

- 1 -

Gene Shokes, gshokes@ufl.edu, 281-1543 Joshua Rogers, fatman31@ufl.edu, 850-554-6583

EEL 4914 Electrical Engineering Design

Project Design Report:
Equine Dental Camera

Abstract:
Equine Dentistry is normally provided in a rustic setting such as a stable or barn

where horses are lightly tranquilized and restrained in the standing position as dental
work is provide. Restraints do not impede the over excited horse from flailing and
causing damage in the immediate area. The possible violent reaction of the horse
coupled with the rustic features of location prevents the Veterinarian Technician from
placing expensive computer and electronic equipment in close proximity to the horse.
However, there is an ever growing need to document, by digital photography, the dental
disposition before and after service. Thus, this project consists of building an equine
dental camera in the likeness of a gun with a mirror mounted to the top of the body and a
camera on the end for inspecting the horse’s teeth. Non native lighting will be provided
by microprocessor driven pulse wave modulated LED’s varied in intensity by user input
into the microprocessor. The images from the camera will be displayed on a color LCD
screen mounted on the back of the gun and will also be wirelessly transmitted to a distant
laptop via RF transmitters. There will be streaming video, as well as an option to capture
screen shots.

- 2 -

Table of Contents

Abstract……………………………………………………………………………………1
Features……………………………………………………………………………………3
Components…….…………………………………………………………………………3
Figure 1……………………………………………………………………………………3
Technical Concepts………………………………………………………………………..4
Components……………………………………………………………………………….5
Architecture……………………………………………………………………………….6
Figure 2……………………………………………………………………………………6
Flow Chart………………………………………………………………………………...7
Figure 3……………………………………………………………………………………7
Figure 4……………………………………………………………………………………8
Figure 5……………………………………………………………………………………9
Figure 6…………………………………………………………………………………..10
Labor Division…………………………………………………………………………...11
Table 2…………………………………………………………………………………...11
Bill of Materials………………………………………………………………………….12
Table 3…………………………………………………………………………………...12
Timeline………………………………………………………………………………….13
Table 4…………………………………………………………………………………...13
Appendices………………………………………………………………………………14

*Appendices only included in soft copy.

- 3 -

Features:

The equine dental camera provides the equestrian dental industry with a new product
that incorporates inspecting and documenting dental procedures. Throughout the
semester, there were many features that were discussed and wanted to be implemented. In
the end, not all features could be realized. The following features were incorporated in
the product:

 CMOS camera.

 Adjustable brightness for the camera’s LED’s.

 Wireless transmission of a picture.

The Competition:
 There are not any products available for the equine industry, but there is for the
human dentistry field. Our product should be less than this and built with the equine
industry in mind. Figure 1 shows the human type.

#AIC888/#AIC900
AdvanceCAM Intraoral Camera
(wireless)

 camera weights only 2 ounces
 high resolution, auto focus
 view image in full or quad screen
 3 hours of operation before recharging
 four independent wireless channels
 high, medium and low power indicator (LED)
 8"L x 1'W x 1.25" H

#AIC900
Wireless Transmitter (included)

 2.4 GHz, 8.5V charger
 LED channel indicator
 2.0" x 1.0"

$1,650
To order, please phone us for an individual consultation to determine which combination of
 components best fits your needs

Figure 1

- 4 -

Technical Concepts:
There are several technical objectives that must be overcome to produce a

competitive product into the equine dentistry industry. The unit has size constraints,
durability issues, minimum operating time, and user functionality.

First, the unit must be small enough to fit into the horse’s mouth. It must be able to
reach to the back of the mouth and produce quality video of the teeth. The unit has to be
thick enough to incorporate the mirror and camera as well. To achieve this, the unit will
need to be between 0.75 and 1.5 inches thick. The end will also be tapered to allow it to
reach to the rear of the mouth.

The next challenge will be making the unit durable enough to be used in the rustic
surroundings of a barn or out in the fields. The unit will have to be waterproof since it
will be used in the mouth of the horse. To achieve this goal, the mirror and camera
housing will be sealed and the unit will be built as thick as possible. The thickness will
help to make the unit more rigid and durable.

The third challenge will be maintaining a minimum operating time. The unit will
need to be able to last for the entire time it takes to examine the horse. To overcome this
problem, the equine dental camera will be implementing a 12V lead acid battery power
supply. The unit will have to have a voltage regulator to step down the voltage for the
microprocessor though.

The final challenge is functionality. The user will need to be able to operate the
unit with one hand. All controls and functions will have to be readily available at one’s
finger tips. To accomplish this, the push buttons for power and capturing images will be
implemented by way of a two trigger design. The LED brightness buttons will be on the
rear, underneath the LCD screen.

Components:
To be able to provide the features listed above, the following parts in table 1 will

be required:

Component Options Advantages
Camera CMOS Digital output

 CCD Analog output
RF Transmitter/

Receiver Nordic Up to 2Mbps
 Xbee Easy to interface

Push Buttons NO Would not source current
 NC Cheaper

LED's White Cheap and available
 Color Would not white out camera

- 5 -

FPGA 128 pin Cheaper
 256 pin More processing power

Microprocessor Atmel More built in functions
 Pic Smaller

Color LCD Accelevision NTSC compatible
 PSP screen Larger screen and clearer

Table 1

The camera that has been chosen was a CMOS and has a VGA resolution of
640x480. There are cameras available with higher resolutions, however for this design
the video being captured is close to the camera lens and VGA will be plenty of
resolution. The cost is also cheaper for less resolution.

The RF transmitter and receiver pair chosen was the Nordic. There are models
available with a larger range, however the distance between the individual and the laptop
should not be greater than 50 feet.

The push buttons are generic buttons used for turning power on and off and
another button for activating a still shot. There are many different types, but the easy
choice is the free one that will not source current.

The LED’s incorporated into the camera housing only need to illuminate the local
region where the camera is being used. The LED system needs to be dark enough that it
doesn’t white out the camera feed. There are many different options for LED’s, but the
white ones available in lab have the right brightness.

Two Atmel microprocessors were used in the project. The microprocessors will be
used to monitor the brightness and capture buttons and adjust the pulse width modulation
driving the LED’s. They were also used to transmit a signal to the laptop to take a screen
shot when the button is pressed.

The FPGA initially chosen for the project was the Cyclone II EP2C20F256C6
which is a dash 6 speed, 256 pin ball grid mount FPGA with 18752 LE’s, 152 user I/O’s,
239620 bits of memory, and 4 embedded PLL’s. However, due to time constraints the UF
4712 board was used to implement the project.

- 6 -

Architecture:

Figure 2 shows the initial design.

 Figure 2

The initial design incorporates two Atmel processors and a Cyclone 2 FPGA. The

FPGA interfaces with the CMOS image chip and memory, and the Atmel processors
interface with the memory, FTDI chip, and the Nordic chip.

The gun side contains all of the components on the left side of figure 2. The Atmel
continuously runs a 10% duty cycle PWM outputting to a mosfet that drives the LED’s.
There are three interrupts: LED brighter, LED darker, and capture. The LED brighter
interrupt increases the duty cycle of the PWM to increase the power driven to the LED’s.
The LED darker interrupt decreases the duty cycle of the PWM to decrease the amount of
power used to drive the LED’s. The capture interrupt tells the FPGA to store the current
frame into memory. From the memory, the Atmel receives the data that the FPGA
addresses on the memory address bus. The data is then sent to the Nordic chip to be
wirelessly transmitted to the receiver station.

The receiver station continuously keeps the USB bus out of low power sleep mode.
This allows the Nordic to have plenty of power to receive the file. When the Nordic

- 7 -

receives data, it interrupts the Atmel processor and the data is loaded from the Nordic
chip to the Atmel where it is sent to the FTDI chip to be loaded into a computer.

Figure 3 shows what the final product is envisioned to look like.

Figure 3

- 8 -

Flow Charts:
 Figure 4 shows the flow chart for the Atmel processor on the gun side.

 Figure 4

- 9 -

 Figure 5 shows the flow chart for the Atmel on the receiver side.

 Figure 5

- 10 -

Figure 6 shows the flow chart for the FPGA.

 Figure 6

- 11 -

Labor Division:
Table 2 shows the tasks at hand and the individual who is responsible for that task.

Responsibility Person Percentage
Research Josh 50%
 Gene 50%
Writing reports and
presentations Josh 50%
 Gene 50%
Design PCB's Josh 25%
 Gene 75%
Interface with Nordic Josh
Interface with camera Gene
Interface with laptop Josh
Interface SRAM Gene
write C for Atmel
processors Josh
write VHDL for FPGA Gene
design casing in ProE Josh 25%
 Gene 75%
populate PCB's Josh 60%
 Gene 40%
build gun Josh 20%
 Gene 80%
build computer case Josh

Table 2

- 12 -

Bill of Materials:
Table 3 contains the cost of the materials used in the project.

Component Cost Use
Camera $134 Capture video and still shots

RF Transmitter/
Receiver $87 Wireless transmission of video

Push Buttons Free power and capture features
LED’s Free Lighting for camera

Potentiometer Free To adjust LED brightness

Microprocessor Free
Drive LED’s and capture

function
Color LCD $75 View from camera

FPGA $70
Integrate camera, memory,

and microprocessor
Misc. resistors/caps/etc $50 Bring all components together

TOTAL $416
Table 3

- 13 -

Timeline:
Table 3 shows the up to date Gantt chart that reflects how long each task was planned and how long it actually took.

Table 4

- 14 -

Appendices:

Atmel Code for Gun Side:

//Joshua Rogers
//Senior Design Project Code
//Gun Side Final Software

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
#include <inttypes.h>
#include <stdio.h>

//Variables
unsigned int dataa;
unsigned int datac;
unsigned int g=0;
unsigned int h=0;
unsigned int i=0;
unsigned int t=0;
unsigned int y=0;
unsigned int x;

//Sub programs

void INITIAL(void)
{

DDRB |= 0x16; //Portb.4 output for PWM and MOSI SCK for SPI and LED
DDRC &= ~(0xFF); // Port C all inputs
DDRA &= ~(0xFF); // PortA all inputs
DDRD &= ~(0x0F); //Portd.0-3 all inputs interrupts
DDRD |= 0x30; //PORTD.4-5 outputs to nordic
DDRE &= 0x00; //Porte all inputs
DDRF |= 0x0F; //Portf3-0 outputs
DDRG |=0x0F; // PortG3-0 outputs

// Set up external interrupts

- 15 -

EIMSK &= ~(0xFF);
EICRA &= ~(0xFF); //low level generates int
EIFR |= 0x07;
EIMSK |= 0x07; //Int2-0 turned on
SREG |= 0x80; //Set I-bit in SREG

//Set up PWM by timers and toggle PORTB 4 on interrupts

TCCR2 |= 0x01; //turn timer2 on
TCCR1A &= 0x00; //turn timer 1 on
TCCR1B &= 0x00;
TCCR1B |= 0x01;
OCR2 |= 0x10; //output compare is how to adjust
OCR1AH |= 0x05; //output compare to 10KHz period
OCR1AL |= 0xBE;
TIMSK |=0x90; //set interrupt for OC on timer 1 and 2 on

sei(); //global interrupt on

//Set up SPI

SPCR &= 0x00;
SPCR |= 0x50; //MSB first, SPI enable, 128 Master
SPSR &= ~(0xFF); //f/4 for SPI
}

void wait(void) //10us delay 160*16Mhz=10us
{
redo:
if(x < 150) //less than 160 but Nordic will operate correctly
{
x=x+1;
goto redo;
}

x=0;
}

void debounce(void) //debounce switches

- 16 -

{
i=0;
redo3:
if(i < 10)
{
h=0;
redo2:

if(h < 64000)
{
redo1:
if(g < 64000)
{
g=g+1;
goto redo1;
}
g=0;
h=h+1;
goto redo2;
}
h=0;
i=i+1;
goto redo3;
}
i=0;
}

void SPITX(unsigned int reg, unsigned int dat) //used for nordic setup
{
PORTD &= 0xDF;

SPDR = reg;
while(!(SPSR & (1<<SPIF)))

wait();

SPDR = dat;
while(!(SPSR & (1<<SPIF)))

wait();

- 17 -

PORTD |= 0x20;

}

void SPITX2(unsigned int reg2, char dat1, char dat2) //used for data sending
{
PORTD &= 0xDF;

SPDR = reg2;
while(!(SPSR & (1<<SPIF)))

wait();

SPDR = dat1;
while(!(SPSR & (1<<SPIF)))

wait();

SPDR = dat2;
while(!(SPSR & (1<<SPIF)))

wait();

PORTD |= 0x20;

}

void NORDIC_INT_TX(void) //initialize Nordic in TX mode
{
SPITX(0x21,0x00); //disanle AA
SPITX(0x22,0x01); //enable data pipe 0
SPITX(0x23,0x03); //5 byte addressing
SPITX(0x24,0x00); //retransmit nothing
SPITX(0x25,0x34); //channel 50
SPITX(0x26,0x0E); //2 meg high power
SPITX(0x31,0x02); //pipe 0 2 byte pipe width
SPITX(0x20,0x72); //no int and PU TX
}

void getdataandtx(void)
{

- 18 -

 retry:
 if((PINE == 2) | (PINE ==3)) //data ready signal
 {
 dataa = PINA;
 datac = PINC;
 SPITX2(0xa0,dataa,datac); //load data to nordic
 PORTD|=0x10; //toggle CE to TX
 wait();
 PORTD &=~(0x10);
 }
 else
 {
 goto retry;
 }

}

void capture(void)
{
 PORTF |= 0x01;
 PORTF &= ~(0x01);
}

void read(void)
{
 PORTF |= 0x02;
 PORTF &= ~(0x02);
}

void fpgareset(void)
{
PORTF &= ~(0x04);
PORTF |= 0x04;
}

//MAIN

int main() //initialize everything and wait for interrupts
{

INITIAL();

- 19 -

PORTF |= 0x04; //fpga

NORDIC_INT_TX();

debounce();

while(1)
 {
 wait(); //wait for interrupts
 }

}

//Interrupts

ISR(INT0_vect) //Capture and send
{
 debounce();
 //1.capture to FPGA
 //2.wait for data ready
 //3.watch "last" and continue to send data and use data ready
 //and data request
 //4.send double of end file if half word occurs
 fpgareset(); //reset to FPGA
 capture(); //send to FPGA
 getdataandtx();
start:
 read();
 if ((PINE == 1) | (PINE == 3))
 {
 getdataandtx();
 read();
 return(0);
 }
 getdataandtx();
 goto start;
}

ISR(INT1_vect) //interrupts brighter (increase duty cycle)
{
 debounce();

- 20 -

 unsigned int o;
 o = OCR2;
 if (o >= 231)
 {
 OCR2 = 0xFF;
 return(0);
 }
 else
 {
 o=o+25;
 OCR2 = o;
 }
 return(0);

}

ISR(INT2_vect) //Darker (decrease duty cycle)
{

 debounce();
 unsigned int p;
 p = OCR2;
 if (p <= 26)
 {
 OCR2 = 0x01;
 return(0);
 }
 else
 {
 p=p-25;
 OCR2 = p;
 }
 return(0);
}

ISR(INT3_vect)
{

return(0);
}

//PWM for LEDS via timer interrupts. This controls the frequency

- 21 -

//to manufacturers recommended period.

ISR(TIMER1_COMPA_vect)
{
 PORTB |= 0x10; //LED on
 TCNT1L = 0x00;
 TCNT2 = 0x00;
 TCNT1H = 0x00;
 return(0);
}

ISR(TIMER2_COMP_vect)
{

 PORTB &= ~(0x10); //LED off
 return(0);
}

Atmel Code for Receiver Side:

//Joshua Rogers
//Senior Design Project Code
//Computer Side Software Demo

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
#include <inttypes.h>
#include <stdio.h>

void INTIAL(void)
{

DDRA |= 0xFF;
DDRB |= 0x06; //Portb output for MOSI SCK for SPI
DDRD &= ~(0x0F); //Portd.0-3 all inputs interrupts
DDRE &= 0x00;

- 22 -

DDRE |= 0xC3; //Porte.0,1,6,7 outputs

PORTE |= 0x40;

// Set up external interrupts

EIMSK &= ~(0xFF);
EICRA |= 0x03; //low level generates int1,2,3 rising edge for 0
EIFR |= 0x0F;
EIMSK |= 0x0F; //Int3-0 turned on
SREG |= 0x80; //Set I-bit in SREG
sei(); //global interrupt on

//Set up SPI

SPCR &= 0x00;
SPCR |= 0x50; //MSB first, SPI enable, 128 Master, Int enable
SPSR &= ~(0xFF); //f/4 for SPI
}

void setcsn(void)
{
PORTE |= 0x02;
}

void resetcsn(void)
{
PORTE &= ~(0x02);
}

void setce(void)
{
PORTE |= 0x01;
}

void resetce(void)
{
PORTE &= ~(0x01);
}

unsigned int x;

- 23 -

void wait(void) //16MHz*2*250=30us delay
{
redo:
if(x == 250)
{
goto here;
}
else
{
x=x+1;
goto redo;
}
here:
x=0;
}

void SPITX(unsigned int reg, unsigned int dat)
{
resetcsn();

SPDR = reg;
while(!(SPSR & (1<<SPIF)))

wait();

SPDR = dat;
while(!(SPSR & (1<<SPIF)))

wait();

setcsn();

}

char R;
char E;

void SPIRX2(unsigned int rex)
{

resetcsn();

- 24 -

SPDR=rex;
while(!(SPSR & (1<<SPIF)))

wait();

SPDR=0x00;
while(!(SPSR & (1<<SPIF)))

wait();

R = SPDR;

SPDR=0x00;
while(!(SPSR & (1<<SPIF)))

wait();

E = SPDR;

setcsn();
}

void FTDITX(void)
{
//while((PINE &= 0x20)==32)
//{wait();}
PORTA = R;
PORTE |= 0x80;
PORTE &= ~(0x80);
PORTA = E;
PORTE |= 0x80;
PORTE &= ~(0x80);
}

void NORDIC_INT_RX(void)
{

SPITX(0x21,0x00); //disable AA

- 25 -

SPITX(0x22,0x01); //Enable data pipe 0
SPITX(0x23,0x03); //5 byte addressing
SPITX(0x24,0x00); //re-transmit disabled
SPITX(0x25,0x34); //channel 50
SPITX(0x26,0x08); //2 mega per second
//SPITX(0x31,0x20); //32byte wide pipe0
SPITX(0x31,0x02); //1 byte info
SPITX(0x20,0x33); //RX_DR int,PU,RX_en
setce();
}

unsigned int T=0;
unsigned int q=0;

int main()
{

INTIAL();

setcsn();

wait();

NORDIC_INT_RX();

chill:
wait();
goto chill;

}

ISR(INT0_vect) //sleep int from FTDI
{
DDRE |= 0x10;
PORTE |= 0x10;
PORTE &= ~(0x10);
wait();
DDRE &= ~(0x10);

return(0);
}

- 26 -

ISR(INT1_vect)
{
return(0);
}

ISR(INT2_vect)
{
return(0);
}

ISR(INT3_vect) //RX interrupt from Nordic
{

resetce();

SPIRX2(0x61);
FTDITX(); //sending data to FTDI
SPITX(0x27,0x40);

setce();

return(0);
}

