |least 195 ns before E
;goes low, then the data nmust also remain on the line for at |east
;10 ns after E goes | ow

Idi r23, 0x01
sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x03 ;RS = 0, Rw=0, DB = 3
sts porta, r23
call delay_sub ;delay 1 us

;set enable bit high

ori r23, 0b01000000

sts porta, r23

call delay_sub ;delay 1 us

;clear enable bit

andi r23, 0Ob10111111

sts porta, r23

Idi r23, 200 ;200 x 25 x 1us = 5ns

sts inner_delay, r23

Idi r23, 25 ;set inner_delay to |argest nunber to nmake nore
accurate

sts outer_delay, r23

call delay_sub ;delay 5 ns

Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x03 ;RS =0, Rw=0, DB = 3
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 100 100 x 1 x lus = 100us
sts inner_delay, r23; outer_delay already set to 1
call delay_sub ; del ay 100 us
Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x03 ;RS = 0, Rw=0, DB = 3
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23

Idi r23, 200 ;200 x 25 x 1us = 5ns

sts inner_delay, r23

Idi r23, 25 ;set inner_delay to |argest nunber to nmake nore
accurate

sts outer_delay, r23

call delay_sub ;delay 5 ns

Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x02 ;RS =0, RwWw=0, DB = 2
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0bl10111111
sts porta, r23
I di r23, 40 ;40 x 1 x 1lus = 40us
sts inner_delay, r23; outer_delay already set to 1
call delay_sub ; del ay 40 us

STEP3: Enable 2 lines
Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x02 ;RS =0, RW=0, DB =2
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23

I di r23, 200 ;200 x 25 x 1us = 5ns

sts inner_delay, r23

Idi r23, 25 ;set inner_delay to |argest nunber to make nore
accurate

sts outer_delay, r23

call delay_sub ;delay 5 ns

Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x08 ;RS =0, Rw=0, DB = 8
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 40 ;40 x 1 x lus = 40us
sts inner_delay, r23; outer_delay already set to 1
call delay_sub ; del ay 40 us

; STEP4: Diplay on, Cursor on, Blink on
Idi r23, 0x01

sts inner_delay, r23

sts outer_delay, r23

I di r23, 0x00 ;RS =0, RW=0, DB=0
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
I di r23, 200 ;200 x 25 x 1us = 5ns
sts inner_delay, r23
Idi r23, 25 ;set inner_delay to |argest nunber to make nore
accurate
sts outer_delay, r23
call delay_sub ;delay 5 ns

Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

I di r23, OxOF ;RS =0, Rw=0, DB = F
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

:clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 40 ;40 x 1 x 1us = 40us
sts inner_delay, r23; outer_delay already set to 1
call delay_sub ; del ay 40 us

: STEP4: C ear screen, Cursor hone
Idi r23, 0x01

sts inner_delay, r23

sts outer_delay, r23

Idi r23, 0x00 ;RS =0, Rw=0, DB=0
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 200 ;200 x 25 x 1us = 5ns
sts inner_delay, r23
Idi r23, 25 ;set inner_delay to |argest nunber to nmake nore
accurate
sts outer_delay, r23
call delay_sub ;delay 5 ns

Idi r23, 0x01
sts inner_delay, r23
sts outer_delay, r23

Idi r23, 0x01 RS =0, RW=0, DB =1
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

:clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 82 ;82 x 20 x 1us = 1.64ns
sts inner_delay, r23
Idi r23, 20 ;set inner_delay to | argest nunber to nake nore
accurate
sts outer_delay, r23
call delay_sub ;delay 1.64 ns

; END of LCD init subroutine

: CLEAR LCD SCREEN SUBROUTI NE- - = = == == === s e mmmmmmmo e om e e oo o
cl ear _screen:

push r23

push r25

R ; STEP4: Cl ear screen

Cursor hone
Idi r23, 0x01
sts inner_delay, r23
sts outer_delay, r23

I di r23, 0x00 ;RS =0, Rw=0, DB =0
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 200 ;200 x 25 x 1us = 5ns
sts inner_delay, r23
Idi r23, 25 ;set inner_delay to | argest nunber to nmake nore
accurate
sts outer_delay, r23
call delay_sub ;delay 5 s

Idi r23, 0x01
sts inner_delay, r23
sts outer_delay, r23

Idi r23, 0x01 ;RS =0, Rw=0, DB =1
sts porta, r23
call delay_sub ;delay 1 us
;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

;clear enable bit
andi r23, 0b10111111

sts porta, r23
Idi r23, 82 ;82 x 20 x lus = 1.64ns
sts inner_delay, r23
Idi r23, 20 ;set inner_delay to |argest nunber to nmake nore
accurate
sts outer_delay, r23
call delay_sub ;delay 1.64 ns

:--end of clear |cd subroutine

; - 2- - NI BBLE- PASSER- SUBROUTI NE- - - - - - - -
ni bbl er _passer:
;check if the byte is for data or comand
lds r23, RS ;load RS paraneter value into r23

| ds r22, LCDbyte;load the byte for the LCD into r22
swap r22 ;swap upper & | owe nibble
andi r22, 0b00001111
;skip the next instruction if RS =1
sbrs r23, 0
jmp data_upper_nib ;this ine is only executed when RS = 0
;otherwise, RSis 1, so set the RS bit
;in the upper nibble

ori r22, 0b00010000 ;the RS bit has just been set
dat a_upper _ni b:
sts porta, r22 ;send the 1st (upper) nibble to LCD
Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

clz

call delay_sub ;delay 1 us

ori r22, 0b01000000 ;set enable bit high
sts porta, r22

call delay_sub ;delay 1 us

andi r22, 0b10111111 ;clear enable bit

sts porta, r22
Idi r23, 200 ;200 x 10 x lus = 2ns
sts inner_delay, r23
Idi r23, 10 ;set inner_delay to | argest nunber to nake nore
accurate
sts outer_delay, r23
call delay_sub ;delay 2 ns

;1 oad the | ower nibble and check the RS bit

;check if the byte is for data or command

lds r23, RS ;1 oad RS paraneter value into r23

| ds r22, LCDbyte;load the byte for the LCD into r22

andi r22, 0b00001111
;skip the next instruction if RS =1
sbrs r23, 0
jnmp data_lower _nib ;this Iine is only executed when RS = 0
;otherwise, RSis 1, so set the RS bit
;in the upper nibble

ori r22, 0b00010000 ;the RS bit has just been set
data_| ower _ni b:
sts porta, r22 ;send the 2nd (lower) nibble to LCD
Idi r23, 0x01

sts inner_delay, r23
sts outer_delay, r23

clz

call delay_sub ;delay 1 us

ori r22, 0b01000000 ;set enable bit high
sts porta, r22

call delay_sub ;delay 1 us

andi r22, 0b10111111 ;clear enable bit
sts porta, r22

Idi r23, 200 ;200 x 10 x 1us = 2ns

sts inner_delay, r23

Idi r23, 10 ;set inner_delay to |argest nunber to nmake nore

accurate

sts outer_delay, r23

call delay_sub

;delay 2 ns
; END of 2nd ni bbl e byte has been sent
; END of nibbl e _passer subroutine

; - SEND- SPEED- TO- LCD- SUBROUTI NE- - = - = = === === === ----
send_speed:
;--send out speed characters to the LCD --

;convert the speed value to dec

| ds rl6, speed
sts Hexbyte, rl16
call Hex_ 2 Dec
| ds rl6, Decbyte
sts speed_dec, rl6
call clear_screen
;initialize the Z pointer for
;where the string is in prog nenory
| di ZH, high(speed_str<<1)
| di ZL, | ow(speed_str<<1)
;dont forget to update the RS bit
| di r23, 01
sts RS, r23
;1 oad the character
send_byte:
| pm r23, Z
;check if its the end |ine
clz
cpi r23, $D
breq end_of _string
;otherwise (if not end),
;the LCD screen
STS LCDbyte, r23
call N bbl er_ passer
;since it is not the end character
;increnent the pointer and go back
;to the |l oad and send instructions
inc ZL
jmp send_byte

end_of _string:
; send out speed to the LCD

| ds rl6, speed_dec

nov rl7, r16

swap r16

andi r16, 0b00001111

| di rig8, $30

add ri6, r18 ;add 30 to format it
sts LCDbyte, rl16

call Ni bbl er_passer ;send out the units characters
andi rl17, 0b00001111

add ri7z, ri8 ;add 30 to format it
sts LCDbyte, rl7

call Ni bbl er_passer;send out the tens character
;exit

ret

; end- of - send- speed-subroutine-----------------------

send character to

;remenber this nust be the speed variable
;that has been converted fromhex to dec

in ascii

in ascii

;- - SEND- GEAR- TO- LCD- SUBROUTI NE- - = = = === === m s mm o e e e - -
send_gear:
;clear the LCD screen

;load the z pointer with the gear string address

| di ZL, low(gear_str<<l)

| di ZH, high(gear_str<<1)
;dont forget to update the RS bit
| di r23, 01

sts RS, r23

;send the character
;1 oad the character
send_byt e2:
| pm rl6, Z
;check if its the end line
clz
cpi rie6, $D
breq end_of _string2
;otherwise (if not end), send character to
;the LCD screen
STS LCDbyte, rl6
call Ni bbl er_passer
;since it is not the end character
;increnent the pointer and go back
;to the | oad and send instructions
inc ZL
jmp send_byte2
end_of _string2:

| ds r16, gear

| di ri7z, $30

add ri6, rl7v

sts LCDbyte, rl6
call Ni bbl er_Passer
;exit

ret

R end of send _gear subroutine---------------
; - SEND- ENTER- TO- LCD- SUBROUTI NE- - - - - - === === === - - - -
send_enter:

;--send out "Enter?" characters to the LCD --

; STEP4: C ear screen, Cursor hone
; I di r23, 0x01
; sts inner_delay, r23
; sts outer_delay, r23

;1 di r23, 0x00 ;RS =0, Rw=0, DB =0
; sts porta, r23
; call delay_sub ;delay 1 us
; ;set enable bit high
; ori r23, 0b01000000
; sts porta, r23
; call delay_sub ;delay 1 us

; ;clear enable bit

; andi r23, 0bl10111111

; sts porta, r23

; I di r23, 200 ;200 x 25 x 1us = 5nB
; sts inner_delay, r23

; Idi r23, 25 ;set inner_delay to |l argest nunber to make

accurate

; sts outer_delay, r23

; call delay_sub ;delay 5 ns
; Idi r23, 0x01

; sts inner_delay, r23

; sts outer_delay, r23

; I di r23, 0x01 ;RS =0, Rw=0, DB =1
; sts porta, r23

; call delay_sub ;delay 1 us

; ;set enable bit high

; ori r23, 0b01000000

; sts porta, r23

; call delay_sub ;delay 1 us

: ;clear enable bit
; andi r23, 0b10111111

; sts porta, r23
; Idi r23, 82 ;82 x 20 x lus = 1.64ns
; sts inner_delay, r23
; Idi r23, 20 ;set inner_delay to |argest nunber to nmake nore
accurate
; sts outer_delay, r23
; call delay_sub ;delay 1.64 ns
;--end of insertion---------------------
;initialize the Z pointer for
;where the string is in prog nenory
| di ZH, high(enter_str<<1)
| di ZL, low(enter_str<<1)
;dont forget to update the RS bit
| di r23, 01
sts RS, r23
;load the character
send_byt e3:
| pm r23, Z
;check if its the end |line
clz
cpi r23, $D
breq end_of _string3

;otherwise (if not end), send character to
:the LCD screen
STS LCDbyte, r23
call Nibbl er_passer
;since it is not the end character,
;increnent the pointer and go back
;to the load and send instructions
inc ZL
j mp send_byte3
end_of _string3:
:"Enter? " has been sent to the LCD
pexit
ret
;end-of -send-enter-subroutine-----------------------

- 6- - DELAY- SUBROUTI NE- - - - - - - -

del ay_sub
PUSH R24
PUSH R25
| ds r24, outer_del ay
out er _t op:

;the inner_delay variable is the nunber of
; luS repitions to be conpeted

| ds r25, inner_del ay ;2 cycles 12
i nner _t op: ; (we want 16 clock cycles total between here and the branch)
dec r25 ;1 cycle
nop ;1 cycle 12
-1 -
nop
03 - -
nop
14 -u -
nop
5 - S -
nop
16 - -
nop
07 - 'S -
nop
18 - e -
nop
9 - q -
nop
210 - u -
nop
111 - e -
nop
112 -n -
nop
113 - C -
nop
114 - e -
cpi r25, 0 ;
15 - -
br ne i nner _top ;1 cycle - 16 -
;----end-of -1uS-sequence---------------------
clz ;clear the Z flag
dec r24
cpi r24, 0
br ne outer_top
clz
POP R25
POP R24
ret

; Hex- To- Deci mal - Conver si on- Subroutine------------
Hex_2_ Dec:
;assunme the input variable is called "Hexbyte"
;and is located in data space.

| ds rl6, Hexbyte
;check if hexbyte is zero

clz

cpi ri6, O

breq zero_hex

| di ri7z, 10

clr ri8 ;yuse rl7 to count (the integer quotient)

;formul a: divide Hexbyte by 10, then add 6x
;that nunber to Hexbyte

subtract:

clc ;clear the carry flag beforehand

sub ri6, rl7

inc rig

;check if rl6 is less than O (the carry goes true)

;if carry is not true, increment the counter and

;and go back to subtract

| ds r19, SREG

sbrs r19, O ;if the carry is true, skip the next instruction

jmp subtract

dec ri8 ;decrement r18 since it is pre-increnented before
;the condition test

;now the integer quotient is in rl8

; MULTI PLY R18 by 6, R19 can be used since the carry test is over

| di rl9, 6 ;rl1l8 * r19 = quotient * 6

mul rig8, r19 ;resultant is in ril(high) rO (Iow
;the product will be a 1 Byte nunber, only care
;about the |ow byte RO

; RO contains the product. Add RO to Hexbyte

| ds rl6, Hexbyte

add r16, rO

;result is inrlé6

sts Decbyte, rl6

;exit

ret

zer o_hex:

I di ri16, $00

sts Decbyte, rl6

ret

s End of Hex to Decinmal Subroutine----------------------

<= RPM CALCULATI NG SUBROUI NTE- = = = = = = = = === =< w2 oo e o omeooca oo

RPM Cal c:
push r16
push r17
;first_gear:
| ds rl6, speed
;check if speed = 0
clz
cpi ri6, O
| ds ri6, sreg
sbrc r16, 1

j mp speedi szero

;mmultiply speed by the 1st gear factor
| di r17, first_Num

mul rie, ril7v

;result isinrl, r0

:store the results in the Nunmerator variables
:for the division subroutine

sts NumH, ril

sts NumL, rO

;load and store the denomi nator for the division subroutine
| di rl6, first_den

sts Den_L, rl6

clr rl6

sts Den_H, rl6

;divide to cal culate the RPM
call Div_Sub
;the RPMis returned in variable 'quotient

| ds rl6, quotient ;rpmis in rlé
sts first_rpm rl6

; second_gear:
| ds rl6, speed
;mmultiply speed by the 2st gear factor
| di rl7, second_num
mul rie, rl7v

cresult isinrl, ro0
;store the results in the Nunerator vari abl es
;for the division subroutine

sts NumH, r1l

sts NumL, rO

;load and store the denom nator for the division subroutine
| di rl6, second_den

sts Den_L, r16

clr r16

sts Den_H, rl16

;divide to calculate the RPM
call D v_Sub
;the RPMis returned in variable 'quotient

| ds rl6, quotient ;rpmis in rlé
sts second_rpm r1l6

;third_gear:
| ds rl6, speed
;mul tiply speed by the 3rd gear factor
| di rl7, third_num
mul rie, rl7v

cresult isinrl, ro0
;store the results in the Nunerator vari abl es
;for the division subroutine

sts NumH, r1l

sts NumL, rO

;1 oad and store the denom nator for the division subroutine
| di r16, third_den

sts Den_L, rl6

clr rle6

sts Den_H, rl6

;divide to calculate the RPM
call Div_Sub
;the RPMis returned in variable 'quotient

| ds ri6, quotient ;rpmis in rlé6
sts third rpm r16

; fourth_gear:
| ds rl6, speed
;multiply speed by the 2st gear factor
| di r17, fourth_num

rmul rl6, r17

cresult isinrl, r0
:store the results in the Nunmerator variables
;for the division subroutine

sts NumH, r1l

sts NumL, rO

;load and store the denom nator for the division subroutine
| di rl6, fourth_den

sts Den_L, rl6

clr rl6

sts Den_H, r16

;divide to calculate the RPM
call Div_Sub
;the RPMis returned in variable 'quotient

| ds rl6, quotient ;rpmis in rl6
sts fourth_rpm rl6

;fifth_gear:
I ds rl6, speed
;multiply speed by the 2st gear factor
| di r17, fifth_num
mul rie, ril7v

cresult isinrl, r0
;store the results in the Nunerator vari abl es
;for the division subroutine

sts NumH, ril

sts NumL, rO

;load and store the denomi nator for the division subroutine
| di ri6, fifth _den

sts Den_L, r16

clr rl6

sts Den_H, rl16

;divide to calculate the RPM
call Div_Sub
;the RPMis returned in variable 'quotient

| ds rl6, quotient ;rpmis in rl6é
sts fifth_rpm r16
pexit
pop rl7
pop rl6
ret
speedi szero:
clr ri16
sts first_rpm r16
sts second_rpm r16

sts third rpm r16
sts fourth_rpm r16
sts fifth_rpm r16

sts quotient, rl6
pop rl7

pop r16

ret

;--end of RPM Speed cal cul ator subroutine-----------------------

;--16-16-bit DIVISION SUBROUTI NE-----------=---“-“---“-““-------
D v_Sub:

push r16

push r17

push r18

push r19

push r20

| ds r19, NumH

i nc_subcounter:

;carry

;-end of division subroutine

; SET SERVO SUBBROUTI NE

| ds r18, Num.L
| ds rl7, Den_H
| ds rl6, Den L
clr r20

inc r20

clc

sub r18, ri16
sbc r19, r17

brcc i nc_subcounter
S now true

dec r20

sts quotient, r20
;exit

pop r20

pop rl19

pop r18

pop rl7

pop r16

ret

set _servo:

push r16

push r17

push r18

push r19

| di r16, $5b
sts CC1AH, r16
clr rie

sts OCl1AL, r16

pop rlg

pop ri17

pop rl6

ret

| ds rl6, gear

clz

;check for neutral first
cpi rl16, O

| ds rl8, sreg

sbrc ri18, 1

jmp pos_0

;not in neutral, find the gear
cpi rie, 1

breq | oad_first

cpi rie, 2

breq | oad_second

cpi ri6, 3

breq load_third

cpi ri6, 4

breq | oad fourth
cpi ri6, 5

;120 is the subtraction counter

;z flag is true => go to posO

breq load_fifth
;otherwi se, set servo to zero
; by setting the output conpare to neutra

| di ri18, high(neutral)
sts OClAH, r18
| di r18, low(neutral)
sts CC1AL, r18
;exit
ret
| oad_first:
| ds ri6, first_rpm
jmp find_range
| oad_second:
| ds rl6, second_rpm
jmp find_range
| oad_t hird:
I ds r16, third_rpm
jmp find_range
| oad_fourth:
| ds rl6, fourth rpm
jmp find_range
load_fifth
| ds r16, fifth_ rpm
find_range:
| di ri7z, rpmil
clc
cp ri6, ri17
;if carry goes true, rl6 < rpml, set servo to neutra
| ds rl8, sreg
sbrc r18, 0
jnp pos_0 ;carry is true => go to posO
; check 2nd position
| di ril7, rpm?2
cp ri6, ri17
| ds ri8, sreg
sbrc r18, 0
jmp pos_1 ;carry is true => go to posl
; check 3rd position
| di ri7, rpm3
cp ri6, ri17
I ds ri8, sreg
sbrc r18, 0O
jmp pos 2 ;carry is true => go to pos2
; check 4th position
| di ri7z, rpmié4
cp rle, ri17
| ds rl8, sreg
sbrc r18, O
jmp pos_ 3 ;carry is true => go to pos3
; check 5th position
| di ri7, rpm5
cp rl6, ri17
| ds rl8, sreg
sbrc r18, 0
jmp pos_4 ;carry is true => go to pos4
; check 6th position
| di rl7, rpme6

cp ri6, ri17

| ds ri8, sreg

sbrc r18, 0O

jmp pos_5

; check 7th position
| di ri7z, rpm7y
cp rl6, ri17

I ds ri8, sreg
sbrc r18, O

jmp pos_6

; check 8th position
| di ri7, rpms8
cp rl6, ri17

| ds rl8, sreg
sbrc r18, O

jmp pos_7

; check 9th position
| di ri7, rpm?9
cp ri6, ri17

| ds rl8, sreg
sbrc r18, 0

jmp pos_8

; check 10th position
| di rl7, rpm10
cp rle, ri17

| ds ri8, sreg
sbrc r18, O

jmp pos_9

; check 11th position
| di ri7, rpma1il
cp rl6, ri17

I ds ri8, sreg
sbrc r18, O

jmp pos_10

; check 12th position
| di ri7z, rpmai2
cp rl6, ri17

| ds rl8, sreg
sbrc r18, O

jmp pos 11

; check 13th position
| di ri7, rpma13
cp ri6, ri17v

| ds rl8, sreg
sbrc r18, 0

jmp pos_12

; check 14th position
| di rl7, rpmil4
cp rle, ri17

| ds ri8, sreg
sbrc r18, O

jmp pos_13

; check 15th position
| di ri7, rpma15
cp rl6, ri17

I ds ri8, sreg
sbrc r18, O

jmp pos_14

; check 16th position
| di ri7, rpmJ16

;carry

;carry

carry

;carry

;carry

;carry

;carry

;carry

;carry

carry

true

true

true

true

true

true

true

true

true

true

go

go

go

go

go

go

go

go

go

go

to

to

to

to

to

to

to

to

to

to

pos5

pos6

pos7

pos8

pos9

pos10

posll

pos12

pos13

posl4

cp rl6, ri17

| ds rl8, sreg

sbrc r18, O

jmp pos_15

; check 17th position

| di ril7, rpmal7

cp ri6, ri17

| ds ri8, sreg

sbrc r18, 0O

jmp pos_16

; check 18th position

| di ri7, rpma18

cp rle, ri17

| ds ri8, sreg

sbrc r18, O

jmp pos_17

; check 19th position

| di ri7, rpma19

cp rl6, ri17

| ds rl8, sreg

sbrc r18, O

jmp pos_18

; check 20th position

| di ril7, rpm?20

cp rl6, ri17

| ds rl8, sreg

sbrc r18, O

jmp pos_19

; check 21st position

| di ril7, rpm?21

cp ri6, ri17

| ds ri8, sreg

sbrc r18, O

jmp pos_20

; check 22nd position

| di ri7, rpm22

cp rle, ri17

| ds ri8, sreg

sbrc r18, O

jmp pos_21

; el se

jmp pos_22

; check 23rd position

; | di ri7, rpm23
; cp rie, r1l7v

X I ds ri8, sreg

; sbrc r18, O

; jmp pos_22
pos_O0:

;set servo to neutral position
| di r17, high(neutral)
| di r16, low(neutral)
| di ri18, offset
clc
sub ri6, ri8
clr rig

sbc r17, r18

;carry

;carry

ycarry

;carry

;carry

;carry

carry

;carry

true

true

true

true

true

true

true

true

go

go

go

go

go

go

go

go

to

to

to

to

to

to

to

to

pos15

pos16

pos17

pos18

pos19

pos20

pos21

pos22

pos_1:

pos_2:

pos_3:

pos_4:

pos_b5:

pos_6:

jmp
| di
| di

jmp
| di
| di

j mp
| di
| di

jmp
| di
| di

jp
| di
| di

sts OClAH, r17
sts CCl1AL, r16
end_set _servo

ri16, | ow(el evenhundred)
r17, high(el evenhundred)

| di r18, offset
clc

sub rl6, ri18
clr ri8

sbc r17, r18

Ssts OCl1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, | ow(twel vehundred)
r17, high(twel vehundred)

| di r18, offset
clc

sub rl6, ri18
clr ri8

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r16

end_set _servo

r16, | ow(thirteenhundred)
r17, high(thirteenhundred)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r1l6

end_set _servo

r16, | ow(fourteenhundred)
r17, high(fourteenhundred)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, low(fifteenhundred)
r17, high(fifteenhundred)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r1l6

end_set _servo

pos_7:

pos_8:

pos_9:

pos_10:

pos_11:

jp
| di
| di

j mp
| di
| di

j mp
| di
| di

j mp
| di
| di

j mp
| di
| di

ri16, | ow(sixteenhundred)
r17, high(sixteenhundred)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc rl17, r18

sts OCl1AH, r17
sts OCl1AL, r1l6

end_set _servo

ri16, | ow(svnteenhundred)
r17, high(svnteenhundred)

| di r18, offset
clc

sub rl6, r18
clr r18

sbc rl17, r18

sts OC1AH, r17
sts OCl1AL, r1l6

end_set _servo

ri16, | owateteenhundred)
r17, high(ateteenhundred)

| di r18, offset
clc

sub r1l6, r18
clr ri18

sbc r17, r18

sts OC1AH, r17
sts OCl1AL, r16

end_set _servo

r16, | ow(ni neteenhundred)
r17, high(nineteenhundred)

| di r18, offset
clc

sub r1l6, r18
clr ri8

sbc r17, r18

sts CCl1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, |low(twenty)
r17, high(twenty)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc rl17, r18

sts CCl1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, | ow(twentyone)
r17, high(twentyone)
| di ri18, offset
clc

sub rl6, r18

clr ri8
sbc r17, r18
sts OCl1AH, r17
sts CC1AL, r16
jmp end_set _servo
pos_12:
| di ri6, | ow(twentytwo)
| di r17, high(twentytwo)
| di ri18, offset
clc
sub ri6, rl8
clr rig
sbc r17, r18
sts OCl1AH, r17
sts CC1AL, r16
jmp end_set _servo
pos_13:
| di rl6, | ow(twentythree)
| di r17, high(twentythree)
| di r18, offset
clc
sub ri6, r1l8
clr rig
sbc r17, r18
sts OCl1AH, r17
sts OC1AL, rl6
jmp end_set _servo
pos_14:
| di r16, | ow(twentyfour)
| di r17, high(twentyfour)
| di r18, offset
clc
sub ri6, r1l8
clr ri8
sbc r17, r18
sts CC1AH, r17
sts OC1AL, r1l6
jmp end_set _servo
pos_15:
| di ri6, |ow(twentyfive)
| di r17, high(twentyfive)
| di ri18, offset
clc
sub ri6, ri8
clr ri8
sbc r17, r18
sts CC1AH, r17
sts CC1AL, r16
jmp end_set _servo
pos_16:
| di ri6, | ow(twentysix)
| di ri17, high(twentysix)
| di ri18, offset
clc
sub ri6, ri8
clr rig

sbc r17, r18
sts OCl1AH, r17

pos_17:

pos_18:

pos_19:

pos_20:

pos_21:

pos_22:

j mp
| di
| di

jp
| di
| di

jp
| di
| di

j mp
| di
| di

j mp
| di
| di

j mp
| di

sts CC1AL, r16
end_set _servo

ri6, | ow(twentysvn)
r17, high(twentysvn)

| di r18, offset
clc

sub rl6, r18
clr rls

sbc r17, r18

sts OC1AH, r17
sts OCl1AL, r16

end_set _servo

rl6, | ow(twentyate)
ri17, high(twentyate)

| di r18, offset
clc

sub rl6, ri18
clr rls

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r16

end_set _servo

rl6, | ow(twentynine)
r17, high(twentynine)

| di r18, offset
clc

sub rl6, ri18
clr ri8

sbc r17, r18

sts OC1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, low(thirty)
r17, high(thirty)

| di r18, offset
clc

sub r1l6, r18
clr ri8

sbc r17, r18

sts OC1AH, r17
sts OCl1AL, r16

end_set _servo

rl6, low(thirtyone)
r17, high(thirtyone)

| di r18, offset
clc

sub rl6, r18
clr ri8

sbc r17, r18

sts OCl1AH, r17
sts OCl1AL, r16

end_set _servo

ri6, low(thirtyfive)

| di ri17, high(thirtyfive)

| di ri18, offset
clc
sub ri6, r18
clr ril8
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r1l6
jmp end_set _servo
end_set _servo:
pop r19
pop rl8
pop ri17
pop r16
ret

;--end of set servo subrouine--------------------------

; - ENABLE- CLUTCH- | NTERRUPT- SUBROUTI NE- - - - - - - - -
cl utch_enabl e:
;assunme clutch is connected to pin d3
;clear the clutch flag first

| ds ri6, ElIFR

ori r16, 0b00001000
sts El FR, r16
;enable the interrupt

| ds ri16, ElI MK

ori r16, 0b00001000
sts El MBK, r16

ret

; - DI SABLE- CLUTCH- | NTERRUPT- SUBROUTI NE- - - - - - - - -

clutch_di sabl e:
;assunme clutch is connected to pin d3,

| ds r16, ElI MSK
andi r16, 0b11110111
sts El MK, r16
ret

; - ENABLE SPEED | NTERRUPT SUBROUTI NE
speed_enabl e:
;clear the flag first

| ds ri6, ElIFR

ori ri16, 0b10000000
sts El FR, r16
;enable the interrupt

| ds ri16, ElIMSK

ori r16, 0b10000000
sts El MSK, r16

ret

; - DI SABLE- SPEED- | NTERRUPT- SUBROUTI NE- - - - - - - - -
speed_di sabl e:
;assune clutch is connected to pin e7

| ds r16, ElI MSK
andi r16, 0b01111111
sts El MBK, r16
ret

;--enabl e clicker
enabl e_cli cker:

i nterrupts subroutine

the int3 interrupt

the int3 interrupt

the int7 interrupt

;clear the clicker flags first
| ds rl6, EIFR
ori r16, 0b00000011
sts EIFR, r16
; ENABLE CLI CKER | NTERRUPTS
;set bits 0O and 1 in EIMSK (to enable int 0 and 1 interrupts)

| ds r16, ElI MSK

ori r16, 0b00000011
sts EIMBK, ri16

ret

di sabl e_cl i cker:
;clear the clicker flags first
andi r16, 0b11111100

sts El MK, r16

| ds rl16, ElIFR

ori r16, 0b00000011
sts EIFR, r16

| ds r16, ElI MSK

ret

; - SPEED- | NTERRUPT- HANDLER- - - - - - - - - - - oo oo oo
Speed_I nterrupt:

push r16

push r17

push r18

;save the status register
| ds rl6, sreg

sts sreg_temp, rl6

; FI RST DI SABLE NESTED SPEED | NTERRUPTS
call speed_disable

; ENABLE GLOBAL | NTERRUPTS

; FOR PYWM | NTERRUPTS

SEI

; check whi ch edge

I ds ri18, edgecounter

clz

cpi rig8, 0

breq edgel

edge2:
;clear bit 7 in EIMSK (to disable int 7 interrupt)
;turn off LED
clr rie
sts portb, ri16
;if greater than FC52 OR if timer overflow occurred, set
;the edge time to FC52
;first check the overflow fl ag

| ds rl6, ETIFR ;check bit 2, the overflow flag
sbrc r16, 2
j mp of | owed

;1 f overflow did not occur:
;load timer val ue

| ds r16, TOCNT3L

| ds r17, TCNT3H

;check if greater than $FC52
clc
cpi ri7z, $rC

brl o check_out
;if FCis greater than or = to FC, check the | ower byte

clz

cpi ri7, $FC

;rl6 is greater than FC

brne of | owed

;if it is FC, check the | ower byte

clc

cpi rie, $53

brge of | owed

;otherwi se, the |ower byte is $52 or |ess
j mp check_out

of | owed:
;set edge tine to FC52
| di ril7, $FC
| di rie, $52
check_out:
;store the tinmer val ue
sts edge2 H, r17
sts edge2 L, rl6
;increnent the edge counter

inc ri8
sts edgecounter, rl8
;exit
;clear the external interrupt flag
| ds rl6, EIFR
ori r16, 0b10000000
sts EIFR, r1l6
;restore the sreg
| ds rl6, sreg_tenp
sts sreg, rl6
;exit
pop ril8
pop rl7
pop ri6
reti
edgel:
;illum nate LED
| di ri6, 1
sts portbh, ri16

;i f at first edge
;reset tiner 1

clr rl6

sts TCNT3H, r16
sts TCNT3L, r16
sts edgel H, r16

sts edgel L, rl6
;and clear the tinmer overflow fl ag

| ds rl6, ETIFR

sbr rle6, $04

sts ETIFR r16

;increnent the edge counter

inc rl18

sts edgecounter, rl8

;clear the external interrupt flag
| di ri6, 0b10000000

sts El FR, r16

;restore the sreg
I ds rl6, sreg_tenp

sts sreg, rlé6

pexit

pop rig
pop rl7

pop rl6
reti

;- --UPSH FT INTERRUPT- - - - - === mm oo e m e e oo
upshift _interrupt:
; NOTE: THE SW TCH USED REQUI RES A LOT OF DEBOUNCI NG
; BECUASE | T ALSO SENDS A PULSE WHEN THE MOVENTARY SW TCH
;1S RELEASED. THI' S CANNOT BE FULLY CORRECTED, BUT THE
; DELAY | S SET LONG ENOUGH FOR EVEN A LAZY FI NGER (SHY OF A HALF SECOND)

push rie

;save the status register
I ds ri6, sreg

sts sreg_temp, rl6

;disble clicker ints to avoid nested interrupts
call disable_clicker

;4. enabl e global interrupts for PWV

sei

;first check if at startup

;i f at startup, also send the enter string

;to the lcd

cal | cl ear_screen
| ds ri6, start_up
clz

cpi ri6, $FF

| ds rl6, sreg

sbrc rl6, 1
call send_enter
;increnent the gear and send it to the LCD

| ds rl6, gear
;check if gear is 5 before increnenting
clz
cpi ri6, 5
breq sendl
i ncrement _gear:
inc ril6
sendl:
sts gear, rl6

call send_gear
;add sone delay for deboucing (40 nb)

| di r16, 250
sts i nner_del ay, rl16
| di ri6, 250
sts outer_delay, rl6

call delay_sub

call delay_sub

call delay_sub

call delay_sub

call delay_sub

call delay_sub

;clear the flag

| ds rl6, EIFR

ori ri16, 0b00000010
sts El FR, r16

;restore the sreg

| ds rl6, sreg_tenp
sts sreg, rl6
;exit

pop rl6

reti

;- --DOWNSHI FT | NTERRUPT- - - - = = - - s m o s o e e e oo
downshi ft _interrupt:

; NOTE: THE SW TCH USED REQUI RES A LOT OF DEBOUNCI NG

; BECUASE | T ALSO SENDS A PULSE WHEN THE MOVENTARY SW TCH

;1S RELEASED. THI' S CANNOT BE FULLY CORRECTED, BUT THE

; DELAY | S SET LONG ENOUGH FOR EVEN A LAZY FI NGER (SHY OF A HALF SECOND)

push rie

;save the status register
I ds ri6, sreg

sts sreg_temp, rl6

;disble clicker ints to avoid nested interrupts
call disable_clicker

;4. enabl e global interrupts for PWV

sei

;first check if at startup

;i f at startup, also send the enter string

;to the lcd

cal | cl ear_screen
| ds ri6, start_up
clz

cpi ri6, $FF

| ds rl6, sreg

sbrc rl6, 1
call send_enter

; decrenent the gear and send it to the Icd

I ds rl6, gear
; before decrenenting, check if gear is zero
clc
cpi ri6, O
breq send2
decrenent gear:
dec ril6
send2:
sts gear, rl6

call send_gear
;add sonme del ay for debouncing

| di r16, 250
sts i nner _del ay, rl6
| di ri6, 250
sts outer_delay, rl6

call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub

;clear the flag
| ds ri6, ElFR

ori r16, 0Ob000000001

sts ElFR, r16
;restore the sreg

| ds rl6, sreg_tenp
sts sreg, rlé6
;exit

pop ri6

reti

;- CLUTCH- I NTERRUPT - - - - - = - - - o m o e o e o e e
Cl utch_subrouti ne:
push r16
push r17
push r18
push r19
push r20
push r21
push r22
push r23
push r24
push r25
push r 26
push r27
push r28
push r29
push r 30
push r31
;check the start-up variable
I ds r25, start_up
clz
cpi r25, $FF ;if at start-up, variable = FF

;- - G0 TO- STEP-3- OF- FLONM CHART- - - == === - s o e e o e e e oo o -
breqg startup_code ;

;i f not at start up

clutch_top:
;enable clicker interrupts

call enabl e _clicker
sei
:Find the Servo Position Val ue
; For the current GCear
; call rpmcalc

;make sure the clutch is still pressed before setting the servo

;if clutch is not pressed anynore, exit the ihr

| ds rl6, pind

sbrc rl6, 3 ;skip the reti if clutch is pressed (d2 = |ow when clutch
is pressed)

;clutch isnt pressed anynore

jmp exit_clutch

;clutch is still pressed

call set_servo

; TEST CODE: after setting servo, if speed is greater than 15, get new speed
and servo val ues

| ds rl6, speed

clc

cpi ri6, 15

lds rl1l7, sreg
sbrs r17, 0
jmp in_gear
pexit

;Clutch still
| ds rl6, p
sbrs rl6e, 3

i s pressed)

pressed?
i nd
;skip the ret

;clutch isnt pressed anynore
jmp clutch_top

exit_clutch:

;restore the sreg

| ds
sts

cexit

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
ret

; - - STEP- 3- OF- FLOW CHART- - FI RST- CLUTCH- | NTERRUPT- ROUTI NE

r30
r29
r28

r26
r25
r24

r22
r21
r20

ri8
ri7
rl6

startup_code:

rl6, s
sreg,

r31

r27

r23

ri19

reg tenp
rl6

;enable clicker interrupts
cl ear _screen

send_enter
send_gear

cal l
cal |
cal l
sei

if clutch is pressed (d2

;wait for enter button to be pressed

check_enter:

enabl e _cli cker

r16, 0b00000001

;occur during this |oop

cal |

I ds r16, pine
andi

clz

cpi ri6, O
br ne check_

;--1f enter is pressed, disable the clicker and

cal |
cal l

the interrupt-

| ow when cl utch

;the interrupt fromthe clicker will----

ent er ;routine sets the appropriate val ue-

di sabl e_cli cker
cl ear _screen

CLEAR THE START- UP VARI ABLE

| ds rl6, start_up

clr ril6 ;
sts start _up, r16 ;
;read in port d2 to see if clutch is still pressed.
;if clutch is still pressed, set the servo.
;if clutch is not pressed anynore, exit the ihr
| ds ri16, pind
sbrc ri6, 3 ;skip the reti if clutch is pressed (d2 = | ow when clutch
is pressed)
;clutch isnt pressed anynore
j mp exit_startup
;clutch is still pressed
| ds rl6, gear
;if gear = 1 or 0, set servo to O
;use >= 2
cln
clv
cpi rie, 2
br ge i n_gear
;the car is in neutral or first gear, set servo to neutra
| di r16, high(neutral)
sts CCl1AH, r16
| di r16, low(neutral)
sts CC1AL, r16
;exit
jmp exit_startup
i n_gear:
;di sable clicker ints
call disable_clicker
;get the current speed
call get_speed
;enabl e clickers
call enable clicker
;calculate the rpmval ues at each gear
call rpmcalc
;make sure the clutch is still pressed before setting the servo
;if clutch is not pressed anynore, exit the ihr
| ds ri6, pind
sbrc rl6, 3 ;skip the reti if clutch is pressed (d2 = |ow when clutch
i's pressed)
;clutch isnt pressed anynore
jmp exit_startup
;clutch is still pressed
call set_servo
;delay for a while so the driver can have a
; chance to press the clicker
| di rle6, $FF
sts i nner _del ay, r16
sts outer_delay, rl6
| di ri7z, 25
rpt3:
call delay_sub
dec ri7
clz

cpi r17, O

brne rpt3
;exit the interrupt

exit_startup:

;check if clutch is still pressed

;if pressed, go to clutch top

| ds rl6, pind

sbrs ri6, 3

jmp clutch_top

;restore the sreg

| ds rl6, sreg_tenp

sts sreg, rlé6

;restore the registers

pop r31

pop r30

pop r29

pop r28

pop ra27

pop r26

pop r25

pop r24

pop r23

pop r22

pop r21

pop r20

pop rio

pop r18

pop rl7

pop rl6

pexit

ret
;end of start-up AND in gear section of clutch
interrupt----------mmmmmm e
tnr 0_CC:

push r16

;save the status register

| ds rl6, sreg

sts sreg_tenmp, rl6

skip_f:

tmr0_of |

; check the overflow counting variable: |F zero,
;turn port f off

| ds rl6, oflo_cntr
cpi ri6, O

brne skip_f

clr rl6

sts portf, r16
;restore the sreg

| ds rl6, sreg_tenp
sts sreg, rlé6
;exit

pop rl6

reti

o:

push r16

;save the status register
| ds rl6, sreg

sts sreg_temp, rl6

turn off port f

; check the overflow counting variable.
;I F <10, increment the counter

| ds rl6, oflo_cntr

clc

cpi ri16, 5

brlo inc_cntr

;the counter has reached the maxi mum
; Turn port f on and reset the counter

clr rie

sts oflo_cntr, rl6

| di ri6, 1

sts portf, rl16

jmp end_oflo

;increnent the overfl ow counting variabl e
inc_cntr:

inc rl6

sts oflo_cntr, rl6
end_ofl o:

;restore the sreg

| ds rl6, sreg_tenp

sts sreg, rlé6

;exit

pop rle

reti

