
EEL 4914 Senior Design

Final Design Report

April 21st, Spring 2008

Auto Rev Matcher

Team Name: “The Cowboys Lost Again”

Submitted by:

Monique Mennis
moniki@ufl.edu

Brad Atherton
masscles@ufl.edu

Abstract
Our device minimizes the frequency differential between the engine and transmission of a manual
automobile for increased longevity of the clutch plate. In human terms our device can be seen as an
automated RPM matcher. Technical challenges may entail finding an appropriate sampling rate for the
inputs of our microprocessor, and correctly calibrating the appropriate RPM value for each gear from a
series of tests. We expect our product to be a valuable asset in the car performance industry.

mailto:masscles@ufl.edu

Abstract …………………………..…………………0
Introduction………..……………..…………………I
Project Features…………………..…………………II
Concept Technology……………..…………………III
Product Comparison……………...…………………IV
Project Architecture…………..…..…………………V
Flowcharts and Diagrams...VI
Debugging Issues...VII
Measurements......………..…….…..…………….....VIII
Hardware/Software....... …….……….……..………..IX
Bill of Materials……………...…..………..……….....X
 Gantt Chart……………..…………...…..…………...XI
 Appendices……………………....……..…….……XII

I. Introduction
In the high performance vehicle industry there is a strong demand for additional features that allow a
driver to perform gear changes within milliseconds without having to reduce speed, decrease engine
power or overuse the clutch. Current technology allows the driver to select the gear he / she wishes to
shift into directly before or after the gear is currently engaged. Usually a shift lever is used to select the
adjacent higher or lower gear. The shift lever operates like a ratchet mechanism that converts fore and
aft motion into rotary motion.

There are various different types of products installed in today’s high performance vehicles allowing
the driver greater control over the shifting mechanism of the vehicle. With our “Auto Rev Matcher” we
aim to allow the everyday driver similar control in their conventional vehicle.

II. Project Features
Main Objectives

• Maximized lifetime of clutch plate

• Minimized jerk from clutch engagement

III. Concept / Technology
Atmega32 Microcontroller

We chose the Atmega32 over other microprocessors due to its wide availability and low cost. In the
development stage this processor was seen as the best option given our resources and prior experience
with other Atmel processors.

LCD Display
A basic LCD display is used to inform the user of their current speed and gear when the clutch is not
engaged. When the clutch is engaged the LCD enables the user to see which gear he / she is switching
into.

Speedometer Sensor
A 6.6 V powered speedometer senor signal is read in as an input to our microprocessor. This
transitional input allows us to calculate current speed and rpm ranges.

Clutch Sensor
The clutch sensor is read as an input into our microprocessor allowing software to determine whether
or not the clutch is depressed.

Output Devices and Actuation:
• Throttle body controller servo
motor

• LCD display

Input Sensors and Switches:
• Speed sensor

• Up-shift / Down-shift switch

• Enter button

• Clutch pedal switch

• Emergency disable switch

Up-shift / Down-shift Clicker
The up-shift / down-shift clicker input allows the user to specify which gear he / she intends to shift
into next.

Enter & Reset Button
The enter button input allows the user to confirm his / her gear selection. The reset button input allows
an emergency hardware reset that moves the servo motor controller back to its neutral position.

Servo Motor
The HS-985MG servo motor output allows the microprocessor control over the throttle cable on the
vehicle.

IV. Product Comparison
BMW

The BMW M5 Sedan offers a “7-speed M Drivelogic sequential gearbox system.” It features gear
change keys on the steering wheel and a selection lever on the central console. Gear changes are made
within milliseconds and special function features such as slip recognition or hill recognition adapt to
the gear shift points required in certain driving conditions.

Nissan
The Nissan r35 GTR has a 6-speed “Dual Clutch Transmission” with three driver-selectable modes.
Normal mode allows for maximum smoothness and efficiency while snow mode allows for gentler
starting and shifting on slippery surfaces. Lastly R mode gives the driver maximum performance with
fastest shifts. The “Dual Clutch” design changes gears in less than 0.5 seconds. Other features are
available such as “Downshift Rev Matching” (DRM) and the “Predictive pre-shift control” (in R-
mode).

VW / Audi
The Volkswagon DSG Transmission delivers identical acceleration while putting the driver in closer
contact with the rise and fall of the engine’s power curve. It allows manual shifting using a Tiptronic®
shift lever or, when equipped, buttons in the steering wheel. The interaction between the clutches and
shafts is such that the next higher gear is always permanently engaged and ready for activation.

Alfa Romeo
The Alfa Romeo Selespeed uses paddles or a joystick, with the joystick having a higher priority when
shifting. The speed of the gear changes depends on the engine revs and the system also has a rev
limiter to avoid over revving. The gearbox is made for sportive driving but a city mode option is also
available that simulates automatic driving.

Lamborghini Gallardo
The new 2009 Lamborghini Gallardo uses an “e-Gear sequential transmission system.” This system
now takes 40% less time to switch gears than previous models. The revised Gallardo can hit 60 mph in
3.7 seconds and can achieve a top speed of 202 mph.

Ferrari 599 GTB
The “F1-SuperFast Transmission” on the Ferrari 599 GTB is able to shift gears in 100 milliseconds.
By overlapping the clutching and shifting tasks, harshness in shifting is reduced along with shift time.

V. Project Architecture
The general I/O structure of the Auto Rev Matcher is shown in the figure below.

VI. Flowcharts and Diagrams
The system flowchart is show below. For additional upper-level understanding and organization, each
box represents a subroutine in the software. Each subroutine has its own flowchart that can be found in
the appendix that describes how the software is able to accomplish the task.

VII. Debugging Issues
The primary challenges faced during the programming phase of the project were related to interrupt
timing and CPU issues. Hardware bugs discovered during the software stage also caused recursive
issues where the errors were undetermineable (whether they were due to hardware or software) until
a more detailed investigation of the hardware was performed.

General Interrupt Bugs
All stack operations (except for return addresses) in AVR microcontrollers are programmer controlled,
so all data that may be necessary for program operation must be handled accordingly in the interrupt
handler. This includes the status register and all registers that will be using in the handler. If interrupts
are enabled during a section of the program where branching or status flag testing occurs, then the
status register must be saved at the beginning of all the interrupt handlers that may be executed during
this part of the program. The AVR does not do this automatically! Extensive debugging was
performed until this was realized first through examination, and then validated by the microcontroller's
data sheet. Always read the data sheets, they are your friends.

Solving other interrupt bugs required a macro-micro examintation of the overall program and a
flowchart of interrupt timing to provide the macroscopic view of all possible interrepts and nested
interrupts. For example, the PWM signal for the servo is interrupt-generated, so global interrupts must
always be enabled for this to work properly, even during other interrupts. This places a significant risk
of unplanned nested interrupts, especially during clicker switch interrupts due to bouncing. These
problems were resolved by disabling the particular interrupts during their own interrupt handlers.
Modifications of when to re-enable the particular interrupts were added to the flowcharts and software,
with the minimal risk of possibly missing an interrupt. Thankfully humans are slow, the
microcontroller is fast, and most of the interrupts are man-generated, so this did not pose a problem.

Speed Sensor Bugs
The majority of programming time was spent on the speedometer section of the program. The speed
sensor does not feature much resolution; only four full sqaure waves represent one full revolution of the
sensor. Because the speed sensor turns very slowly (over 8 seconds for a full revolution at 1 mph),
initially two transition interrupts were used to catch a rising-then-falling or a falling-then-rising pair of
edges to minimize the time required to capture a speed sample. This method only worked partially; a
large percentage of the samples were spikes of speed changes that were not realistic values. After
checking the interrupt timing and timer values (to ensure the error was not in software), it was
determined that the sensor was causing the spikes. An initial attempt at signal averaging was
experimented with, but an excessive amount of samples were spikes instead of the real (expected)
value, so this method did not prove successful. Althought no datasheets were available to determine
the internal operations of the sensor, cscilloscope measurements showed that the voltage was dropping
out temporarily when the square was in a high state. Various capacitors were tested to hold the voltage
high during the moments of drop-out. Too much capacitance take excess time to charge, causing an
approximate ramp function at the signal pins. Too small of capacitance would not have enough energy
storage to sustain the votlage during the drop-out period. This problem was resolved with a 0.1 uF
capacitor. No further speed-code debugging was required after the capacitor was implemented.

Clicker Input Bugs
The bugs from the clicker switches were the typical bounce issues, but being momentary switches,
bouncing is prone to occur twice. A software delay of more than a 3/8 second was implemented with
the expectation that the user will press and release the momentary switch within that period.

VIII. Measurements

Speed Sensor
Voltage and current measurements supplied to and consumed by the speedometer sensor are show in
figure “Speed Sensor Measurements”. Measurements at 7.5 volts, 6.6 volts, and 6 volts were the most
important data. The sensor is supplied with 7.5 volts in Isuzu vehicles, but the signal voltage exceeds 5
volts, creating potential problems if connected directly to the uC. A 6.6 supply voltage provided a 5
volt (high) signal voltage which proved compatible with the sensor and uC. An LM317 voltage
regulator was used to realize this voltage.

Speed-RPM
The ratios (of each gear) of the speed:rpm coordinates were measured with the vehicle's dashboard
instrument panel gages. To reduce error, several points were recorded for each gear, and then a linear
regression was used to minimize human error from “eye-balling” the measurements. Since the
relationship between speed and rpm is linear and all lines converge at the null, the graph “RPM Map”
below shows two points for each line, the null and the nearest integer ratio point. Note the emphasis
on the nearest integer ratio point since

 Speed Sensor Measurements
Supply Voltage Signal Voltage Supply Current

(Volts) High Low High (mA) Low (mA)
3 0.57 0.565 1 1
4 0.58 0.58 2 2.5
5 3.7 0.59 3 4
6 4.52 0.59 4 5

6.6 5 0.6 5 5
7 5.35 0.6 5 6

7.5 5.78 0.6 6 6
8 6.26 0.61 6 6
9 7.21 0.61 6 6

10 8.16 0.61 6 6
11 9.12 0.615 6 7
12 10.07 0.62 6 7
13 11.02 0.62 6 7
14 11.98 0.62 6 7

RPM Map

1 2 3 4 5
0 0 0 0 0 0

10 31 x x x x
7 x 9 x x x

43 x x 35 x x
50 x x x 27 x
21 x x x x 9

Gear – (RPM/100)
Speed (mph)

0 20 40 60 80 100 120
0

10
20
30
40
50
60
70
80
90

RPM Map

1st Gear
2nd Gear
3rd Gear
4th Gear
5th Gear

Speed (mph)

10
0

R
P

M
s

(rp
m

s)

IX. Hardware / Software
Atmega32

We chose the Atmega32 microprocessor because of the following features:

– 131 Powerful Instructions – Most Single-clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 16 MIPS Throughput at 16 MHz

– On-chip 2-cycle Multiplier

– 32K Bytes of In-System Self-programmable Flash program memory

– 1024 Bytes EEPROM

– 2K Byte Internal SRAM

– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

– Real Time Counter with Separate Oscillator

– Four PWM Channels

- 8 Single-ended Channels

- 7 Differential Channels in TQFP Package Only

- 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

– Byte-oriented Two-wire Serial Interface

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated RC Oscillator

– External and Internal Interrupt Sources

– 32 Programmable I/O Lines

– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

• Power Consumption at 1 MHz, 3V, 25°C for Atmega32L
– Active: 1.1 mA

– Idle Mode: 0.35 mA

– Power-down Mode: < 1 µA

LCD Display
The LCD display provided us with two 16 character lines in 4-bit mode. Connecting to pins porta.0
through porta.6 on the Atmega32, current speed and gear options are displayed for the user while the
product is enabled.

Speedometer Sensor
The speedometer sensor four cables consist of ground, signal, a no-connect, and 6.6 V power. The
signal cable is connected to portb.2 of the Atmega32 microprocessor. With this signal cable as an input
we are able to keep track of the time between the transitions of a square wave and calculate the current
speed of the vehicle.

Clutch Sensor
On portd.5 of the Atmega32 the clutch sensor input is connected allowing software to determine when
the clutch is depressed enabling up-shifting or down-shifting options.

Up-shift / Down-shift Clicker
The up-shift / down-shift clicker allows the user to select which gear they would like to shift into.

Enter & Reset Button
The enter button is pulled low with registering true, allowing the user to confirm his / her gear
selection. A complete hardware reset is always available to the user by means of a reset button. When
clicked the reset button goes low and resets the Atmega32 microprocessor thus setting the servo motor
back to its neutral position.

Servo Motor
The HS-985MG servo motor from servo city provides us with 180 degree rotation of 172 oz-in. of
torque in 0.13 sec/60º. Using a pwm signal with a 3-5 volt peak to peak voltage we are able to control
the throttle on our manual car. With the 5:1 aluminum gear wheel we are able to gain the resolution
necessary to optimally operate.

X. Bill of Materials

The total cost of our product came to be $270.34. This price is well under the range of more
sophisticated systems in high performance vehicles and allows a driver similar options. The servo
motor was the most expensive part in this design. In searching for high torque motors, ones that were
suited to our needs were in this higher price range. Additional costs may be incurred if our device were
to be installed on a different vehicle.

XI.Gantt Chart

Appendix A. Diagrams

Appendix B. Software

;Demo Code
;Brad Atherton, Monique Mennis
;Sr Design EEL 4914
;4-18-08

;port a for atmega128
.equ porta = $3B
.equ ddra = $3A
;port b for atmega 128
.equ portb = $38
.equ ddrb = $37
;port d for atmega 128
.equ portd = $32
.equ pind = $30
.equ ddrd = $31
;port e for atmega 128
.equ porte = $23
.equ pine = $21
.equ ddre = $22
;port f for atmega 128
.equ portf = $62
.equ pinf = $20
.equ ddrf = $61
;never put below $46 on atmega128 b/c interrupt handlers
.equ strings = $60
.equ main = $80
.equ data_variables = $100
;stack for atmega128
.equ sph = $5E
.equ spl = $5D
.equ stack_h = $10
.equ stack_l = $FF
;timer 1 equates
.equ TCCR1B = $4E
.equ TCNT1L = $4C
.equ TCNT1H = $4D
.equ TIFR = $56
.equ OC1AL = $4A
.equ OC1AH = $4B
;timer 3 equates
.equ TCNT3H = $89
.equ TCNT3L = $88
.equ OC3AH = $87
.equ OC3AL = $86
.equ TCCR3A = $8B
.equ TCCR3B = $8A
.equ ETIFR = $7C
;timer 0 equates
.equ TIMSK = $57
.equ TCNT0 = $52
.equ TCCR0 = $53 ;bit 2,1,0 = 000 for 1024 prescaler
;output compare equates
.equ OC0 = $51
;external interrupt equates
.equ EICRA = $6A

.equ EICRB = $5A

.equ EIMSK = $59

.equ EIFR = $58
;status register equate
.equ SREG = $5F
;distance equate
.equ d_UB = $a8
.equ d_LB = $2b
;.equ d_UB = $FC
;.equ d_LB = $52
;servo equates
;.equ neutral = 27400
.equ offset = 0
.equ neutral = 27500
.equ rpm_0 = 0
.equ rpm_1 = 11
.equ elevenhundred = 27350
.equ rpm_2 = 12
.equ twelvehundred = 27338
.equ rpm_3 = 13
.equ thirteenhundred = 27325
.equ rpm_4 = 14
.equ fourteenhundred = 27316
.equ rpm_5 = 15
.equ fifteenhundred = 27308
.equ rpm_6 = 16
.equ sixteenhundred = 27300
.equ rpm_7 = 17
.equ svnteenhundred = 27280
.equ rpm_8 = 18
.equ ateteenhundred = 27256
.equ rpm_9 = 19
.equ nineteenhundred = 27242
.equ rpm_10 = 20
.equ twenty = 27225
.equ rpm_11 = 21
.equ twentyone = 27200
.equ rpm_12 = 22
.equ twentytwo = 27125
.equ rpm_13 = 23
.equ twentythree = 27100
.equ rpm_14 = 24
.equ twentyfour = 27090
.equ rpm_15 = 25
.equ twentyfive = 27080
.equ rpm_16 = 26
.equ twentysix = 27050
.equ rpm_17 = 27
.equ twentysvn = 27042
.equ rpm_18 = 28
.equ twentyate = 27034
.equ rpm_19 = 29
.equ twentynine = 27025
.equ rpm_20 = 30
.equ thirty = 27000
.equ rpm_21 = 31
.equ thirtyone = 26950
.equ rpm_22 = 35
.equ thirtyfive = 26900

;.equ thirtyfive = 23710
;rpm calculator equates
.equ first_num = 31
.equ first_den = 10
.equ second_num = 20;WAS 9
.equ second_den = 7
.equ third_num = 35
.equ third_den = 43
.equ fourth_num = 27
.equ fourth_den = 50
.equ fifth_num = 9
.equ fifth_den = 21

.def XL = r26

.def XH = r27

.def ZL = r30

.def ZH = r31

.dseg
 .org data_variables
oflo_cntr:

.byte 1
start_up:

.byte 1
edgecounter:

.byte 1
Speed_H: ;tens digit to be converted to ascii
 .byte 1
Speed_L: ;ones digit to be converted to ascii
 .byte 1
Gear: ;ones digit to be converted to ascii
 .byte 1
RPM_Char: ;already in ascii just a black box
 .byte 1
RS:
 .byte 1
LCDbyte:
 .byte 1
Speed_String_Count:
 .byte 1
Gear_String_Count:
 .byte 1
RPM_String_Count:
 .byte 1
RPM_Bar_Number:
 .byte 1
RPM_Row_Count:
 .byte 1
inner_delay:
 .byte 1
outer_delay:
 .byte 1
edge1_L:

.byte 1
edge1_H:

.byte 1
edge2_L:

.byte 1
edge2_H:

.byte 1
speed:

.byte 1
speed1:

.byte 1
speed2:

.byte 1
speed3:

.byte 1
speed4:

.byte 1
speed5:

.byte 1
speed6:

.byte 1
speed_dec:

.byte 1
Hexbyte:

.byte 1
Decbyte:

.byte 1
Num_H: ;numerator input variable for Division subroutine

.byte 1
Num_L: ;numerator input variable for Division subroutine

.byte 1
Den_H: ;denominator input variable for Division subroutine

.byte 1
Den_L: ;denominator input variable for Division subroutine

.byte 1
first_rpm: ;variables for the rpm calculator subroutine

.byte 1
second_rpm:

.byte 1
third_rpm:

.byte 1
fourth_rpm:

.byte 1
fifth_rpm:

.byte 1
quotient:

.byte 1
sreg_temp:

.byte 1

;----------INTERRUPT VECTORS------------
;----------INTERRUPT VECTORS------------
.cseg

.org $0000
jmp main

.org $0002
jmp downshift_interrupt ;int0

.org $0004 ;
jmp upshift_interrupt ;int1

.org $0008 ;int 3 interrupt
RETI

.org $0010
jmp speed_interrupt ;int7

.org $0018 ;timer1 OC A Match
jmp tmr0_OC ;timer 0 output compare

.org $001A ;timer1 OC B Match
reti

.org $001C ;timer 1 O'flow Interrupt
jmp tmr0_oflo

.org $001E
jmp tmr0_OC ;timer 0 output compare

.org $0020 ;TIMER 0 OFLOW INTERRUPT VECTOR
jmp tmr0_oflo

;^^^^^^^^INTERRUPT VECTORS^^^^^^^^^
;^^^^^^^^INTERRUPT VECTORS^^^^^^^^^

.org strings
speed_str:

.db "Speed: ", $D
gear_str:

.db "Gear: ", $D
enter_str:

.db "Enter? ", $D

.org main
;--------main program----------------
;---initialize stack

 ldi r23, stack_h
 sts sph, r23
 ldi r23, stack_l
 sts spl, r23
;---set port b0 for output

ldi r16, 0b00000001
sts ddrb, r16

;---set port f0 for output for PWM wave
ldi r16, 0b00000001
sts ddrf, r16

;---set port e for input since speed and enter
;---are connected to E7 and E0

ldi r16, 0
sts ddre, r16

;---set port d for input to read clutch from D3
ldi r16, 0
sts ddrd, r16

;---initialize delay paramters--------
 ldi r23, 0xff ;initialize inner_delay parameter
 sts inner_delay, r23
 ldi r23, 0xff ;initalize outer_delay parameter
 sts outer_delay, r23

call delay_sub

;---initialize timer 1 prescalers for servo
;clear the overflow counting variable
clr r16
sts oflo_cntr, r16
;set prescalers to 001 (1 divider)
lds r16, tccr1b
andi r16, 0b11111000
ori r16, 0b00000001
sts tccr1b, r16

;---clear timer 1 and set OC to neutral for servo-----
clr r18
sts tcnt1h, r18
sts tcnt1l, r18
ldi r18, high(neutral)
sts OC1AH, r18
ldi r18, low(neutral)
sts OC1AL, r18

;---enable timer 0 OC and oflow interrupts
;---intialize output compare and overflow interrupts for timer 1

;bit 4 of TIMSK = OCIE1A
;bit 2 of TIMSK = TOIE1
lds r16, timsk
andi r16, 0b11101011
ori r16, 0b00010100
sts TIMSK, r16

;-----------------------------
call speed_disable
call disable_clicker
sei ;olny pwm is enabled

;-----CHECKPOINT-----;
 ;---CHECKPOINT---;
hereee:

ldi r16, 1
sts portb, r16
lds r16, pine
andi r16, 0b00000001
clz
cpi r16, 1
breq hereee

 ;---CHECKPOINT---;
;-----CHECKPOINT-----;

;TURN OFF LED
clr r16
sts portb, r16

;DELAY FOR SHITS N GIGGLES--;
ldi r16, $FF ;
sts inner_delay, r16 ;
sts outer_delay, r16 ;
ldi r17, 15 ;

rpt: ;
call delay_sub ;
dec r17 ;
clz ;
cpi r17, 0 ;
brne rpt ;

;END OF DELAY---------------;

;

;---initialize LCD screen-------------
call LCD_init

;---initialize clicker interrupts
;set int 1 and 0 to falling edge trigger
;bits 1,0 and 3.2 in EICRA to 1,0
lds r16, EICRA
andi r16, 0b11111010
ori r16, 0b00001010
sts EICRA, r16

;---intialize start_up variable
ldi r16, $FF
sts start_up, r16

;--set-gear-and-speed-to-zero
clr r16
sts gear, r16
sts speed, r16

;---TESTCODESTARTSHERE-----------------------------

;the only interrupt that should be enabled
;are the PWM interrupts

; jmp hereee
;CLUTCH PRESSED?
LDS r16, pind
andi r16, 0b00001000
clz
cpi r16, 0 ;if clutch is pressed the z flag will be true (bit 1 of

sreg)
lds r16, sreg
sbrc r16, 1
call clutch_subroutine
;clutch is not pressed, check start up
;turn off servo

ldi r18, high(neutral)
sts OC1AH, r18
ldi r18, low(neutral)
sts OC1AL, r18

lds r16, start_up
clz
cpi r16, $FF
brne normal_prog
;if still in startup condition, use the clicker switches and enter
;to make sure current gear is acquired. Do not pass until enter has
;been pressed
call clear_screen
call send_enter
call send_gear

check_enter2: ;

call enable_clicker ;now PWM and clicker are enabled
lds r16, pine ;

andi r16, 0b00000001 ;the interrupt from the clicker will----
clz

cpi r16, 0 ;occur during this loop.
 ;------------------------

 brne check_enter2 ;routine sets the appropriate value-
;this point is only reached after the enter key is pressed
;clear the startup variable

clr r16
sts start_up, r16

;-----clear the lcd of the enter string
call clear_screen

;NORMAL-PROGRAM-OPERATION----------------------------
normal_prog:

;CLUTCH PRESSED?
LDS r16, pind
andi r16, 0b00001000
clz
cpi r16, 0 ;if clutch is pressed the z flag will be true (bit 1 of

sreg)
lds r16, sreg
sbrc r16, 1
call clutch_subroutine

;CLUTCH ISNT PRESSED
;get current speed, REMEMBER, PWM INTERRUPTS ARE ENABLED BUT CLICKER INTS

;ARENT BECAUSE THEY ARE DISABLED AT
THE END OF THEIR ihr

;turn off servo
ldi r18, high(neutral)
sts OC1AH, r18
ldi r18, low(neutral)
sts OC1AL, r18

call disable_clicker
;get current speed
call get_speed ;the speed interrupt enable is in the get_speed subroutine
call speed_disable
;calculate the rpm
call rpm_calc

;CLUTCH PRESSED?
LDS r16, pind
andi r16, 0b00001000
clz
cpi r16, 0 ;if clutch is pressed the z flag will be true (bit 1 of

sreg)
lds r16, sreg
sbrc r16, 1
call clutch_subroutine

;turn off servo
ldi r18, high(neutral)

; sts OC1AH, r18
ldi r18, low(neutral)

; sts OC1AL, r18
;CLUTCH ISNT PRESSED, SEND SPEED OUT TO LCD
call send_speed
;TEST CODE FOR THE SERVO:

;START AT THE NEUTRAL AND INCREMENT UPWARD TO THE MAX AND THEN BACK DOWN

;call set_servo

ldi r16, $FF
sts inner_delay, r16
sts outer_delay, r16
ldi r17, 10

rpt2:
call delay_sub
dec r17
clz
cpi r17, 0
brne rpt2

;end
jmp normal_prog

;-Get-Speed-Subroutine------------
get_speed:

;set bits 7,6 to 01 in EICRB (for transition interrupt)
lds r16, EICRB
ori r16, 0b11000000 ;11 for rising edge
sts EICRB, r16
;set timer3 prescalers to 1024 (bits 2,1,0 in the TCCR1B)
lds r16, TCCR3B ;to 101
andi r16, 0b11111000
ori r16, 0b00000101
sts TCCR3B, r16
;clear the edge counter
clr r16
sts edgecounter, r16
;TEST POINT-MAKE SURE THE TIMER WAS RESET
lds r16, tcnt3l
lds r17, tcnt3h
;check the edge counter
;if 2nd edge hasnt been captured,
;dont continue
;set bit 7 in EIMSK (to enable int 7 interrupt)

check_edge:
call speed_enable
sei
;if timer overflows, set speed to 0
;timer 1 overflow flag: bit 2 of tifr
lds r16, ETIFR
sbrc r16, 2
jmp zero_speed
lds r16, edgecounter
clz
cpi r16, 2
brne check_edge
;now two edges have been captured
;assume 16 bit time values for each,
;edge1_h, edge1_l, and edge2_h, edge2_l

;clear port b so i know it made it to this point
clr r16
sts portb, r16

;edge 2 l and h contain the time difference
;between edges. No subtraction is necessary
;since the timer was initialized at zero for edge1
lds r16, edge2_l
lds r17, edge2_h
;now the time difference is in r17 and r16
;divide the FC52 by the time difference
ldi r19, d_UB ;distance upper byte ;.equ d_UB = $FC
ldi r18, d_LB ;distance lower byte ;.equ d_LB = $52
clr r20 ;clear the subtraction counter

in_sub:
;first check if the value is 00. if so, go to zero speed

;------------------------
; clz
; cpi r16, 0
; lds r21, sreg
; sbrc r21, 1
; cpi r17, 0
; sbrc r21, 1
; jmp zero_speed

;subtract the lower bytes
; inc r20 ;increment the counter
; sec ;clear the carry flag first
; sub r18, r16
; ;including the carry, subtract the higher bytes
; sbc r19, r17
; ;check the carry flag, if not true, keep subtracting
;;----------------------

;subtract the lower bytes
inc r20 ;increment the counter
clc ;clear the carry flag first
sub r18, r16
;including the carry, subtract the higher bytes
sbc r19, r17

; ;check the carry flag, if not true, keep subtracting
brcc in_sub

;SUBTRACTION-COMPLETE
dec r20
lsr r20
lsr r20
;TEST LINE TO SEE LARGER SPAN OF SPEED. do NOT PUT THIS IS FINAL CODE!

; lsl r20
; lsl r20
;DIVISION-COMPLETE

;r20 containS the integer quotient
;check if r20 is greater than decimal

clc ;clear the carry
cpi r20, $63 ;check if r20 is greater than 99
;if the carry is low, r20 is greater than 99
;and needs to be corrected
brcs store_speed ;branch if carry is set
;if r20 is greater than 99, correct it
;to 99
ldi r20, $63

store_speed:

sts speed, r20
;NOTE: the value of speed in mph is stored in r20
;-END-OF-DIVISION-TECHNIQUE-----------------
ret

zero_speed:
;clear the timer overflow flag
ldi r16, 0b00000100
sts etifr, r16
clr r20
sts speed, r20
ret

; lds r16, etifr
; andi r16, 0b11111011
; ori r16, 0b00000100
; sts etifr, r16
; clr r20
; sts speed, r20
; ret
;
;end of get speed subroutine------------------

;-1--INTIALIZE-LCD-SUBROUTINE--------
LCD_init:
 ;STEP1: Enable PORTA(lower 6 pins)
 ldi r23, ddra ;
 ori r23, 0x7F ;
 sts ddra, r23 ;PORTA 5-0 = R/W | RS | DB7 | DB6 | DB5 | DB4
 ;delay for 15ms to allow VCC to settle
 ldi r23, 200 ;200 x 75 x 1us = 15ms
 sts inner_delay, r23
 ldi r23, 75 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 15 ms
 ;------------------------
 ;STEP2: Enable 4-bit Mode

 ;remember, when writing to the LCD, first E,RW, & RS
 ;are low, then E goes high (no change to RW or RS) and the
 ;valid data is placed on db7:4, then E goes low again
 ;timing specs:
 ;RW must fall low first, with at least 150 ns before E goes high
 ;then the data must be on the line for at least 195 ns before E
 ;goes low, then the data must also remain on the line for at least
 ;10 ns after E goes low

 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x03 ;RS = 0, RW = 0, DB = 3
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23
call delay_sub ;delay 1 us

 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x03 ;RS = 0, RW = 0, DB = 3
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 100 ;100 x 1 x 1us = 100us
 sts inner_delay, r23; outer_delay already set to 1
 call delay_sub ;delay 100 us
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x03 ;RS = 0, RW = 0, DB = 3
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x02 ;RS = 0, RW = 0, DB = 2
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 40 ;40 x 1 x 1us = 40us
 sts inner_delay, r23; outer_delay already set to 1
 call delay_sub ;delay 40 us

 ;------------------------
 ;STEP3: Enable 2 lines
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x02 ;RS = 0, RW = 0, DB = 2
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x08 ;RS = 0, RW = 0, DB = 8
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 40 ;40 x 1 x 1us = 40us
 sts inner_delay, r23; outer_delay already set to 1
 call delay_sub ;delay 40 us
 ;------------------------
 ;STEP4: Diplay on, Cursor on, Blink on
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x00 ;RS = 0, RW = 0, DB = 0
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01

 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x0F ;RS = 0, RW = 0, DB = F
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 40 ;40 x 1 x 1us = 40us
 sts inner_delay, r23; outer_delay already set to 1
 call delay_sub ;delay 40 us
 ;------------------------
 ;STEP4: Clear screen, Cursor home
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x00 ;RS = 0, RW = 0, DB = 0
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x01 ;RS = 0, RW = 0, DB = 1
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 82 ;82 x 20 x 1us = 1.64ms
 sts inner_delay, r23
 ldi r23, 20 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 1.64 ms
 ;END of LCD_init subroutine
 ret
;--

;CLEAR LCD SCREEN SUBROUTINE---------------------------------
clear_screen:

push r23
push r25
;--
;------------inserted from lcd_init to clear screen
;--- ;STEP4: Clear screen,

Cursor home
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x00 ;RS = 0, RW = 0, DB = 0
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 200 ;200 x 25 x 1us = 5ms
 sts inner_delay, r23
 ldi r23, 25 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 5 ms
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 ldi r23, 0x01 ;RS = 0, RW = 0, DB = 1
 sts porta, r23
 call delay_sub ;delay 1 us

;set enable bit high
ori r23, 0b01000000
sts porta, r23

 call delay_sub ;delay 1 us
 ;clear enable bit

 andi r23, 0b10111111
sts porta, r23

 ldi r23, 82 ;82 x 20 x 1us = 1.64ms
 sts inner_delay, r23
 ldi r23, 20 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 1.64 ms

;---
;--end of insertion------------------------
;--

pop r25
pop r23
ret

;--end of clear lcd subroutine

;-2--NIBBLE-PASSER-SUBROUTINE--------
nibbler_passer:
 ;check if the byte is for data or command
 lds r23, RS ;load RS parameter value into r23

 lds r22, LCDbyte;load the byte for the LCD into r22
 swap r22 ;swap upper & lowe nibble

andi r22, 0b00001111
;skip the next instruction if RS = 1
sbrs r23, 0
jmp data_upper_nib ;this line is only executed when RS = 0
;otherwise, RS is 1, so set the RS bit
;in the upper nibble
ori r22, 0b00010000 ;the RS bit has just been set

data_upper_nib:
 sts porta, r22 ;send the 1st (upper) nibble to LCD
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 clz
 call delay_sub ;delay 1 us

 ori r22, 0b01000000 ;set enable bit high
sts porta, r22

 call delay_sub ;delay 1 us

 andi r22, 0b10111111 ;clear enable bit
sts porta, r22

 ldi r23, 200 ;200 x 10 x 1us = 2ms
 sts inner_delay, r23
 ldi r23, 10 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23
 call delay_sub ;delay 2 ms

;load the lower nibble and check the RS bit
 ;check if the byte is for data or command
 lds r23, RS ;load RS parameter value into r23
 lds r22, LCDbyte;load the byte for the LCD into r22
 andi r22, 0b00001111

;skip the next instruction if RS = 1
sbrs r23, 0
jmp data_lower_nib ;this line is only executed when RS = 0
;otherwise, RS is 1, so set the RS bit
;in the upper nibble
ori r22, 0b00010000 ;the RS bit has just been set

data_lower_nib:
 sts porta, r22 ;send the 2nd (lower) nibble to LCD
 ldi r23, 0x01
 sts inner_delay, r23
 sts outer_delay, r23
 clz
 call delay_sub ;delay 1 us
 ori r22, 0b01000000 ;set enable bit high

sts porta, r22
 call delay_sub ;delay 1 us
 andi r22, 0b10111111 ;clear enable bit

sts porta, r22
 ldi r23, 200 ;200 x 10 x 1us = 2ms
 sts inner_delay, r23
 ldi r23, 10 ;set inner_delay to largest number to make more
accurate
 sts outer_delay, r23

 call delay_sub ;delay 2 ms
 ;END of 2nd nibble byte has been sent
 ;END of nibble_passer subroutine
 ret
;--

;-SEND-SPEED-TO-LCD-SUBROUTINE-------------------
send_speed:
;--send out speed characters to the LCD---

;convert the speed value to dec
lds r16, speed
sts Hexbyte, r16
call Hex_2_Dec
lds r16, Decbyte
sts speed_dec, r16
call clear_screen

;initialize the Z pointer for
;where the string is in prog memory

ldi ZH, high(speed_str<<1)
ldi ZL, low(speed_str<<1)

;dont forget to update the RS bit
ldi r23, 01
sts RS, r23

;load the character
send_byte:

lpm r23, Z
;check if its the end line

clz
 cpi r23, $D

breq end_of_string
;otherwise (if not end), send character to
;the LCD screen

STS LCDbyte, r23
call Nibbler_passer

;since it is not the end character,
;increment the pointer and go back
;to the load and send instructions

inc ZL
jmp send_byte

end_of_string:
;send out speed to the LCD
lds r16, speed_dec ;remember this must be the speed variable
mov r17, r16 ;that has been converted from hex to dec
swap r16
andi r16, 0b00001111
ldi r18, $30
add r16, r18 ;add 30 to format it in ascii
sts LCDbyte, r16
call Nibbler_passer ;send out the units characters
andi r17, 0b00001111
add r17, r18 ;add 30 to format it in ascii
sts LCDbyte, r17
call Nibbler_passer;send out the tens character
;exit
ret

;end-of-send-speed-subroutine-----------------------

;--SEND-GEAR-TO-LCD-SUBROUTINE-------------------------
send_gear:
;clear the LCD screen

;load the z pointer with the gear string address
ldi ZL, low(gear_str<<1)
ldi ZH, high(gear_str<<1)
;dont forget to update the RS bit
ldi r23, 01
sts RS, r23

;send the character
;load the character

send_byte2:
lpm r16, Z

;check if its the end line
clz

 cpi r16, $D
breq end_of_string2

;otherwise (if not end), send character to
;the LCD screen

STS LCDbyte, r16
call Nibbler_passer

;since it is not the end character,
;increment the pointer and go back
;to the load and send instructions

inc ZL
jmp send_byte2

end_of_string2:
lds r16, gear
ldi r17, $30
add r16, r17
sts LCDbyte, r16
call Nibbler_Passer
;exit
ret

;-----end of send_gear subroutine---------------
;-SEND-ENTER-TO-LCD-SUBROUTINE-------------------
send_enter:
;--send out "Enter?" characters to the LCD---

 ;STEP4: Clear screen, Cursor home
; ldi r23, 0x01
 ; sts inner_delay, r23
 ; sts outer_delay, r23
 ;ldi r23, 0x00 ;RS = 0, RW = 0, DB = 0
 ; sts porta, r23
; call delay_sub ;delay 1 us
; ;set enable bit high
; ori r23, 0b01000000
; sts porta, r23
; call delay_sub ;delay 1 us
; ;clear enable bit
; andi r23, 0b10111111
; sts porta, r23
; ldi r23, 200 ;200 x 25 x 1us = 5ms
; sts inner_delay, r23
; ldi r23, 25 ;set inner_delay to largest number to make more

accurate
; sts outer_delay, r23
; call delay_sub ;delay 5 ms
; ldi r23, 0x01
; sts inner_delay, r23
; sts outer_delay, r23
; ldi r23, 0x01 ;RS = 0, RW = 0, DB = 1
; sts porta, r23
; call delay_sub ;delay 1 us
; ;set enable bit high
; ori r23, 0b01000000
; sts porta, r23
; call delay_sub ;delay 1 us
; ;clear enable bit
; andi r23, 0b10111111
; sts porta, r23
; ldi r23, 82 ;82 x 20 x 1us = 1.64ms
; sts inner_delay, r23
; ldi r23, 20 ;set inner_delay to largest number to make more
accurate
; sts outer_delay, r23
; call delay_sub ;delay 1.64 ms

 ;---
 ;--end of insertion------------------------
 ;--

 ;initialize the Z pointer for
 ;where the string is in prog memory
 ldi ZH, high(enter_str<<1)
 ldi ZL, low(enter_str<<1)
 ;dont forget to update the RS bit
 ldi r23, 01
 sts RS, r23

 ;load the character
send_byte3:
 lpm r23, Z
 ;check if its the end line
 clz
 cpi r23, $D
 breq end_of_string3
 ;otherwise (if not end), send character to
 ;the LCD screen
 STS LCDbyte, r23
 call Nibbler_passer
 ;since it is not the end character,
 ;increment the pointer and go back
 ;to the load and send instructions
 inc ZL
 jmp send_byte3
end_of_string3:
 ;"Enter? " has been sent to the LCD
 ;exit
 ret
;end-of-send-enter-subroutine-----------------------

;-6--DELAY-SUBROUTINE--------
delay_sub:

PUSH R24
PUSH R25

 lds r24, outer_delay
outer_top:
 ;the inner_delay variable is the number of
 ;1uS repitions to be competed
 lds r25, inner_delay ;2 cycles :2
inner_top: ;(we want 16 clock cycles total between here and the branch)
 ;--
 dec r25 ;1 cycle :1
- -
 nop ;1 cycle :2
- 1 -
 nop ;
:3 - -
 nop ;
:4 - u -
 nop ;
:5 - S -
 nop ;
:6 - -
 nop ;
:7 - s -
 nop ;
:8 - e -
 nop ;
:9 - q -
 nop ;
:10 - u -
 nop ;
:11 - e -
 nop ;
:12 - n -
 nop ;
:13 - c -
 nop ;
:14 - e -
 cpi r25, 0 ; :
15 - -
 brne inner_top ;1 cycle :16 - -
 ;----end-of-1uS-sequence---------------------
 clz ;clear the Z flag
 dec r24
 cpi r24, 0
 brne outer_top
 clz

POP R25
POP R24

 ret
;--

;Hex-To-Decimal-Conversion-Subroutine------------
Hex_2_Dec:

;assume the input variable is called "Hexbyte"
;and is located in data space.

lds r16, Hexbyte
;check if hexbyte is zero
clz
cpi r16, 0
breq zero_hex

ldi r17, 10
clr r18 ;use r17 to count (the integer quotient)

;formula: divide Hexbyte by 10, then add 6x
;that number to Hexbyte

subtract:
clc ;clear the carry flag beforehand
sub r16, r17
inc r18
;check if r16 is less than 0 (the carry goes true)
;if carry is not true, increment the counter and
;and go back to subtract
lds r19, SREG
sbrs r19, 0 ;if the carry is true, skip the next instruction
jmp subtract
dec r18 ;decrement r18 since it is pre-incremented before

;the condition test
;now the integer quotient is in r18
;MULTIPLY R18 by 6, R19 can be used since the carry test is over
ldi r19, 6 ;r18 * r19 = quotient * 6
mul r18, r19 ;resultant is in r1(high) r0 (low)

;the product will be a 1 Byte number, only care
;about the low byte R0

;R0 contains the product. Add R0 to Hexbyte
lds r16, Hexbyte
add r16, r0
;result is in r16
sts Decbyte, r16
;exit
ret

zero_hex:
ldi r16, $00
sts Decbyte, r16
ret

;-------End of Hex to Decimal Subroutine----------------------

;--RPM CALCULATING SUBROUINTE-----------------------------------
RPM_Calc:

push r16
push r17

;first_gear:
lds r16, speed
;check if speed = 0
clz
cpi r16, 0
lds r16, sreg
sbrc r16, 1
jmp speediszero
;multiply speed by the 1st gear factor
ldi r17, first_Num
mul r16, r17
;result is in r1, r0

;store the results in the Numerator variables
;for the division subroutine
sts Num_H, r1
sts Num_L, r0
;load and store the denominator for the division subroutine
ldi r16, first_den
sts Den_L, r16
clr r16
sts Den_H, r16
;divide to calculate the RPM
call Div_Sub
;the RPM is returned in variable 'quotient'
lds r16, quotient ;rpm is in r16
sts first_rpm, r16

;second_gear:
lds r16, speed
;multiply speed by the 2st gear factor
ldi r17, second_num
mul r16, r17
;result is in r1, r0
;store the results in the Numerator variables
;for the division subroutine
sts Num_H, r1
sts Num_L, r0
;load and store the denominator for the division subroutine
ldi r16, second_den
sts Den_L, r16
clr r16
sts Den_H, r16
;divide to calculate the RPM
call Div_Sub
;the RPM is returned in variable 'quotient'
lds r16, quotient ;rpm is in r16
sts second_rpm, r16

;third_gear:
lds r16, speed
;multiply speed by the 3rd gear factor
ldi r17, third_num
mul r16, r17
;result is in r1, r0
;store the results in the Numerator variables
;for the division subroutine
sts Num_H, r1
sts Num_L, r0
;load and store the denominator for the division subroutine
ldi r16, third_den
sts Den_L, r16
clr r16
sts Den_H, r16
;divide to calculate the RPM
call Div_Sub
;the RPM is returned in variable 'quotient'
lds r16, quotient ;rpm is in r16
sts third_rpm, r16

;fourth_gear:
lds r16, speed
;multiply speed by the 2st gear factor
ldi r17, fourth_num
mul r16, r17

;result is in r1, r0
;store the results in the Numerator variables
;for the division subroutine
sts Num_H, r1
sts Num_L, r0
;load and store the denominator for the division subroutine
ldi r16, fourth_den
sts Den_L, r16
clr r16
sts Den_H, r16
;divide to calculate the RPM
call Div_Sub
;the RPM is returned in variable 'quotient'
lds r16, quotient ;rpm is in r16
sts fourth_rpm, r16

;fifth_gear:
lds r16, speed
;multiply speed by the 2st gear factor
ldi r17, fifth_num
mul r16, r17
;result is in r1, r0
;store the results in the Numerator variables
;for the division subroutine
sts Num_H, r1
sts Num_L, r0
;load and store the denominator for the division subroutine
ldi r16, fifth_den
sts Den_L, r16
clr r16
sts Den_H, r16
;divide to calculate the RPM
call Div_Sub
;the RPM is returned in variable 'quotient'
lds r16, quotient ;rpm is in r16
sts fifth_rpm, r16
;exit
pop r17
pop r16
ret

speediszero:
clr r16
sts first_rpm, r16
sts second_rpm, r16
sts third_rpm, r16
sts fourth_rpm, r16
sts fifth_rpm, r16
sts quotient, r16
pop r17
pop r16
ret

;--end of RPM-Speed calculator subroutine-----------------------

;--16-16-bit DIVISION SUBROUTINE--------------------------------
Div_Sub:

push r16
push r17
push r18
push r19
push r20

lds r19, Num_H
lds r18, Num_L
lds r17, Den_H
lds r16, Den_L
clr r20 ;r20 is the subtraction counter

inc_subcounter:
inc r20
clc
sub r18, r16
sbc r19, r17
brcc inc_subcounter

;carry is now true
dec r20
sts quotient, r20
;exit
pop r20
pop r19
pop r18
pop r17
pop r16
ret

;-end of division subroutine----------------

;SET SERVO SUBBROUTINE--
set_servo:

push r16
push r17
push r18
push r19

; ldi r16, $5b
; sts OC1AH, r16
; clr r16
; sts OC1AL, r16
;
; pop r18
; pop r17
; pop r16
; ret

lds r16, gear
clz
;check for neutral first
cpi r16, 0
lds r18, sreg
sbrc r18, 1
jmp pos_0 ;z flag is true => go to pos0
;not in neutral, find the gear
cpi r16, 1
breq load_first
cpi r16, 2
breq load_second
cpi r16, 3
breq load_third
cpi r16, 4
breq load_fourth
cpi r16, 5

breq load_fifth
;otherwise, set servo to zero

;by setting the output compare to neutral
ldi r18, high(neutral)
sts OC1AH, r18
ldi r18, low(neutral)
sts OC1AL, r18

;exit
ret

load_first:
lds r16, first_rpm
jmp find_range

load_second:
lds r16, second_rpm
jmp find_range

load_third:
lds r16, third_rpm
jmp find_range

load_fourth:
lds r16, fourth_rpm
jmp find_range

load_fifth:
lds r16, fifth_rpm

find_range:
ldi r17, rpm_1
clc
cp r16, r17
;if carry goes true, r16 < rpm_1, set servo to neutral
lds r18, sreg
sbrc r18, 0
jmp pos_0 ;carry is true => go to pos0
;check 2nd position
ldi r17, rpm_2
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_1 ;carry is true => go to pos1
;check 3rd position
ldi r17, rpm_3
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_2 ;carry is true => go to pos2
;check 4th position
ldi r17, rpm_4
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_3 ;carry is true => go to pos3
;check 5th position
ldi r17, rpm_5
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_4 ;carry is true => go to pos4
;check 6th position
ldi r17, rpm_6
cp r16, r17

lds r18, sreg
sbrc r18, 0
jmp pos_5 ;carry is true => go to pos5
;check 7th position
ldi r17, rpm_7
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_6 ;carry is true => go to pos6
;check 8th position
ldi r17, rpm_8
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_7 ;carry is true => go to pos7
;check 9th position
ldi r17, rpm_9
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_8 ;carry is true => go to pos8
;check 10th position
ldi r17, rpm_10
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_9 ;carry is true => go to pos9
;check 11th position
ldi r17, rpm_11
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_10 ;carry is true => go to pos10
;check 12th position
ldi r17, rpm_12
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_11 ;carry is true => go to pos11
;check 13th position
ldi r17, rpm_13
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_12 ;carry is true => go to pos12
;check 14th position
ldi r17, rpm_14
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_13 ;carry is true => go to pos13
;check 15th position
ldi r17, rpm_15
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_14 ;carry is true => go to pos14
;check 16th position
ldi r17, rpm_16

cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_15 ;carry is true => go to pos15
;check 17th position
ldi r17, rpm_17
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_16 ;carry is true => go to pos16
;check 18th position
ldi r17, rpm_18
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_17 ;carry is true => go to pos17
;check 19th position
ldi r17, rpm_19
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_18 ;carry is true => go to pos18
;check 20th position
ldi r17, rpm_20
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_19 ;carry is true => go to pos19
;check 21st position
ldi r17, rpm_21
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_20 ;carry is true => go to pos20
;check 22nd position
ldi r17, rpm_22
cp r16, r17
lds r18, sreg
sbrc r18, 0
jmp pos_21 ;carry is true => go to pos21
;else
jmp pos_22
;check 23rd position

; ldi r17, rpm_23
; cp r16, r17
; lds r18, sreg
; sbrc r18, 0
; jmp pos_22 ;carry is true => go to pos22

pos_0:
;set servo to neutral position

ldi r17, high(neutral)
ldi r16, low(neutral)
ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18

sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_1:

ldi r16, low(elevenhundred)
ldi r17, high(elevenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_2:

ldi r16, low(twelvehundred)
ldi r17, high(twelvehundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_3:

ldi r16, low(thirteenhundred)
ldi r17, high(thirteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_4:

ldi r16, low(fourteenhundred)
ldi r17, high(fourteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_5:

ldi r16, low(fifteenhundred)
ldi r17, high(fifteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_6:

ldi r16, low(sixteenhundred)
ldi r17, high(sixteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_7:

ldi r16, low(svnteenhundred)
ldi r17, high(svnteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_8:

ldi r16, low(ateteenhundred)
ldi r17, high(ateteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_9:

ldi r16, low(nineteenhundred)
ldi r17, high(nineteenhundred)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_10:

ldi r16, low(twenty)
ldi r17, high(twenty)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_11:

ldi r16, low(twentyone)
ldi r17, high(twentyone)

ldi r18, offset
clc

sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_12:

ldi r16, low(twentytwo)
ldi r17, high(twentytwo)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_13:

ldi r16, low(twentythree)
ldi r17, high(twentythree)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_14:

ldi r16, low(twentyfour)
ldi r17, high(twentyfour)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_15:

ldi r16, low(twentyfive)
ldi r17, high(twentyfive)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_16:

ldi r16, low(twentysix)
ldi r17, high(twentysix)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17

sts OC1AL, r16
jmp end_set_servo

pos_17:
ldi r16, low(twentysvn)
ldi r17, high(twentysvn)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_18:

ldi r16, low(twentyate)
ldi r17, high(twentyate)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_19:

ldi r16, low(twentynine)
ldi r17, high(twentynine)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_20:

ldi r16, low(thirty)
ldi r17, high(thirty)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_21:

ldi r16, low(thirtyone)
ldi r17, high(thirtyone)

ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo
pos_22:

ldi r16, low(thirtyfive)

ldi r17, high(thirtyfive)
ldi r18, offset
clc
sub r16, r18
clr r18
sbc r17, r18
sts OC1AH, r17
sts OC1AL, r16

jmp end_set_servo

end_set_servo:
pop r19
pop r18
pop r17
pop r16
ret

;--end of set servo subrouine----------------------------------

;-ENABLE-CLUTCH-INTERRUPT-SUBROUTINE---------
clutch_enable:

;assume clutch is connected to pin d3, the int3 interrupt
;clear the clutch flag first
lds r16, EIFR
ori r16, 0b00001000
sts EIFR, r16
;enable the interrupt
lds r16, EIMSK
ori r16, 0b00001000
sts EIMSK, r16
ret

;-DISABLE-CLUTCH-INTERRUPT-SUBROUTINE---------
clutch_disable:

;assume clutch is connected to pin d3, the int3 interrupt
lds r16, EIMSK
andi r16, 0b11110111
sts EIMSK, r16
ret

;-ENABLE SPEED INTERRUPT SUBROUTINE
speed_enable:

;clear the flag first
lds r16, EIFR
ori r16, 0b10000000
sts EIFR, r16
;enable the interrupt
lds r16, EIMSK
ori r16, 0b10000000
sts EIMSK, r16
ret

;-DISABLE-SPEED-INTERRUPT-SUBROUTINE---------
speed_disable:

;assume clutch is connected to pin e7, the int7 interrupt
lds r16, EIMSK
andi r16, 0b01111111
sts EIMSK, r16
ret

;--enable clicker interrupts subroutine
enable_clicker:

;clear the clicker flags first
lds r16, EIFR
ori r16, 0b00000011
sts EIFR, r16

;ENABLE CLICKER INTERRUPTS
;set bits 0 and 1 in EIMSK (to enable int 0 and 1 interrupts)
lds r16, EIMSK
ori r16, 0b00000011
sts EIMSK, r16
ret

disable_clicker:
;clear the clicker flags first
andi r16, 0b11111100
sts EIMSK, r16
lds r16, EIFR
ori r16, 0b00000011
sts EIFR, r16
lds r16, EIMSK
ret

;-SPEED-INTERRUPT-HANDLER--------------------------
Speed_Interrupt:

push r16
push r17
push r18
;save the status register
lds r16, sreg
sts sreg_temp, r16
;FIRST DISABLE NESTED SPEED INTERRUPTS
call speed_disable
;ENABLE GLOBAL INTERRUPTS
;FOR PWM INTERRUPTS
SEI
;check which edge:
lds r18, edgecounter
clz
cpi r18, 0
breq edge1

edge2:
;clear bit 7 in EIMSK (to disable int 7 interrupt)
;turn off LED
clr r16
sts portb, r16
;if greater than FC52 OR if timer overflow occurred, set
;the edge time to FC52

;first check the overflow flag
lds r16, ETIFR ;check bit 2, the overflow flag
sbrc r16, 2
jmp oflowed

;if overflow did not occur:
;load timer value
lds r16, TCNT3L
lds r17, TCNT3H
;check if greater than $FC52

clc
cpi r17, $FC
brlo check_out
;if FC is greater than or = to FC, check the lower byte

clz
cpi r17, $FC
;r16 is greater than FC
brne oflowed
;if it is FC, check the lower byte
clc
cpi r16, $53
brge oflowed
;otherwise, the lower byte is $52 or less
jmp check_out

oflowed:
;set edge time to FC52
ldi r17, $FC
ldi r16, $52

check_out:
;store the timer value
sts edge2_H, r17
sts edge2_L, r16
;increment the edge counter
inc r18
sts edgecounter, r18
;exit
;clear the external interrupt flag
lds r16, EIFR
ori r16, 0b10000000
sts EIFR, r16
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r18
pop r17
pop r16
reti

edge1:
;illuminate LED
ldi r16, 1
sts portb, r16
;if at first edge,
;reset timer 1
clr r16
sts TCNT3H, r16
sts TCNT3L, r16
sts edge1_H, r16
sts edge1_L, r16
;and clear the timer overflow flag
lds r16, ETIFR
sbr r16, $04
sts ETIFR, r16
;increment the edge counter
inc r18
sts edgecounter, r18
;clear the external interrupt flag
ldi r16, 0b10000000
sts EIFR, r16
;restore the sreg
lds r16, sreg_temp

sts sreg, r16
;exit
pop r18
pop r17
pop r16
reti

;--

;---UPSHIFT INTERRUPT------------------------------------
upshift_interrupt:

;NOTE: THE SWITCH USED REQUIRES A LOT OF DEBOUNCING
;BECUASE IT ALSO SENDS A PULSE WHEN THE MOMENTARY SWITCH
;IS RELEASED. THIS CANNOT BE FULLY CORRECTED, BUT THE
;DELAY IS SET LONG ENOUGH FOR EVEN A LAZY FINGER (SHY OF A HALF SECOND)
push r16
;save the status register
lds r16, sreg
sts sreg_temp, r16
;disble clicker ints to avoid nested interrupts
call disable_clicker
;4.enable global interrupts for PWM
sei
;first check if at startup
;if at startup, also send the enter string
;to the lcd
call clear_screen
lds r16, start_up
clz
cpi r16, $FF
lds r16, sreg
sbrc r16, 1
call send_enter
;increment the gear and send it to the LCD
lds r16, gear
;check if gear is 5 before incrementing
clz
cpi r16, 5
breq send1

increment_gear:
inc r16

send1:
sts gear, r16
call send_gear
;add some delay for deboucing (40 mS)
ldi r16, 250
sts inner_delay, r16
ldi r16, 250
sts outer_delay, r16
call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub
;clear the flag
lds r16, EIFR
ori r16, 0b00000010
sts EIFR, r16
;---------------------------

;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r16
reti

;---------------------------------

;---DOWNSHIFT INTERRUPT---------------------------------------
downshift_interrupt:

;NOTE: THE SWITCH USED REQUIRES A LOT OF DEBOUNCING
;BECUASE IT ALSO SENDS A PULSE WHEN THE MOMENTARY SWITCH
;IS RELEASED. THIS CANNOT BE FULLY CORRECTED, BUT THE
;DELAY IS SET LONG ENOUGH FOR EVEN A LAZY FINGER (SHY OF A HALF SECOND)
push r16
;save the status register
lds r16, sreg
sts sreg_temp, r16
;disble clicker ints to avoid nested interrupts
call disable_clicker
;4.enable global interrupts for PWM
sei
;first check if at startup
;if at startup, also send the enter string
;to the lcd
call clear_screen
lds r16, start_up
clz
cpi r16, $FF
lds r16, sreg
sbrc r16, 1
call send_enter

;decrement the gear and send it to the lcd
lds r16, gear
;before decrementing, check if gear is zero
clc
cpi r16, 0
breq send2

decrement_gear:
dec r16

send2:
sts gear, r16
call send_gear
;add some delay for debouncing
ldi r16, 250
sts inner_delay, r16
ldi r16, 250
sts outer_delay, r16
call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub
call delay_sub

;clear the flag
lds r16, EIFR

ori r16, 0b000000001
sts EIFR, r16
;---
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r16
reti

;---------------------------------

;-CLUTCH-INTERRUPT--
Clutch_subroutine:

push r16
push r17
push r18
push r19
push r20
push r21
push r22
push r23
push r24
push r25
push r26
push r27
push r28
push r29
push r30
push r31

;check the start-up variable
lds r25, start_up
clz
cpi r25, $FF ;if at start-up, variable = FF

;--GO-T0-STEP-3-OF-FLOW-CHART-------------------------
breq startup_code ;

;if not at start up:
clutch_top:

;enable clicker interrupts

call enable_clicker
sei
;Find the Servo Position Value
;For the current Gear

; call rpm_calc
;make sure the clutch is still pressed before setting the servo
;if clutch is not pressed anymore, exit the ihr
lds r16, pind
sbrc r16, 3 ;skip the reti if clutch is pressed (d2 = low when clutch

is pressed)
;clutch isnt pressed anymore
jmp exit_clutch
;clutch is still pressed
call set_servo
;TEST CODE: after setting servo, if speed is greater than 15, get new speed

and servo values
lds r16, speed
clc
cpi r16, 15

lds r17, sreg
sbrs r17, 0
jmp in_gear
;exit
;Clutch still pressed?
lds r16, pind
sbrs r16, 3 ;skip the reti if clutch is pressed (d2 = low when clutch

is pressed)
;clutch isnt pressed anymore
jmp clutch_top

exit_clutch:
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r31
pop r30
pop r29
pop r28
pop r27
pop r26
pop r25
pop r24
pop r23
pop r22
pop r21
pop r20
pop r19
pop r18
pop r17
pop r16
ret

;--STEP-3-OF-FLOW-CHART--FIRST-CLUTCH-INTERRUPT-ROUTINE---------
startup_code: ;

;enable clicker interrupts
call clear_screen
call send_enter
call send_gear
sei
;wait for enter button to be pressed

check_enter: ;

call enable_clicker
lds r16, pine ;

andi r16, 0b00000001 ;the interrupt from the clicker will----
clz
cpi r16, 0 ;occur during this loop. the interrupt-

 ;------------------------

 brne check_enter ;routine sets the appropriate value-

;--If enter is pressed, disable the clicker and
; CLEAR THE START-UP VARIABLE

call disable_clicker
call clear_screen

lds r16, start_up ;

clr r16 ;

sts start_up, r16 ;

;read in port d2 to see if clutch is still pressed.
;if clutch is still pressed, set the servo.
;if clutch is not pressed anymore, exit the ihr

lds r16, pind
sbrc r16, 3 ;skip the reti if clutch is pressed (d2 = low when clutch

is pressed)
;clutch isnt pressed anymore
jmp exit_startup

;clutch is still pressed
lds r16, gear

;if gear = 1 or 0, set servo to 0
;use >= 2

cln
clv
cpi r16, 2
brge in_gear

;the car is in neutral or first gear, set servo to neutral
ldi r16, high(neutral)
sts OC1AH, r16
ldi r16, low(neutral)
sts OC1AL, r16
;exit
jmp exit_startup

in_gear:
;disable clicker ints
call disable_clicker
;get the current speed
call get_speed
;enable clickers
call enable_clicker
;calculate the rpm values at each gear
call rpm_calc
;make sure the clutch is still pressed before setting the servo
;if clutch is not pressed anymore, exit the ihr
lds r16, pind
sbrc r16, 3 ;skip the reti if clutch is pressed (d2 = low when clutch

is pressed)
;clutch isnt pressed anymore
jmp exit_startup
;clutch is still pressed
call set_servo
;delay for a while so the driver can have a
;chance to press the clicker
ldi r16, $FF
sts inner_delay, r16
sts outer_delay, r16
ldi r17, 25

rpt3:
call delay_sub
dec r17
clz
cpi r17, 0

brne rpt3
;exit the interrupt

exit_startup:
;check if clutch is still pressed
;if pressed, go to clutch top
lds r16, pind
sbrs r16, 3
jmp clutch_top
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;restore the registers
pop r31
pop r30
pop r29
pop r28
pop r27
pop r26
pop r25
pop r24
pop r23
pop r22
pop r21
pop r20
pop r19
pop r18
pop r17
pop r16
;exit
ret

;end of start-up AND in gear section of clutch
interrupt--------------------------------

tmr0_OC:
push r16
;save the status register
lds r16, sreg
sts sreg_temp, r16
;check the overflow counting variable: IF zero, turn off port f
;turn port f off
lds r16, oflo_cntr
cpi r16, 0
brne skip_f
clr r16
sts portf, r16

skip_f:
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r16
reti

tmr0_oflo:
push r16
;save the status register
lds r16, sreg
sts sreg_temp, r16

;check the overflow counting variable.
;IF <10, increment the counter
lds r16, oflo_cntr
clc
cpi r16, 5
brlo inc_cntr
;the counter has reached the maximum.
;Turn port f on and reset the counter
clr r16
sts oflo_cntr, r16
ldi r16, 1
sts portf, r16
jmp end_oflo
;increment the overflow counting variable

inc_cntr:
inc r16
sts oflo_cntr, r16

end_oflo:
;restore the sreg
lds r16, sreg_temp
sts sreg, r16
;exit
pop r16
reti

