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ABSTRACT 

The device we have designed and built is an audio limiting device to 

automatically calculate how much limiting of the small signal is needed to protect a 

specific speaker cabinet. The user of the device inputs their speaker impedance and 

speaker power rating. The audio amplifier's output then can be fed back to the limiter 

where the limiter can detect when the power amplifier’s output wattage surpasses the 

power the speaker can take. The limiter can then lower the sound level of the audio signal 

using an algorithm to perform smooth attenuation in order to maintain the aesthetic 

quality of the audio signal.
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INTRODUCTION 

 

 The ever-expanding realm of technology and electronics is conquering every field 

imaginable in this day and the field of music and sound reproduction in general is no 

exception.  Unfortunately, with the wide range of functions required of electronics in 

order to manipulate the sound in the desired fashion, there has developed a need to 

incorporate many different individual devices into a single signal chain from input to 

output.  In most circumstances, the last component accounting for the audible 

reproduction of the manipulated sound is the speaker.  As with all electronic devices, 

however, there are limits on the operating levels of the speaker that determine its safe 

operating levels.  These limits cause a problem when we consider that the other 

components that have manipulated the audio signal up until this point are independent of 

the speaker and thus unaware of these safety requirements.  The goal of our device is not 

only to incorporate a limiting device into a signal chain that would account for these 

safety limitations of the speaker in the presence of an amplifier, but to do so in a manner 

that would maintain the continuity of the volume’s dynamics in an aesthetically pleasing, 

non-distracting manner. 

 

A Note About Speaker Damage: 

 With the purpose of our device being to protect speakers, we must first understand 

what damages speakers in the first place.  When we think of damage to a physical device, 

we first consider the mechanically active parts of the device and how the behavior of 

these parts could be put in danger.  For the speaker’s case, these mechanical 
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Figure 1: Speaker components 

Source: http://p-hardware.blogspot.com/ 

2008/04/speaker.html 

parts are located at the point of the transduction of electrical energy in the incoming 

voltage signal to mechanical energy.  Here, 

the cone of the speaker and its suspension 

(which is usually attached to the coil 

containing the incoming electrical signal; 

some designs allow for the permanent magnet 

component to be attached to the cone instead, 

as shown in figure 1) oscillate back and  forth 

in its production of the desired air 

pressure variations in order to create the 

necessary sound waves.  The mechanical 

motion of this cone is directly related to the oscillating voltage level entering the speaker.  

This means that the higher the peak voltage of the incoming signal, the greater the spatial 

displacement the speaker cone will have to undergo in order to achieve a corresponding 

sound wave (a higher peak in voltage signal and mechanical oscillatory motion of the 

cone results in a louder sound at the output of the speaker).  However, as with any 

mechanical component, the range of motion of this cone is only designed to oscillate with 

amplitudes corresponding the power rating and impedance of the speaker.  Any signal 

that surpasses these limits puts uncharacteristic strain on the cone and the suspension 

attaching the cone to the speaker mainframe due to the extreme accelerations, stretching, 

and prolonged over-vibration etc. that it experiences under such conditions.  To prevent 

this type of damage we need to ensure a safe range of motion for the speaker cone.  This 

however does not necessarily entail always limiting any sharp intermittent spike 
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encountered in the audio signal’s amplitude.  If the duration of the spike is appropriately 

short and the audio signal in the surrounding time window is well below dangerous 

operating amplitudes, it is very likely the speaker cone would be able to withstand such a 

spike.  Most of the time one such over-excursion of the speaker cone will not cause the 

damage, but prolonged over-excursions leading to the mechanical fatigue will eventually 

result in failure of the mechanical parts, including ripping or tearing of the cone or its 

suspension.  Another thing to note is the different types of speakers that can be used and 

which types are most prone to different types of speaker damage.  In the case of a 

mechanical failure, woofer and tweeters are the usual culprits.  Woofers handle the low 

frequency spectrum of the input and are oftentimes overdriven at loud parties, where a 

loud bass sound is desired.  Tweeters are oftentimes overdriven mechanically when they 

are associated with an inadequate crossover system, since these speakers are very small, 

fagile, and easily damaged.  In our project we will have to find a delicate balance 

between protecting the speaker from high-amplitude spikes that are mechanically 

hazardous to the system while still leaving the sound levels unaffected if it is determined 

that such a spike in sound will not likely be detrimental to the speaker. 

 The other type of damage a speaker could encounter is heat damage.  If the 

speaker is producing a high volume of sound for an extended amount of time, the amount 

of power being dissipated rises to very high levels, which causes the speaker to heat up to 

extremely high temperatures and puts the speaker at risk for damage by overheating.  At 

these extremely high temperatures, either the voice coil adhesive can soften and cause the 

voice coil to come apart, hence a mechanical failure on the part of the voice coil, or the 

voice coil itself or the wires leading to the voice coil can literally melt, causing 
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oftentimes an open circuit in the wiring and thus an inability of the speakers to produce 

sound of any kind.  The system is not put at risk of heat damage at the occurrence of 

sharp spikes of high amplitudes, but only at a continuously high level of sound being 

producedand for a reasonably long amount of time.  In our device design, our goal is to 

protect the speaker from both mechanical and heat damage.  Our protection algorithm 

does not involve an integration of the power dissipated by the speaker over time, 

however, which would be necessary for an absolute guarantee that an over-heating issue 

would not occur.  Since we are limiting the amplitude of the signal entering the speaker, 

however, attenuating the signal appropriately based on both the speaker’s power rating 

and impedance, we would expect that under normal operating conditions (where the 

speaker is driven with normal music for a couple hours at a time), our device would offer 

adequate protection from both mechanical and heat damage. 

 

A Note About Power Ratings and Distortion: 

 In our attenuation calculations, we must often incorporate the power ratings of 

both the speaker, as input by the user, and the power rating of the amplifier we are using.  

We must be aware, however, that even though these power ratings appear to be on the 

same scale one another, they in fact are not.  The power ratings of an amplifier is based 

on the amount of power the amplifier is capable of dissipating with a sinusoidal, 

monotone input into the system producing that power.  This method of determining he 

power rating is as straightforward as the power rating on a light bulb, where the power a 

light bulb can dissipate is based on a steady ac power input from a wall socket.  The 

speaker’s power rating, however, is rated much differently.  Since we would almost never 
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expect to be using a speaker to output a sound that stays at a single frequency, these 

speakers are in stead based on typical trends found in music waveforms, where there are 

constantly varying amplitudes and frequencies of sound and where, more importantly, 

even if the signal may have an instantaneous power dissipation at a high value, this is 

usually followed by a period of much lower values, which essentially allows the speaker 

time to cool off.  Because of this, an amplifier rated at a high level can oftentimes be used 

to drive a speaker with a much lower power rating safely.  For example, if we have a 

speaker rated at 100 Watts, this speaker could not handle 100 Watts worth of a 

continuous signal (such as a monotone sinusoid) into the system.  However, an amplifier 

rated at 400 Watts would be required to carry out the amplification of a music signal that 

had instantaneous power peaks of up to 400 Watts.  A given music signal with an average 

power of 100 Watts would likely be constantly varying between say 50 and 400 Watts of 

power, and thus would require an amplifier of at least 400 Watts of power rating to 

amplify this signal without clipping.  Since we know that the speaker is rated based on 

the varying power changes in music, then, we could conclude that a 100-Watt speaker 

would be able to safely run the signal, even though it is driven with an amplifier rated at 

400 Watts and with a music signal containing 400-Watt peaks. 

 We should be aware that the previous example is dependent on the amplifier 

operating without distortion, that is, without the clipping of the signal peaks.  When the 

input is clipped by the amplifier, the transistors saturate and automatically temporarily 

output their maximum supply DC voltage of the system to produce the square-like 

waveforms characteristic of clipping.  When this happens, the speakers are more prone to 

over-heating damage than they would be if that signal would have been unclipped and 
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reached its full amplitude peak.  For this reason, it is often said that some speaker damage 

can actually be avoided by using a higher rated amplifier, since it would avoid this 

distorting clipping from occurring. 

 In our project, since we are not detecting if a peak value observed was from a 

clipped signal or an unclipped signal, in order to avoid an increased risk of heat damage 

due to clipping, we would need to assume that the amplifier is operating in a non-

distorting range.  However, since we are taking the power rating of the amplifier into 

account in our calculations, this should allow our device to prevent the amplifier from 

reaching the range where it would begin such distortion.  Therefore, our signal not only 

functions to protect our speakers from being damaged, but also to prevent distortion in its 

signal output. 
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KEY TO ABBREVIATIONS 

 

ADC – analog to digital conversion: a general signal conversion method; also a register 

defined on the Atmega 32 microprocessor for carrying out such a conversion 

CS – chip select; an input pin to the MAX 5411 digital potentiometer, active low 

PCB - printed circuit board; copper platforms whereupon electronic circuits have been 

etched. PCBs are rugged, inexpensive, and can be highly reliable. They require 

much more layout effort and higher initial cost than either wire-wrapped or point-

to-point constructed circuits, but are much cheaper and faster for high-volume 

production. 

QSOP - Quarter-Size Small-Outline package; a chip package with pin spacing of 0.635 

mm 

SPI – serial peripheral interface; a synchronous serial data link standard of 

communication involving a “master” talking to its “slave” over four wires called 

master-in-slave-out (MISO), master-out-slave-in (MOSI), clock (CLK), and slave 

select (SS) 

SS – slave select; acts as a chip select for SPI communication slave enabling; a dedicated 

pin on port B of the microprocessor, active low 
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CHAPTER 1 

PROJECT FEATURES AND OBJECTIVES 

 

 

The main distinguishing feature of our device compared to similar devices 

currently on the market is our capability to accommodate a wide variety of speakers, 

allowing the consumer to use any typical speaker sold commercially today.  We 

accomplish this by inserting user interfaces whereby the user can specify the impedance 

and power specifications of the particular speaker, regardless of the speaker’s make or 

model.  The current industry standards for speaker impedance values are set at discrete 

values of 2, 4, or 8 Ohms and the power consumption levels of a typical speaker ranges 

between 50 and 1000 Watts.  The user simply selects the levels of these parameters of 

their speakers and our device automatically processes these inputs and recalibrates the 

attenuation scheme of the limiting algorithms in order to allow for protection for a 

speaker with these specified parameters. 

Another benefit of our device is that it 

employs feedback control, where the feedback 

signal is taken directly from the output of the 

amplifier, which is also the input signal fed 

directly into the speakers (see figure 2).  This 

provides a greater safety guarantee over another 

common design involving predictive control, 

since we have direct access to the signal that is to 

be seen by the speaker and are not merely trying 

to predict this signal. 

Figure 2: Feedback control 
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The final benefit of our device design is its attenuation scheme.  Unlike other 

products intended to protect speakers from unsafe levels of input, our product does not 

simply disconnect our circuit once dangerous levels are experienced, thereby abruptly 

muting the signal.  Instead, our system employs gradual attenuation algorithms that are 

continuously yet subtly limiting the system input.  By beginning to slightly attenuate the 

signal in the upper range of the safe levels of speaker operation, once the threshold of the 

speaker’s capability is reached the limiting function of our device has already begun and 

therefore moves seamlessly over this threshold. 
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Figure 3: Predictive limiter 

Source: http://www.rane.com/note127.html 

CHAPTER 2 

ANALYSIS OF COMPETITIVE PRODUCTS 

 

2.1 General Approaches 

 Essentially, our device is simply a limiter programmed to accomplishing a 

specific goal.  There are many different kinds of limiters that would be physically capable 

of performing the same signal attenuation as our device, but very few would be “smart” 

enough to automatically and continuously adjust this attenuation towards the goal of 

protecting a speaker of a specific speaker. 

 Within the realm of limiters designed to protect speakers, there are in general two 

different types: predictive limiters and negative feedback limiters.  Predictive limiters are 

convenient in that they are more portable in general than feedback limiters and aren’t 

necessarily used as dedicated speaker protectors all the time.  However, their drawbacks 

far outweigh this slight benefit.  As seen in figure 3 below, the predictive limiters merely 

predict the output of the amplifiers that the speakers will be exposed to and do not have 

any connection to the actual voltage the speakers are exposed to.  As such, in order for 

the limiter to adequately calculate the amplifier’s output from its input, the amplifier must 

be held at a constant value.  Once the amplifier’s gain has changed, the limiter must be 
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recalibrated or else the speaker is in danger of being over driven. 

 Negative feedback limiting is the concept our design is based off of, though we 

were not aware of the existence of this technology upon the conception of the idea for our 

project.  This type of limiting in regards to speaker protection has become more popular 

than its predictive counterpart for its many benefits.  In general, this limiting technique 

can guarantee safer, more reliable limiting since it is receiving its feedback directly from 

the signal line that is being directly fed into the speaker itself (see figure 4 in section 2.2).  

Because of this, that signal information can be used directly without having to back 

calculate the gain of the amplifier, hence the limiter does not require recalibration upon 

each readjustment of amplifier gain.  Also, in this set-up knowledge of the parameters 

regarding the amplifier, such as impedance and power rating, does not have to be as exact 

as it does for the predictive set-up.  Since we are presented with the output of the 

amplifier, the main parameters we are concerned with in this situation becomes the 

parameters of the speakers, so that slight variations or discrepancies from ideal amplifier 

parameters are not as crucial to the functionality of the limiting device in this case. 

 

2.2 Specific Examples 

United States Patent #41737401 is a device that uses feedback control in an 

attempt to protect speakers from being overdriven, but instead of actually attenuating the 

signal as it approaches dangerous levels this device simply “cuts off the supply voltage to 

a power amplifier circuit in disconnecting a loudspeaker from the output terminal of the 

power amplifier circuit when an overvoltage is developed at the output of the power 

amplifier circuit.” Our device has a significant advantage over this approach to speaker 
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Figure 4: Example of feedback limiting 

Source: 

http://www.arx.com.au/pdf/old/LSP1manual.pdf 

protection in that we allow the audio signal to continue to play uninterrupted even once 

the input has reached unacceptable levels because of our limiting scheme. 

 A low frequency loudspeaker 

processor called the LSP-1 (see figure 

4) is built with a high signal input line 

to monitor exactly what the gain of the 

power amplifier is. However, for every 

different model of loud speakers 

this device requires a PCB card.  

The only pre-made cards available 

are for a few different types of speakers manufactured by their own specific company. If 

a user wanted to use this device for another speaker not manufactured by the Australian 

company, they would have to submit a request for a custom card to be made in 

accordance with their speaker type.  With the introduction of user inputs of their speaker 

specifications, our speaker processor allows the user full customization for this device to 

work with any traditional loudspeaker model without the need of any kind of chip to be 

custom made for the device to function properly. 

 One speaker protection design that is currently on the market, called TruPower! 

Limiting by the Meyer Sound Company, however, appears to be much more sophisticated 

than our design, taking into account other details regarding speaker operations that our 

design does not consider.  However, we must first take into consideration that this design 

is merely a technology that has been directly incorporated into a company’s speakers they 

themselves manufacture.  Since the design is literally embedded within the speaker 
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cabinet itself, there leaves no room for this device to be used on any speaker/amplifier 

combination the user wishes and therefore does not offer the same freedom of speaker 

choice to the user as our device does. 

 TruPower! is literally designed to calculate the “true power” that is being 

delivered to the speaker.  For example, though in our device we assume that the 

impedance of the speaker (as specified by the user as an input to our system) remains a 

constant, this impedance actually varies slightly both over the frequency range of the 

signal and over the operation time of the speaker as the speaker coils warm up and 

experience a slight increase in impedance.  The impedance increase in the speaker coils 

causes a slight drop in the overall dynamic range of the speaker system over time and this 

TruPower! technology seeks to correct this problem.  On the opposite end of the 

spectrum, the frequency dependency of the speaker impedance can cause the speaker 

impedance to unknowingly decrease at certain frequencies and thus open the speaker up 

to potential damage occurring at signal levels that under normal impedance would have 

passed as harmless.  Though this frequency vs. impedance relationship is likely hard to 

determine directly, this technology seeks to prevent any speaker overload due to this 

phenomenon by automatically attenuating the signal by a couple extra dB after a long 

period of operation time to prevent overheating of the speaker. 
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CHAPTER 3 

CONCEPT/TECHNOLOGY SELECTION 

 

3.1 The Attenuator and Analog vs. Digital Considerations 

We knew from the start that the three major functions that needed to be performed 

by our device were the collection of user input and feedback loop data, the processing of 

that data to form the appropriate attenuation algorithms, and, finally, the actual 

performance of the attenuation on our input signal.  We knew that in order to interpret 

and process information regarding analog data, we would likely find it best to perform 

our processing in digital form.  Our initial idea was to first perform analog to digital 

conversion from our feedback signal to determine the amount of attenuation needed, and 

then to go back and attenuate a digitized form of the input signal by that amount before 

sending the analog version of the newly attenuated input signal through the amplifier.  

Under this design, we thought it would be best to use either a digital signal processor 

(DSP) or a microprocessor to carry out the attenuation of the signal in its digital form.  

However, the problem with using the microprocessor for this purpose was a fear of 

severe distortion of the audio signal, as a microprocessor would likely not be able to 

produce a high quality of sound once the signal had been converted from analog to digital 

form and then back again.  The option of using a DSP chip would be beneficial in that not 

only is it commonly used in manipulating audio signals and reproducing a high quality of 

sound, but also it would be capable of some very complex limiting algorithms and would 

even give us the option of using frequency distinction in our attenuation scheme.  

However, neither of us had very strong knowledge of digital signal processing nor any 

practical experience in the use of a DSP chip.  We were both enrolled in the Electrical 
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Engineering Department’s Introduction to Digital Signal Processing class at the time, but 

feared we would not learn enough about the practical functionality of such a device in 

order to successfully incorporate this into our project with only a month or two of 

lessons. 

Our next idea was to employ the use of a potentiometer to control the attenuation 

of our input signal in its original analog form, avoiding the possible distortions and 

complications of digitization.  However, a traditional analog potentiometer would need to 

be controlled by our system’s “brain” and the only way to control such a potentiometer is 

by physically turning a knob. The only way to accomplish this with electrical signals 

would be through control of a motor, which would involve adding another component to 

our device that would make matters unnecessarily complicated.  To circumvent the 

problems presented us by the traditional analog potentiometer, we decided on using a 

digital potentiometer that could be controlled directly by the “brain” of our system.  The 

digital potentiometer would contain physical wipers and resistors so that the attenuation 

of our input signal should preserve the quality of our audio signal.  The drawback to this 

is that the digital potentiometer, unlike the analog potentiometer, has discrete positions 

for the wiper to be located at, whereas the analog potentiometer’s wiper position can 

continuously span between the high and low terminals of the potentiometer.  The benefit 

of being able to directly control the wiper’s position by the same device that will perform 

the attenuation algorithm calculations and in a very accurate and precise manner, 

however, was seen as a benefit well worth the loss of a continuous spectrum of 

attenuation from our potentiometer, and thus the digital potentiometer was chosen over 

its analog counterpart. 
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3.2 The “Brain” 

We then needed to select a device that would act as the “brain” of our device.  

This would need to first take in our user inputs and our feedback loop information; from 

this it would not only determine the attenuation algorithms necessary to protect the 

speaker in question but then send commands to perform that attenuation.  Once we had 

decided that using a digital potentiometer to perform the attenuation would be best, it was 

an obvious choice to use a microprocessor for this purpose.  Once this was decided, the 

two main considerations for settling on a final device were the type of microcontroller to 

use and what size of a microcontroller was needed.  Our choice of an Atmel brand 

microcontroller over a PIC (Peripheral Interface Controller) controller was made on the 

basis of code familiarity.  Bethany was in charge of the software programming of the 

microprocessor, so she chose the c programming coding language of the Atmel controller 

over the basic coding language of the PIC due to her experience with the related C++ 

programming language.  Regarding size considerations, with our experience with the 

Atmega 32 microcontroller and our general estimation of the number of pins and the 

types on functions that would be needed (analog to digital conversion, communication 

with the digital potentiometer, dedicated user inputs, and potential LCD output pins) we 

decided that this device would be sufficient to meet the needs of our project. 

 

3.3 Digital Potentiometer Model Selection 

 To begin with, we had very little knowledge regarding not only the types and 

different features of digital potentiometers but also regarding which of these features 
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would be most suitable and beneficial to our device. What we did know, however, was 

that we were to be attenuating an audio signal and that detecting changes in audio signals 

in our brains is calibrated in terms of a logarithmic, or decibel (dB), scale.  Therefore, if 

we were to use a linear-based digital potentiometer and were to start attenuating our 

signal in linear correspondence with the increasing input signal, it would appear at first 

that there was a huge decrease in the sound being produced by the speaker, and then as 

further attenuation occurred as the signal got louder and louder there would seem to be 

almost no attenuation occurring at all in the signal.  We were able to circumvent this 

problem fortunately by finding digital potentiometers designed specifically to deal with 

audio signal attenuation with wiper positions at taps positioned along the resistor to allow 

resistance changes to occur on a decibel scale instead of on a linear scale. 

 Our initial approach was to order a wide variety of audio-tapered digital 

potentiometers and to investigate which one we felt would be best suited for use in our 

project.  We ordered the following devices from the Maxim/Dallas Semiconductor 

company: DS1801, DS1802, DS1808, DS1881, DS1882, MAX5411, and MAX5486 and 

researched the features of each device.  Our initial decision was to use the DS1881 model 

that provided 63 wiper steps of 1 dB per step, a power supply range within the 5 V limit 

of the microprocessor we were using, zero-crossing detection to eliminate the clicking 

and popping sounds that tend to accompany wiper position changes in audio chains, and 

an option to store wiper position information in an EEPROM upon power off.  However, 

we were forced to abandon using this potentiometer once we discovered that the 

difficulty of using the Atmega 32 microprocessor for I2C (Inter-integrated Circuit) 
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communication far surpassed that of using the SPI (serial peripheral interface) 

communication required for the MAX5411 potentiometer. 

 The functionality for carrying out SPI communication was built right into the 

hardware configurations of the Atmega 32 microprocessor as accessed by the dedicated 

pins at port B.  The Atmega processor already had registers set up in order to allow the 

parameters of the SPI communication to be adjusted to suit the needs of the given SPI 

communication application and some simple sample code was already presented in the 

data sheet to initiate SPI communication and to begin sending information via SPI 

communication.  The only major drawback to using this new potentiometer model was 

the fact that this model only allowed 32 wiper positions of 2 dB per step, which would 

result in less resolution in our attenuation accuracy and a slight loss of smoothness as the 

wiper transitions took place.  It was determined that the ease in communication format 

and microprocessor coding was well worth this slight sacrifice in attenuation quality. 

 

3.4 Feedback Signal Incorporation 

 Our next task was to find a way to tap into the signal coming out of the amplifier 

and feed back a version of this signal into the microprocessor where it could easily and 

safely be measured by the microprocessor in determining the attenuation algorithms 

necessary.  The main problem here was that once the small signal input was fed through 

the amplifier, it was at voltage levels that were unsafe to be directly fed into the 

microprocessor, which could only safely handle voltages roughly in the range of 0-5.5 

Volts.  Therefore, we needed to design a circuit that would step down the voltages from 

the amplifier from their current values to lie within the 0-5.5 Volts range.  We also 
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Figure 5: THAT 4301 Analog Engine 

Source: http://www.ka-electronics.com/that4301/that4301.htm 

needed to only submit positive voltage values to the microprocessor, so we decided to 

add step down circuitry that probes the voltage output fed to the speaker. Since this 

output is a 100-volt peak to peak swing an op-amp steps the voltage down by 1/10. Then 

op-amp circuitry rectifies the negative voltages and then an active low pass filter 

smoothes it out. This is explained further in the hardware section. 

 

3.5 A Temporary Sidetrack 

 Early on in our project’s development we encountered an alternate route that 

seemed like another adequate way we could solve our problem of speaker protection.  

The website for the THAT Corporation’s THAT 4301 Analog Engine  (see figure 5) 

included an application note on how this device could be used as a “Signal Limiter for 

Power Amplifiers.”  This chip sounded promising and included many components of the 

design we had already envisioned all on one chip, with only the addition of a couple 

smaller components such as capacitors, resistors, and diodes needed.  Another benefit, 

besides convenience, that 

this new solution had to 

offer was its use of an 

analog voltage-

controlled amplifier, 

which would allow the attenuation to occur through a continuous set of values.  This 

would provide smoother-sounding volume transitions over the discrete wiper position 

changes that would be necessary in our use of a digital potentiometer.  Also, the device 

not only was designed to operate by taking in the feedback signal from the amplifier’s 
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output, similar to our original design, but it additionally contained an RMS detector to 

enable that feedback signal’s strength to be more readily detectable by the device.  This 

would eliminate the need of our originally intended “step-down circuitry.” 

 However, there was one crucial drawback to this design that made it implausible 

to use: it had no real user-defined flexibility.  One of the main distinguishing features of 

our device is its capability to be used with any speaker the user wishes, where the user 

only has to select two simple parameters of their speakers and our device will 

automatically recalibrate itself to fit their speaker’s needs.  This new design was meant to 

operate around a threshold value and automatically attenuate the audio signal past that 

value, but this threshold value was determined by a relationship of resistance values used 

in the circuit.  In order for such values to be extracted from the user’s input and then a 

determination to be made about how the attenuating algorithms operate according to 

these values, we would require the use of a “smart” devise to take in such inputs and 

carry out the necessary calculations.  The only real logical solution for this is to 

incorporate the use of a microprocessor, for there is no functionality in the Analog 

Engine device that would allow for such calculations to be made.  An option would then 

be to use a microprocessor along with the circuitry recommended for the “Signal Limiter 

for Power Amplifiers,” but then the problem would become both an unnecessary increase 

in complexity between the microprocessor to Signal Limiter circuitry and the inflexibility 

to completely control all features of the Signal Limiter circuit due to their dependence on 

set resistance values that would be hard-wired into the circuitry.  The Signal Limiter 

circuitry does allow some flexibility in setting the limiting threshold and compression 

ratio by incorporating 3 different variable resistors, but even so many of its parameters 



14 

are set using a combination of these variable potentiometers and set resistors.  Even if we 

could set up our system to use digital potentiometers in place of these variable resistors 

so that we could control the threshold and limiting parameters with our microprocessor, 

this would seem to be at least three times as complicated as our original design involving 

communication with only one digital potentiometer and without the worry of having to 

hard-wire some parameters of the limiting into our circuit through the use of set resistor 

values.  Therefore, we decided that our original design would be the simplest and most 

efficient way to accomplish our goal of speaker protection. 
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Figure 6: High level system diagram 

CHAPTER 4 

PROJECT ARCHITECTURE 

 

4.1 From Input to Amplifier 

A very high-level system diagram can be seen in figure 6.  The very first function 

our device serves upon 

system power up is the 

input of the user’s 

speaker parameters. This 

is accomplished through 

the use of toggle 

switches. The user can 

select speaker 

impedances (2, 4 or 8 ohms) and speaker power ratings (100, 200… 1000 watts). With 

this information the microprocessor calculates what the threshold voltage is to start 

attenuation (the details of such calculation will be explained in section 4.3). The audio 

signal itself originates from some electronic instrument, microphone, etc. as a very low-

voltage signal representing the pressure variations in the air produced by the music 

desired to be amplified out to the general public.  This signal travels through the power 

amplifier where it experiences an amount of voltage gain depending on the position of the 

“Volume” knob on the amplifier.  We will assume for our project that this gain can be 

varied at any point in time and do not require it to be set at a constant level for any 

amount of time.  Here is where the signal branches off: we have this amplified signal 

both connected to the speaker, where it will act as a transducer converting electrical 
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waves into pressure waves in the air to produce sound, and we also run this signal 

through a step-down circuit that will attenuate and manipulate the signal in preparation 

for its entrance into our Atmega 32 microprocessor. The current step-down circuit 

attenuates the voltage signal by .08x and then rectifies it and smoothes it out with a low 

pass filter. The hardware architecture for this circuit is further explained in chapter 5, the 

hardware section. 

 

4.2 Inside the Microcontroller: Analog to Digital Conversion 

This small signal version of the amplifier’s output is fed into a pin on our 

microcontroller from port A (see figure 7 for the software architecture of the 

microcontroller).  (Please note that all the code for our Atmega 32 processor is included 

in the Appendix.)  This port’s pins are linked to dedicated hardware responsible for 

controlling the microprocessor’s analog to digital conversion functionality.  We utilize 

the microcontroller’s ADC (analog to digital conversion) registers to configure and carry 

out such an operation, converting our small 0-5.5 V signal from the feedback loop into a 

set of discrete integer numbers valued between 0 and 1023 (corresponding to a 10-bit 

digital result).  Here we have the difficulty of an analog signal at our port A pin that is not 

only is not sitting at a constant voltage level due to the changes in the amplifier’s gain, 

but also fluctuates in a half-rectified fashion between 0 Volts and its peak voltage even 

while the amplifier gain remains constant due to the sinusoidal characteristic of musical 

frequencies.  To be able to accurately interpret the signal level we first acquire sets of 100 

samples of ADC readings and then perform statistical analyses (namely, calculating the 

average value and the maximum value) on each set of data in order to be able to make a 
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Figure 7: Software architecture 

better decision on how much attenuation is needed based on each sample period.  The 

goal here is to, in general, set up our attenuation to cater to the peaks experienced in order 

to allow for maximum protection of the speakers, but to ignore this peak value and 

instead use the average value in the case that a very short-lived spike in voltage is 

experienced that is well above the rest of the values of that sample (see code in the 

Appendix for details regarding this selection criteria).  If we were to only observe the 

peaks as a rule, we would always be responding to every little voltage peak in the system, 

which would lead to both a general sense of over-attenuation and a significant drop in the 

dynamic range experienced by the listener at the speaker output and lead to many abrupt 

and dramatic attenuation leaps between load and soft as any intermittent spike was 

encountered. 
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4.3 Inside the Microcontroller: Attenuation Determination and Implementation 

Once we have the peak or average information from the ADC results, the user’s 

inputs that were read into the system upon the device’s power up come into play. These 

user inputs of speaker resistance and power rating are used to calculate the software 

variable called the overloadVoltage, which is the threshold determining safe operation of 

the user’s speaker. 

As a short side note: we are using the term “threshold” more loosely for our 

actual attenuation implementation where we allow the signal to float close to 

and even slightly above this threshold level and consider this safe operation 

for the speaker.  This is due to the lax definition on how the actual speaker 

rating is calculated, as mentioned in the Introduction, where the threshold is 

assigned to an average level over time and allows for slight up and down 

fluctuations in the music around this level. 

The overloadVoltage equation is: 

! 

overloadVoltage = ( wattage_ rating " impedance " .08 "1023) /5 . This comes from the 

fact that: 

! 

Power =
voltage

2

resistance
, so then 

! 

Power " resistance = voltage
2. The step down 

circuitry attenuates a signal to .08 of its peaks, so 

! 

voltage = Power " resistance " .08 . 

Voltage is the overloadVoltage, power is the power a speaker can take, and resistance is 

the speaker’s impedance, which is commonly 2, 4 or 8 ohms. Below is a chart of 

common speaker impedances and power ratings that the user can set with their 

corresponding overloadVoltage values: 
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Table 1: overloadVoltage Calculations given all possible user 

input combinations 

overloadVoltage overloadVoltage Impedance 

Speaker 

Power 

[decimal] 0~1023 [volts] [Ohms] 

 Rating 

[Watts] 

231.4784759 1.13137085 2 100 

327.36 1.6 4 100 

462.9569518 2.2627417 8 100 

327.36 1.6 2 200 

462.9569518 2.2627417 4 200 

654.72 3.2 8 200 

400.9324811 1.959591794 2 300 

567.0041524 2.771281292 4 300 

801.8649622 3.919183588 8 300 

462.9569518 2.2627417 2 400 

654.72 3.2 4 400 

925.9139036 4.5254834 8 400 

517.6016074 2.529822128 2 500 

731.9992131 3.577708764 4 500 

1023 5 8 500 

567.0041524 2.771281292 2 600 

801.8649622 3.919183588 4 600 

1023 5 8 600 

612.4344811 2.993325909 2 700 

866.1131492 4.233202098 4 700 

1023 5 8 700 

654.72 3.2 2 800 

925.9139036 4.5254834 4 800 

1023 5 8 800 

694.4354277 3.39411255 2 900 

982.08 4.8 4 900 

1023 5 8 900 

731.9992131 3.577708764 2 1000 

1023 5 4 1000 

1023 5 8 1000 

 

 

Once this voltage limit value has been scaled down by the same proportional 

amount used on the voltage during the step down process (0.08) in order to put it in the 0-

5 Volt range, that value is then multiplied by a factor of (1023/5) in order to put the 

parameter into a value on the same scale as that of the data from the ADC process, as a 

value between 0 and 1023, so that the two values can be compared accurately.  This 

newly calculated threshold value is saved by the software as the variable 
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“overloadVoltage” and is carried, along with either the peak or average parameter from 

each ADC set, as an argument into a function establishing attenuation levels based on a 

comparison between the ADC set statistic and the threshold voltage for safe operation.  

For example, if the peak voltage from a set of ADC conversions is equal or less than less 

the “overloadVoltage” value, the first attenuation bracket bracketNumber = 0) would 

send a command to the digital potentiometer to position the wiper to allow for 0 dB 

attenuation.  With increasing ADC peak or average values in relation to the 

“overloadVoltage” value, the wiper position is commanded to position itself to allow for 

increasing amounts of attenuation.  Also incorporated into this same function is a 

calculation of how drastic of a change in position a wiper must undergo in order to move 

from its current location to the newly calculated location and based on this calculation 

send the wiper through an appropriate amount of intermediate steps in order to more 

smoothly transition from one attenuation level to another.  For example, if we had a 

wiper in a position corresponding to bracket 0 (for no attenuation) and we wanted to 

move this wiper to the position corresponding to bracket 12 (to reduce the signal to about 

1/5 of its current value), we would command the wiper to move through two other 

intermediate positions on its way from the bracket 0 position to the bracket 12 position. 

 

4.4 Practical Adjustments 

 One of the lessons learned from this project is that no matter how much thought, 

analysis, and calculation you put into a design, once you test that design there is a great 

likelihood that you will encounter some issues that never occurred to you from a 

theoretical standpoint.  This was the case with the attenuation algorithms that had been 
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coded in the software portion of our system.  During the final testing stages of our device 

our code worked perfectly, but that fact ended up being our only problem.  During 

testing, when the amplifier was causing the feedback signal to fall in the upper ranges of 

attenuation, we would see the code step through the steps needed to reach the destination 

attenuation bracket that had been specified for it in our code and then once it got there, as 

a verification that the attenuation levels had been indeed calculated correctly, we saw the 

ADC readings to go from the high values of the amplified signal to low values that were 

well within the overloadVoltage safety threshold value.  The problem, then, was that the 

next command in our code was to run the function again to calculate an appropriate 

attenuation bracket for the feedback signal.  Since this function had already run once and 

had done its job of bringing the signal into the range where it would not need further 

attenuation, this second time around the code put the attenuated signal into bracket 0, 

where no attenuation was required and the potentiometer’s wiper would be moved 

accordingly.  We must realize here, though, that by lowering the level of our small signal 

audio input when we first commanded the attenuation, we did not change the high gain 

setting present on the amplifier, so that once we bring this attenuation back to 0 dB, the 

high amplifier gain is still present.  Therefore, essentially the current code was causing 

the attenuation for a high feedback signal to toggle between a given attenuation level and 

0 dB of attenuation: once through the attenuation function and the attenuation would be 

set, a second time through and the level would be in the safe range again so the 

attenuation would be unset.  This behavior both made the sound output from our system 

to be distracting, unnatural, and aesthetically unpleasing and caused the output signal 
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going to our speaker to oftentimes reach very high levels that would very likely allow for 

damage to the speaker to occur. 

 In order to change this, we only had to modify a few lines of our code, but this 

drastically changed the behavior of the system in practice.  We decided that instead of 

calculating a destination attenuation bracket the potentiometer should reach based on its 

current level (which would lead often to the toggling 0 dB bracket once the attenuation 

did its job of bringing the signal back to safe levels), we should have the system only 

change its attenuation bracket one at a time.  To do this, we used the framework of the 

existing attenuation bracket definitions to assign the current level to a bracket number 

(the bracket numbers 0 – 23 correspond to wiper settings 0 – 46 dB, with a multiplication 

of 2 factor to convert between the two) and then compared this bracket number with the 

last bracket the wiper was assigned to.  If the new bracket was lower than the previous 

one, that meant that less attenuation was needed than was previously set, so our system 

commands that the wiper position be moved +2dB from its previous setting. If, on the 

other hand, the new bracket was higher than the previous one, that meant that less 

attenuation was needed than was previously set, so our system commands that the wiper 

position be moved -2dB from its previous setting.  After making only this slight 2dB 

change in the wiper position within our attenuation function, the code loops back to again 

take a new ADC reading and calculate a new bracket number, where it can be determined 

if the wiper should be moved for more or less attenuation.  Also it should be noted that if 

the signal has not changed levels enough to associate it with a different bracket number, 

then the wiper is simply commanded to stay at its current position.  By employing this 

new algorithm, the safety threshold is reached a bit more slowly, but once it is reached it 
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Figure 8: Revised software flowchart 

stays within a reasonable limit of the threshold (per our “lax interpretation of the 

threshold” explained in section 4.3), which is the main point of the speaker protection 

function of our device.  See figure 8 for the new software flowchart. 

 Under this new algorithm, the initial purposes for the bracket definitions are 

nearly lost.  Originally, these brackets were meant to calculate out where a wiper should 

be, based on the signal level presented to the ADC sampler, for that signal to lie within 

the threshold value.  However, since we are not sending the wiper automatically to this 

pre-calculated level but instead changing the attenuation only step-by-step and checking 

each time to see if the level has yet reached safe values, these levels are only used as a 

means of comparison.  The function they now 

serve is to tell how far away the new ADC 

voltage level has to be from the old ADC 

level in order to command the 2 dB change.  

In this function, then, the bracket definitions 

are still serving a useful purpose, so that the 

wiper’s position will not be changed every 

single cycle of the function.  Also, built into 

the attenuation bracket calculations is the 

natural dB characteristic of the 

potentiometer’s wiper, so that signals 

requiring only a low level of attenuation 

will be more sensitive to voltage changes 
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whereas it will take more drastic changes in ADC voltage level for changes to occur at 

higher levels of attenuation. 

 

4.5 The Analog Attenuation 

 The digital potentiometer changes resistance and is input into the non-inverting 

terminal of a TLC2272 op-amp.  As the potentiometer’s resistance goes down, the 

resistance lowers and the signal attenuates.  The output of the op-amp is fed back into the 

input terminal, making it a simple voltage follower. The low terminal of the digital 

potentiometer receives a 2.5 Volt DC signal.  The high terminal of the potentiometer 

receives the music with a Vcc/2 = 2.5 Volt bias.  To make sure no DC component is 

present in the original signal, coupling capacitors were used on the input to the resistors 

and on the output of the TLC2272 op-amp. 
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Figure 9:  Digital PCB 

Figure 10: Attenuation of a cosine signal 

CHAPTER 5 

HARDWARE 

 

 The premise of the hardware for the limiter and speaker protector was using a 

potentiometer to attenuate the small signal of an iPod or guitar before the signal reaches 

the input of the guitar amplifier. The 

potentiometer would be digitally controlled by an 

atmega32 microprocessor using SPI protocol 

serial communication. The processor made the 

decisions of controlling the digital potentiometer 

to change the music volume based on a signal 

fed back from the amplifier. 

 

5.1 The Digital PCB 

 It was decided that one printed circuit board (PCB) would be built to handle the 

digital components and another board would handle the analog elements. The first digital 

board was built to house the atmega32 processor, digital potentiometer (maxim, 

Max5411), 12-volt to 5-volt regulator (LM7805), and headers that plug into an LCD 

display. Figure 10 shows how a cosine signal was 

attenuated using the digital potentiometer. 

 The MAX5411 was chosen because it had a 

logarithmic taper digital, with 32-tap points each. It can 

replace mechanical potentiometers in audio applications 



26 

 requiring digitally controlled resistors. The chip also has a SPI-compatible serial 

interface that controls the wiper positions. The MAX5411 has a factory-set resistance of 

10k!. A zero-crossing detection feature minimizes the audible noise generated by wiper 

transitions. Switching amplitudes through a digital potentiometer when there is any sort 

of voltage cause small audible cracks. The zero-crossing feature has the potentiometer 

wait until the low input and high input are equal to change its resistance. For the purpose 

of mounting the MAX5411 on our PCB the 16-pin quarter-size small-outline package 

(QSOP) package was chosen. 10 mil traces were routed to the 16-pin QSOP. 

The digital board would receive the audio signal needing attenuation through its 

high input on the digital potentiometer header. Since the digital potentiometer’s power 

supply is ground the 5-volts the music needs a vcc/2 bias voltage. The music into the high 

input terminal of the pot is then biased by 2.5 volts. The input to the low terminal is 

simply 2.5 volts. The wiper is then connected to a voltage follower op-amp is then plugs 

into the large personal amplification system. 
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Figure 11: Analog Schematic 

Figure 11: Analog schematic 

 

5.2 The Analog PCB 

The digital PCB also 

received a feedback input into 

its analog to digital conversion 

port (ADC). This feedback input 

was stepped down using the 

analog board. The schematic 

for the analog board is shown 

on the right. The board 

consists of two power 

regulators to regulate +12 

volts and -12 volts to +5 volts 

and -5 volts. A number of 

resistors were using to bias 

to high and low terminals, 

which are sent to the MAX5411.  Two large 33uF capacitors were used to couple and DC 

signal connected to the music inputted. Two capacitors were used because 33uF capacitor 

are polarized electrolytic, thus the terminal charges must be symmetric. So, the two 

positive sides of each capacitor were connected leaving the negative terminals on the 

outside. The power was regulated to +5 volts and -5 volts because the op-amps used the 

analog PCB circuitry required +/-5 volts. Fast rail-to-rail op-amp built by TI (TLC2272) 

was used as a voltage follower for the small signal output.  
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Figure 13: Full-wave rectification (left), diode in series 

(middle), low pass filter (right) 

Figure 12: ADC step-down vs. high-

voltage cosine (top) and high-voltage 

music (bottom) 

The TLC2272 was also used as a step-down 

op-amp. Since the large personal amplifier outputs a 

high voltage signal of up to 100 volts peak-to-peak. 

The first stage  (U5A) of the step-down circuit op-amp 

reduces the gain of the signal to 10 volts peak-to-peak. 

The next two op-amps (U5B and U6A) full wave 

rectify the signal. To smooth out the signal a low-pass 

filter was built with a capacitor and resistor. The full-

wave rectification circuitry was based on figure X 

from the book “Introduction to Operational 

Amplifier Theory and Applications” 

(Huelsman,1975). The top of figure 12 shows 

how a simple cosine signal swinging from +50 voltage to -50 volts is rectified and then 

smoothed out to be about 4 volts. The bottom of figure 12 shows how the rectified signal 

changes with music and jump up and down depending on the music’s amplitude. The 

figure below takes one through the step of how the cosine signal voltages look at each 

stage of the analog board. 
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CHAPTER 6 

SOFTWARE 

 

6.1 SPI Communication 

 The use of Serial Peripheral Interface (SPI) communication was required for our 

microprocessor to be able to control the digital potentiometer model we had chosen: the 

MAX5411.  As mentioned in chapter 3, 

the prime reason for using this SPI 

format of communication was that the 

Atmega 32 chip contains pins that 

are connected to internal hardware 

designed to carry out such communication.  Also, to correspond to such hardware, there 

are registers featured on the microprocessor that enable the SPI hardware to be 

configured and utilized easily. 

 As shown in figure 14, SPI communication is carried out between two devices 

(the devices can be daisy-chained so that one master can communicate with multiple 

slaves, be we only require two-device communication in our project), one being specified 

as the “master” device and the other as a “slave” device.  In our case we configure the 

internal SPI Control Register (SPCR)’s bit corresponding to master mode (MSTR) to 

have our microprocessor act as the master who is then responsible for sending data to the 

digital potentiometer slave (which acts as a slave by default, since it lacks the capabilities 

to perform the duties of a master device, such as generating its own clock signal).  SPI 

communication requires 4 different wires running between the two devices as shown in 

Figure 14: SPI communication wiring 

Source: http://dev.emcelettronica.com/category/tags/spi-

protocol 
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figure 14, labeled SCLK (serial clock), MOSI (master out, slave in), MISO (master in, 

slave out), and SS (slave select).  The SCLK line is the clock that synchronizes the timing 

between the two devices.  This clock signal is generated by our microprocessor master 

and its frequency is determined by setting registers corresponding to certain division 

factors from the internally generated clock signal always present in the microprocessor.  

The MOSI line is the most important connection in our SPI communication system.  This 

is where the transmitted message is sent as a series of ones and zeros from the 

microcontroller to the digital potentiometer.  The timing of the transmission of this 

message is determined by the SCLK signal and the relationship between the phase and 

polarity relationship between the clock signal and the message signal are set up using 

registers in the microcontroller; this phase and polarity must match the phase and polarity 

required by the SPI slave you are communicating to or else the signal will not be 

interpreted correctly.  The MISO line is meant to enable the slave to “talk” back to the 

master device, but is not used in our project.  The potentiometer would be reading back to 

the microprocessor the current position of its wiper via the MISO line, but in our case we 

are merely concerned about telling the digital potentiometer where to position its wiper 

and based on that command from the master, as long as the slave device interprets the 

commands correctly, we should already have knowledge of the current wiper position at 

any point in time.  The SS line is an active low line where the master prepares the slave 

device to receive a transmission.  This line is most important when more than one slave is 

present in a system, where the master can define many SS output pins to be able to select 

each slave device to talk to one at a time.  The master’s SS line is usually connected to 

the slave device’s CS (chip select) active low so that only the chip that is selected by the 
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master will be able to actively interpret the master’s commands.  This same connection is 

made between our microprocessor and our digital potentiometer’s chip select pin.  The 

details about the functionality of this line in regards to our single-device project will be 

explained below in section 6.2. 

 

6.2 Trial and Error, Lessons Learned 

 Our first step in creating our device was to ensure the functionality of the digital 

potentiometer, which was not only the pivotal function of our device, responsible for 

ensuring speaker safety, but also likely one of the most complex, due to the SPI 

communication protocol intricacies.  At first, we made the mistake of ignoring the sample 

code provided in the Atmega 32 processor, thinking it would not provide fully SPI 

communication functionality, so we attempted to get some bits of sample code from 

online databases.  Once we constructed an initial bread board-based design in order to 

facilitate a piece of sample code (commanding the digital potentiometer to move through 

each of its wiper positions) and hooked up a multimeter to the wiper to try and verify if it 

was in fact following the commands sent by the microprocessor, we were seeing voltage 

changes on the wiper and interpreted this to mean at least a partial success of the 

potentiometer’s functionality.  We learned on multiple occasions, however, that seeing an 

apparent movement of the wiper, unless it exactly matches the value your code is setting 

it to and is consistent upon running the program may times, does not at all mean that the 

SPI communication code is working correctly.  The two major mistakes we initially 

found were that first we did not have the digital potentiometer wired up to power and 

ground correctly and secondly that our sample code was much too complex and outdated.  
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From this realization, we discovered that the sample SPI code for master mode operation 

on the microprocessor’s data sheet was all the code you needed in order to carry out SPI 

communication.  With our new set of code, we were seeing some very perplexing results.  

For example, on a couple occasions, we would observe the voltage on the wiper to be 

showing appropriate values most of the time, but would skip many values or oftentimes 

jump between the power or ground voltage levels in the middle of a voltage progression 

that was supposed to be in between those two values.  We attempted to find our problem 

by inserting some debugging code that blinked an LED (light-emitting diode) at crucial 

points in our code to ensure it was running properly, but sometimes even this method was 

no use when the LED seemed to show that the system was running through each line of 

our code properly, but the wiper position was not changing at all. 

 Finally, we made our first step towards realization of our problem when we went 

through a simulation of our code line-by-line on the AVR Studio 4 program (the same 

program we were using to write, compile, and program our code into our device with), 

checking that the register values that we were setting in our SPI initialization command 

were setting properly and that our code was in general operating correctly.  Through this 

process, we immediately discovered that the bit in the SPI Control Register (SPCR) that 

was responsible to setting the microprocessor to operate as the SPI master (the MSTR bit) 

was being set properly, but was being unset in the very next, completely unrelated 

command. Upon receiving some guidance from a TA (teaching assistant), we discovered 

that the active low chip select (CS) pin on the digital potentiometer worked more like a 

reset pin than it did like a traditional chip select pin whereby the device is enabled to 

work for the duration of time that the active low select signal is held low.  Therefore, 
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instead of outputting a continuously low signal from the SS pin of the microprocessor to 

the CS pin of the potentiometer, we would need to start with the SS pin in the high 

voltage position, transition this to a low right before communication with our 

potentiometer began, and pull it back high again once one byte of information was 

successfully transmitted.  Prior to this, under the impression that we would simply need 

the CS pin on the digital potentiometer to always be low, signifying that we always 

wanted to talk to that chip, we had simplified the connections between the two devices by 

simply tying the CS pin on the microcontroller to ground and ignoring the SS pin on the 

microcontroller.  Right away we saw this new “CS pin with reset functionality” concept, 

we knew that we needed to run a wire between the microprocessor and the potentiometer 

in order to enable communication to the device each time before any byte of information 

could be transmitted. 

After some further research on our MSTR bit-setting issue, we found this 

sentence in a Wikipedia article entitled “AVR SPI C Snippets”: “When running master 

mode, a low level at the slave select pin SS will force the device into slave mode.”  At 

first this seemed completely contradictory to our basic understanding of SPI 

communication, for clearly figure 14 shows the SS pin on the SPI master connected to the 

SS pin (in our case, called CS: chip select) on the slave, both being active low, with the 

master being in charge of selecting which device it will be talking to.  However, we were 

not cautious in noticing a slight technicality in the operation of the SS pin on the 

microprocessor.  In our case, we did not need the pin specified as SS on the 

microcontroller, for its primary function was in fact to operate as its own version of our 

potentiometer’s chip select pin in the case that someone were to need the capability of 



34 

having the microprocessor serve the function of a SPI slave device, where this pin would 

be configured as an input and then driven low by an outside SPI master device when 

communication to this microprocessor was desired.  However, the simple fact that this 

functionality was not needed by our system did not mean that we were safe in ignoring 

this pin.  If this pin is configured as an output pin while the device is in master mode (for 

it cannot be configured as an output in slave mode or it would lose its ability to be 

selected as such a slave), it becomes a general-purpose output pin and the SPI 

communication system is not affected by this pin’s value.  However, we were not 

observant of the fact that in the code from the Atmega 32 datasheet we were using they 

left this SS pin set as an input, expecting the user to desire the microcontroller’s option to 

act as a SPI slave (note that inputs are configured to a port value of 0, so that through the 

lack of mentioning the input/output functionality explicitly in the code, the SS pin’s 

function as an input was implied).  The simple fact of the SS pin being configured as an 

input would not have caused any problems, however, had this pin not been an active low 

pin.  Unfortunately, an input pin with no signal to drive it high is sitting at a low value.  

Therefore, under the configuration we were using, our microcontroller was being 

informed that it was required to act as a slave and was not actively trying to send 

information but to receive it.  Our problem was fixed once we combined these two bits of 

insight into the functionality of the chip and slave select pins of our two devices: we first 

set the SS pin on the microcontroller to be an output pin and then connected a separate 

general purpose output pin, having no ties to the SPI system itself, to act as an output 

signal to the potentiometer’s CS pin that would carryout the reset-like function required 

for communication with our slave device. 
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6.3 Attenuation Bracket Considerations 

 The goal of our attenuation is to gradually limit our input signal as it approaches 

and exceeds levels that would be considered unsafe for the speaker in consideration.  

Since all of our considerations regarding what signal levels to attenuate are made based 

on this threshold of safe limits for our speaker and the safe limit for our speaker’s 

operation is based on the impedance and power rating parameters as defined by the user 

inputs into the system, we first must establish this safety threshold which is referred to as 

the variable “overloadVoltage” in our code.  As briefly mentioned in section 4.2, we use 

the relationship (power = voltage
2 

/ resistance) along with our user inputs of power and 

impedance to obtain a maximum voltage we want to have entering our speakers from the 

output of the amplifier.  After this formula is used to find the correct voltage value, we 

must remember that the voltage information we are comparing this threshold value to is 

from the result of analog to digital conversions of the stepped-down feedback signal and 

being as such will be an integer value between 0 and 1023 due to the 10 bits of resolution 

available to the ADC hardware.  Therefore, to get this within an equivalent range we 

must multiply this high-level voltage value by a factor of  (1023*.08/5=16.4). This factor 

comes from the step-down circuitry.  Since we know that this threshold value will be 

different for every given set of speaker parameters, we need a way of defining bracket 

levels, where each “bracket” corresponds to a range of incoming data from the ADC that 

translates into a certain command for the potentiometer’s wiper position and hence a 

certain amount of attenuation of the input audio signal.  Since this attenuation depends on 

the overloadVoltage value, we define each bracket based upon the division of the statistic 
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(whether it is the peak or the average value) describing the set of incoming ADC values 

by the overloadVoltage value.  For example, 1.0 would mean that either the peak or 

average value from the set of values that were sampled using the  

 microprocessor’s ADC function is exactly equal to the corresponding voltage threshold  

 value that would likely blow the speakers and 25.0 would mean that the peak or average  

 ADC value is twenty-five times the value of the safety threshold for the speaker (the  

point at which our device essentially begins to mute the incoming audio signal). 

 Next, actual levels must be defined to both keep our signal at safe levels and to 

avoid any abrupt changes in attenuation, so that the sound coming out of the speaker 

retains as much of its original volume continuity as possible.  The resistance positions of 

the potentiometer’s wiper change by two decibels per discrete position of the wiper, 

varying from 0 dB with the wiper connected to the high terminal of the potentiometer all 

the way down to -62 dB where the wiper has very little resistance between it and the low 

terminal of the potentiometer.  The resistor also features a mute function that guarantees a 

resulting gain of less than -90 dB.  For our purposes, however, we must take into account 

that the stated attenuation of each wiper position is for use of the digital potentiometer 

alone in developing that amount of attenuation.  In our case, the digital potentiometer is 

merely one component, albeit the most important one, in our analog attenuation circuitry 

(see chapter 5 for details).  This translates into the fact that not only are the actual 

changes in attenuation we get for each wiper step less than -2 dB, but also that even at the 

potentiometer’s 0 dB level, we will still have a series of resistors present that will 

function as attenuators to the incoming signal and thus the actual attenuation we 
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experience will be -1.22 dB (see table 2 for discrepancies between wiper positions and 

actual circuit gain). 

Once we had defined what gain levels were achievable by our circuit, we decided 

that a Microsoft Excel spreadsheet would be most useful in developing a list of the range 

of input values and then determining the best level of attenuation amongst those values.  

Since we are basing all of our calculations around the overloadVoltage safety threshold 

value, our list of inputs is given in terms of multiples of this value, from 0 meaning an 

input voltage that is zero times the overloadVoltage value and 25 meaning an input 

voltage that is twenty-five times the overloadVoltage value. 

We must make a side note here that since the speaker thresholds in general should 

be located a reasonable amount higher than the levels of normal operation, a signal level 

that is twenty-five times higher than that threshold will likely not ever be encountered in 

actual operation.  However, since the range of the potentiometer and associated gain 

function is capable of attenuating even a signal of this abnormally large magnitude back 

down to within safe levels, we decided we would program the device to be able to handle 

such levels.  This way, we can be sure to account for the case of a speaker with a very 

low power rating and resistance that could easily be overblown and could potentially, 

though not likely, experience levels that are in fact twenty-five times that of its safety 

threshold.  It should also be noted that in fact the attenuation our device offers could 

potentially limit input levels even above this (25 * overloadVoltage) point.  For example, 

-62 dB is the lowest position offered by the wiper within its normal range of operation 

and even below that the device features a mute function that guarantees attenuation of -90 

dB or below.  Converted to a gain in units of Volts/Volts, -62 dB translates into 0.006345 
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and -90 dB translates into 0.0002542, which would mean that using one of these 

attenuation levels would theoretically allow for an input that is either 141.8 or 3540.5 

times the level of our overloadVoltage safety threshold level while still attenuating this 

input to attain an output value that is still only 0.90 times that threshold value or less.   

However, first of all, the -90 dB wiper position is intended for use as a mute function and 

if we were to specify that our signal could function up until such extremely high input 

levels under the -90 dB setting we would no longer have a way of muting the input signal 

if the level was ever exceeded or for other emergency purposes.  More importantly, as 

previously stated, a level of (25*overloadVoltage) should be high enough that, regardless 

of the speaker’s parameters, the input would never reach levels high enough to even 

come close to this limit; thus, we would expect the mute function of our device never to 

have to be employed. 

Our final attenuation brackets allow for inputs to be smoothly attenuated until the 

input reaches a level twenty times the threshold value.  Between twenty and twenty-five 

times this threshold value we start attenuating the signal toward a zero output in order to 

alert the user that they are operating at extremely high levels and the amplifier’s gain 

either needs to be turned down significantly or if the gain continues to increase our 

device will soon merely mute the input signal (see figure 15 for this trend). Finally, we 

set the attenuation ranges or input signals in the normal operating range of 0 to (20 * 

overloadVoltage).  Our first decision we make is to keep the output at least 10% below 

the overloadVoltage safety threshold level.  This will leave a small margin of error in our 

attenuation to first account for the slight time delay between the time the audio signal is 

input into the device until our device has calculated the necessary attenuation and has  
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dB dB in V/V Potentiometer 

resistance (in 

Ohms) 

Overall 

Attenuation 

Circuit gain 

(V/V) 

Overall 

Attenuation 

Circuit gain 

(dB) 

SPI 

Command  

sent to 

Potentiometer  

-          -90 3.16228E-05 0.313065488 2.54174E-04 -71.89736676 10011111 

-62 7.94328E-04 7.863849524 0.006344658 -43.95183576 00011111 

-60 0.001 9.9 0.007974009 -41.96646563 00011110 

-58 0.001258925 12.46336158 0.010017459 -39.98484857 00011101 

-56 0.001584893 15.69044261 0.012577757 -38.00793614 00011100 

-54 0.001995262 19.75309692 0.015781718 -36.03691468 00011011 

-52 0.002511886 24.86767567 0.019785044 -34.07325957 00011010 

-50 0.003162278 31.30654884 0.024777644 -32.11879988 00011001 

-48 0.003981072 39.41260988 0.030989194 -30.1757943 00011000 

-46 0.005011872 49.61753613 0.038694486 -28.24701832 00010111 

-44 0.006309573 62.4647771 0.048217748 -26.3358615 00010110 

-42 0.007943282 78.63849524 0.059934712 -24.4464316 00010101 

-40 0.01 99 0.074270619 -22.58365911 00010100 

-38 0.012589254 124.6336158 0.091691784 -20.75339154 00010011 

-36 0.015848932 156.9044261 0.112687809 -18.96246128 00010010 

-34 0.019952623 197.5309692 0.137741483 -17.21870491 00010001 

-32 0.025118864 248.6767567 0.167284115 -15.53090594 00010000 

-30 0.031622777 313.0654884 0.201636184 -13.9086306 00001111 

-28 0.039810717 394.1260988 0.240937014 -12.36192953 00001110 

-26 0.050118723 496.1753613 0.285072579 -10.9008911 00001101 

-24 0.063095734 624.647771 0.333616218 -9.535056912 00001100 

-22 0.079432823 786.3849524 0.385800493 -8.272744426 00001011 

-20 0.1 990 0.440536686 -7.12035839 00001010 

-18 0.125892541 1246.336158 0.496489492 -6.081798781 00001001 

-16 0.158489319 1569.044261 0.552199867 -5.158074045 00001000 

-14 0.199526231 1975.309692 0.606233744 -4.347197873 00000111 

-12 0.251188643 2486.767567 0.657325434 -3.64439126 00000110 

-10 0.316227766 3130.654884 0.70448641 -3.042547604 00000101 

-8 0.398107171 3941.260988 0.747061825 -2.532869108 00000100 

-6 0.501187234 4961.753613 0.784732911 -2.105562662 00000011 

-4 0.630957344 6246.47771 0.817476546 -1.750493971 00000010 

-2 0.794328235 7863.849524 0.845499799 -1.45772983 00000001 

0 1 9900 0.869166975 -1.217935669 00000000 

Table 2: Potentiometer settings and attenuation statistics 
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implemented that attenuation.  For 

instance, if we detect a significant 

jump in the signal level, if that 

signal was in fact a crescendoing 

signal (increasing steadily in 

volume), by the time our device 

begins to attenuate that signal the 

signal will be even higher than we 

anticipated.  Under this 10% safety net system, that signal would have room to still be 

higher than we expected and be attenuated to a safe level.  The other possible discrepancy 

this allows us to compensate for is the existence of peaks in the system that are either 

undetected by our ADC sampling or are overlooked by our calculation of the ADC 

statistic we decide to base our attenuation on.  The possibility of our system not detecting 

a peak in the system is very unlikely, since based on a 8 MHz internal clock rate of the 

Atmega 32 microprocessor, our use of a division of 64 in the initialization of our ADC 

conversion (see avr32_adc.h file in our code in the Appendix), and the 8 clock cycles that 

is typically required to carry out each analog to digital conversion, that gives us a sample 

rate of about 15.625 kHz.  If we consider that the human range of hearing can only detect 

tones up to 20 kHz and that 4.186 kHz is the highest frequency of a standard piano, we 

can state with a reasonable amount of confidence that our system should be able to detect 

nearly all the spikes within the human range of hearing.  We should also near in mind that 

when we talk about “spikes” we are implying that these high amplitude signals are very 

short-lived and will likely not cause any damage to the speakers, for if they are of a 

Figure 15: General input vs. output trend of 

attenuation circuit throughout the range of operation 
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Figure 16: Input vs. output trend of attenuation 

circuit, low range only 

longer and more threatening duration, our system should be fully capable of detecting 

them and setting the attenuation accordingly.  As for a discrepancy between the statistic 

values we choose from our ADC sampling sets, as briefly mentioned in section 4.2 (and 

as shown in our code in the ADCAveragingandLCDFunctionsBethany.h header file) 

under most circumstances we base all of our attenuation off of the incoming voltage’s 

peak value from the set of ADC samples we have taken.  However, we must take into 

account that sometimes we may measure a very short-lived and therefore essentially 

harmless spike to our system.  In that case we have decided that it would be more 

appropriate to use the average value of the incoming ADC sample data in order to get a 

better characterization of what the incoming signal is like without consideration of the 

spike.  Therefore, our selection criteria becomes: 1) calculate both the peak and the 

average of the incoming voltage signal 2) use the peak as the determining ADC statistic 

to characterize that data unless that peak is greater than 3.5 times the average value 3) if 

the peak is in fact greater than 3.5 times the average value, use the average value as the 

statistic instead. 

 Now that we have 

justified our use of imposing 

a (0.9*overloadVoltage) 

limit on our output signals, 

we then are left with simply 

calculating the definitions 

between where one attenuation 

level (potentiometer wiper position) stops and another starts based on when the output 



42 

signal approaches that limit while using the first attenuation bracket.  Such transitions can 

be seen clearly in Figure 16.   

          As the signal approaches the (0.9*overloadVoltage) output line, the signal shows a 

sharp drop, signifying a change in the potentiometer’s wiper position.  Note, however, 

that even though these drops appear to be abrupt and of a significant size, from figure 17 

it can be seen that these drops between attenuation levels are well less than 1 dB in 

magnitude for reasonable levels of signal input magnitude.  This graph does alert us to 

the fact that as the input levels, and thus attenuation levels, increase this drop becomes 

larger and thus more in danger of being heard.  As mentioned earlier, the just noticeable 

difference (JND) of a change in volume that a human ear can detect is 1 dB (this was how 

the system of decibels was created: to define a unit that corresponded to the capacities of 

human hearing), so any change in signal attenuation levels would not be perceived until 

the input voltage reached the value corresponding to (1.8*overloadVoltage).  Under 

normal operation, though there may be a few peaks in this region and slightly beyond, a 

majority of the time the signal will likely stay below this level and thus the wiper level 

changes should not lead to an abrupt drop in signal level.  The other consideration was 

determining at what level we should begin our attenuation in order to produce a smooth 

transition up towards the safety limit.  The trade-off here was that if we started the 

attenuation too early, then we would unnecessarily shrink the dynamic range of the audio 

signal with excessive attenuation even before it approached dangerous levels, but if we 

waited too long before attenuating, we would have an abrupt drop in signal level once it 

reached its overloadVoltage limit that would likely be distracting to the listener.  We 

sought a compromise between these two extremes and decided that attenuation beginning 



43 

Figure 17: Circuit Attenuation in dB for a Low 

Range of Input Signals 

at (0.8*overloadVoltage) would be adequate for our purposes and the smoothness of our 

attenuation and the signal’s dynamic 

integrity can be seen best from figure 

16. 

 Once we had our signal 

attenuation levels defined, there was 

one more issue to consider in order to 

smooth out the general purpose 

operation of our device.  Once we had assigned a specific potentiometer wiper position 

command to each appropriate range of inputs, all we had was code that essentially said: 

“Given this level of input, move potentiometer wiper to this position.”  What we failed to 

take into account, however, was the possibility that the wiper would sometimes need to 

jump over a significant number of attenuation positions to adjust for a changing input 

value.  For example, if a signal had been at a level corresponding to 

(0.7*overloadVoltage), which would put it in attenuation bracket number 0 (see 

digpotControlFinalBethany.h header file in code in the Appendix for attenuation bracket 

numerical definitions) and lead to a positioning of the wiper at its 0 dB position, but then 

abruptly jumped up to a level of (1.35*overloadVoltage), corresponding to a wiper in the 

-12 dB position, under the current “direct command” method we would command the 

wiper to make the leap between these two positions instantaneously.  This abrupt and 

dramatic change in wiper levels would cause an abrupt and unnatural drop in sound 

presented to the listener that would likely be very distracting and would take away from 

the aesthetic sound of the music.  In order to make up for this, we altered our code to step 
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through each wiper position of the potentiometer between the previous wiper position and 

the position the wiper is currently being commanded to go to, pausing for a very short 

amount of time at each position to allow the gradual smoothing of the attenuation have 

audible results.  Originally, this stepping code only allowed the wiper to step through 1-3 

additional positions, depending on how far away the previous wiper position was in 

relation to the position being currently commanded.  However, this was determined to be 

both inefficient in both the bulkiness of the code and in its ability to produce a genuinely 

smooth transition between positions, since stepping through one extra position is no 

where near as smooth as a transition as is stepping through all possible wiper positions 

between the origin and destination positions.  Our final code to implement this feature 

was an implementation of two if loops, each containing a for loop to cycle through all the 

potentiometer positions (see the calculateAttenuationBracket function within the 

digpotControlFinalBethany.h header file in code in the Appendix for full implementation 

details). The introduction of this feature into our code was crucial to maintaining the 

aesthetic integrity of the sound we are processing. 

NOTE: In our final code, some unexpected practical considerations had to be 

accounted for based on the results of some of the final phases of the testing our 

device, causing some major changes to the overall nature of our system’s 

functionality. See section 4.4 for updates to the attenuation algorithms and the 

function of the aforementioned attenuation bracket calculations. 
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CHAPTER 7: PROJECT LOGISTICS 

7.1 User Manual 

 Operation of our device is simple and nearly self-explanatory. The left most jack 

receives the power amplifier's high voltage signal.  This signal is captured using the red 

cable that came with our device.  The cable splits the output of the power amplifier. One 

end goes to  the speaker, and the other goes to this left most high signal jack.  The middle 

jack receives the small signal output of the your  instrument. The right most jack is the 

output into your power amplifier.  Once the device has been properly connected, the user 

first powers on their amplifier and speaker with the amplifier gain knob at a modestly low 

setting (since the user has not entered the correct parameters for their speaker at this point 

and proper attenuation to ensure speaker safety is therefore not yet operational) and 

power on our device’s power supply by flipping the black power switch at the rear of the 

device.  Next, the user dials in the speaker impedance and power rating as given by the 

speaker manufacturer’s specifications.  The impedance is to be dialed in on the knob on 

the left and has settings of 2, 4, or 8 Ohms; the values increase with a clockwise turn of 

the knob and the current value set can be seen on the LCD screen display as it is changed.  

The power rating is to be dialed in using the knob on the right and has settings of 50 

Watts to 800 Watts with the current power rating also being displayed on the LCD 

screen.  Once these two values have been dialed into the system, the amplifier’s gain can 

be changed by the user at will and our system will protect the speaker from being 

damaged.  Also displayed on the LCD screen is the “overloadVoltage” value of the safety 

threshold corresponding to the user specified speaker ratings and the amount of 

attenuation currently affect on the device.  Once the use of the amplifier and speaker is no 
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Table 3: Division of Labor 

longer needed, cut off the power to the speaker and amplifier first before cutting off 

power to our device (by flipping the black power switch again at the rear of the device) to 

ensure that speaker safety is maintained for the entire duration of speaker operation. 

 

7.2 Separation of Work 

Bethany 

 

Paul 

 

Processor breakout 

 

Processor breakout 

 

Atmel coding design 

 

Design of PCB 

 

uP code testing 

 

Hardware testing 

 

UI coding and testing 

 

Power sensing testing 

 

Final board population 

 

Final board population 

 

Test/debug 

 

Test/debug 

 

 

 

In general, Bethany was in charge of the software of our device and Paul was in 

charge of the hardware of our device.  In addition to designing the attenuation scheme we 
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Table 4: Bill of Materials 

intended to use in our limiting algorithms, writing the software code, debugging the code, 

and testing the code’s functionality with various hardware components at different stages 

during the design process, Bethany was also the main contributor towards composing and 

doing research for the final report and she designed and constructed the poster for the 

final demonstration in the NEB rotunda.  In addition to deciding what exact functionality 

was needed in hardware in order to implement our design, designing both the attenuation 

and step-down circuits for our system, designing and populating the PCBs, and 

debugging the hardware during both the breadboard and PCB stages, Paul also was 

responsible for the “finishing touch” work on our hardware in order to make it look 

professional for our last presentation in the NEB rotunda (including buying and soldering 

custom plugs for our device’s external wirings, adding LED lights to show audio output, 

changing out the LCD screen, cleaning up any wire-wrappings, etc.). 

 

7.3 Bill of Materials 

Product Quantity 

Price Per 

Unit Total 

Aluminum Face 1 $12.45  $12.45  

1/4' Mono Input Jacks 3 $4.34  $13.02  

Red LEDs 21 $0.95  $19.95  

LCD screen 4x20 Winstar 1 $18.97  $18.97  

Power Supply +12/-12/+5 1 $0.00  $0.00  

19' Rackmount Casing 1 $0.00  $0.00  

Electrolytic Capacitors 20 $0.20  $4.00  
Operational Amplifiers 

TLC2272 5 $0.13  $0.65  

THAT electronics 12 $1.56  $18.72  

PCB standoffs 3 $4.56  $13.68  

Atmel Atmega32 1 $0.00  $0.00  

Toggles 2 $0.00  $0.00  
Digital Potentiometer 

MAX5411 3 $0.00  $0.00  

  Total: $101.44  
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Table 5: Gantt Chart 

 

7.4 Gantt Chart 
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//********************************************************************** 
// File Name : 'Bethany4-10.c' 
//********************************************************************** 
#include <avr/io.h> 
//#include <avr/interrupt.h> 
#include "util/delay.h" 
//#include "spi.h" 
#include <math.h> 
#include "adcAveragingAndLCDfunctionsBethany.h" 
#include "digpotControlFinalBethany.h" 
#include <stdio.h> 
 
#define SPI_PORT PORTB 
#define SPI_DDR DDRB 
#define DD_MISO 6 
#define DD_MOSI 5 
#define DD_SCK 7 
#define DD_SS 4 
#define POT_CS 1 
#define LED 0 
 
 
 
int main(void) 
{ 
DDRC = 0x00; 
SPI_PORT |= 0x01; 
delay_ms(10); 
 
int speakerImpedence; 
int speakerPowerRating; 
int overloadVoltage; 
int previousBracketNumber = 0;   //initially no attenuation 
unsigned int adcStatistic; 
 
LCD_INIT();      //initialize the LCD screen 
SPI_MasterInit();     //initialize SPI communication 
SPI_MasterTransmit(0xFF);     //analog power up 
SPI_MasterTransmit(0b10111111);    //enable zero-crossing detection 
 
while(1) 
{ 
//take in user impedence 
if( (PORTC | (0b11110000)) == (0b11110001)) speakerImpedence = 2; 
if( (PORTC | (0b11110000)) == (0b11110010)) speakerImpedence = 4; 
if( (PORTC | (0b11110000)) == (0b11110100)) speakerImpedence = 8; 
 
//take in user’s speaker power rating 
if( (PORTC | (0b00001111)) == (0b00001111)) speakerPowerRating = 100; 
if( (PORTC | (0b00001111)) == (0b00011111)) speakerPowerRating = 200; 
if( (PORTC | (0b00001111)) == (0b00101111)) speakerPowerRating = 300; 
if( (PORTC | (0b00001111)) == (0b00111111)) speakerPowerRating = 400; 
if( (PORTC | (0b00001111)) == (0b01001111)) speakerPowerRating = 500; 
if( (PORTC | (0b00001111)) == (0b01011111)) speakerPowerRating = 600; 
if( (PORTC | (0b00001111)) == (0b01101111)) speakerPowerRating = 700; 
if( (PORTC | (0b00001111)) == (0b01111111)) speakerPowerRating = 800; 
if( (PORTC | (0b00001111)) == (0b10001111)) speakerPowerRating = 900; 
if( (PORTC | (0b00001111)) == (0b10011111)) speakerPowerRating = 1000; 
 
overloadVoltage = (sqrt(speakerImpedence*speakerPowerRating)*0.08*1023)/5; 

//calculate the overloadVoltage 
     //safety threshold 
adcStatistic = adcPeakOrAve(); 
previousBracketNumber = calculateAttenuationBracket(adcStatistic, overloadVoltage, 

previousBracketNumber); 
 //The above code goes through one cycle of adc converting a set of 
 //100 values, returning either its peak or its average, then using that 
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 //info along with the overloadVoltage and the old wiper position the command 
 //1) determines the destination attenuation bracket the wiper needs 

//to reach while defining each level as a ratio comparison of the adc reading 
 //to the overloadVoltage 2) determines how far away from that destination it 
 //is currently 3) goes through gradual steps to set the wiper to its new position 

//4) returns the new bracket number of the wiper's position so that it can be set  
//as the new previousBracketNumber in the main function 

 
displayADCPeakandAttenuation(adcStatistic, overloadVoltage, previousBracketNumber); 
 //update the display of the LCD screen to show the peak from the current set of 

//ADC data (a value between 0 and 1023), the overloadVoltage value calculated 
//from the user’s input data (on the 0 to 1023 range), and the attenuation level 
//of the digital potentiometer (from 0 dB and –90 dB) 

} 
return 0; 
} 

 

 
 
 
//********************************************************************** 
// File Name : ‘adcAveragingAndLCDfunctionsBethany.h’ 
//********************************************************************** 
#include <avr/io.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "LCD.h" 
#include "avr32_adc.h" 
 
 
unsigned int adcPeakOrAve() 
{ 
ADC_INIT();       // Initialize ADC 
 
unsigned int adc_val[100]; 
unsigned int adcSum=0; 
unsigned int adcPeak =0; 
 for(int i = 0 ; i < 100 ; i++) 
 { 
 adc_val[i] = ADC_START(0);   //set current adc value at channel 4 

//to value in int 
 adcSum = adcSum + adc_val[i];   //keep tally of adcSum for this set 

//of 100 adc conversions 
  if(adc_val[i] > adcPeak) 
  { 
  adcPeak = adc_val[i];   //if new high value, set that as peak 
  } 
  _delay_ms(10); 
       //this is the wait time between 

//samples (plus the 8 
//clock cycles or so it takes between 
//each ad conversion as occurs 

 //in the ADC_START function 
 } 
return adcPeak; 
} 
 
 
 
 
 
void displayADCPeakandAttenuation(int adcPeak, int overloadVoltage, int 

previousBracketNumber) 
{ 
 char adcPeak_string[20]; 
 char previousBracketNumber_string[20]; 
 char overloadVoltage_string[20]; 
 
 sprintf(adcPeak_string,"%d",adcPeak); // Convert ADC int value to ASCII string 
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 sprintf(previousBracketNumber_string,"%d", (previousBracketNumber*2)); 

// Convert ADC binary value to ASCII string 
 sprintf(overloadVoltage_string,"%d", (overloadVoltage)); 

// Convert overloadVoltage binary value to ASCII string 
 LCD_COMMAND(LCD_CLEAR_HOME); 

// Clear the LCD and send cursor to the beginning 
  LCD_STRING("ADC: ");   // Print text to LCD 
  LCD_STRING(adcPeak_string);  // Print ASCII adc value 
  LCD_STRING(" OV: ");   // Print text to LCD 
  LCD_STRING(overloadVoltage_string); // Print ASCII overloadVoltage value 
  LCD_ADDR(0x40);   // Move cursor to second line 
  LCD_STRING("Attenuation: -"); 
  LCD_STRING(previousBracketNumber_string); 
  LCD_STRING("dB"); 
  _delay_ms(30);   // Pause for 100ms before looping again 
} 
 
 
 
 
 
 
//********************************************************************** 
// File Name : ‘avr32_adc.h’ 
//********************************************************************** 
 
 
void ADC_INIT(void) 
{ 
 ADMUX = 0b00000000; 
 ADCSRA = 0b10000110;   // ADC clock prescalar of 64 
} 
 
 
 
int ADC_START(unsigned char channel) 
{ 
 ADMUX = channel; 
 ADCSRA |= (1 << ADSC);  // Start conversion 
 while(ADCSRA & (1 << ADSC)); // wait for conversion to complete 
 return ADC; 
} 
 
 
 
 
 
 
//********************************************************************** 
// File Name : ‘digpotcontrolfinalbethany.h’ 
//********************************************************************** 
 
 
#include <avr/io.h> 
#include "util/delay.h" 
#include "math.h" 
#define SPI_PORT PORTB 
#define SPI_DDR DDRB 
#define DD_MISO 6 
#define DD_MOSI 5 
#define DD_SCK 7 
#define DD_SS 4 
#define POT_CS 1 
#define LED 0 
#define Bitset(port,pin) port|=(1<<pin) 
#define Bitclr(port,pin) port&=~(1<<pin) 
 
 
 
void SPI_MasterInit(void) 
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 { 
 /* Set MOSI and SCK output, all others input */ 
 SPI_DDR = (1<<DD_MOSI)|(1<<DD_SCK)|(1<<DD_SS)|(1<<POT_CS)|(1<<LED); 
 /* Enable SPI, Master, set clock rate fck/16 */ 
 SPCR=(1<<SPE)|(1<<MSTR)|(1<<SPR0); 
 Bitset(SPI_PORT, 4); 
 } 
 
 
//______________________________________________________________________________________ 
 
 
void SPI_MasterTransmit(unsigned char cData) 
 { 
 /* Set SS low */ 
 Bitclr(SPI_PORT,1); 
 /* Start transmission */ 
 SPDR = cData; 
 /* Wait for transmission complete */ 
 _delay_ms(100); 
 /* Set SS high */ 
 Bitset(SPI_PORT,1); 
 _delay_ms(10); 
 } 
 
 
 
//_______________________________________________________________________________________ 
 
 
 
int calculateAttenuationBracket(int currentVoltage, int overloadVoltage, int 
previousBracketNumber) 
{ 
int currentBracketNumber; 
//setting up the attenuation bracket definitions 
 if(currentVoltage < (0.9*overloadVoltage))  
  { 
  currentBracketNumber = 0; 
  } 
 else if(currentVoltage < (1.0*overloadVoltage)) 
  { 
  currentBracketNumber = 1; 
  } 
 else if(currentVoltage < (1.1*overloadVoltage)) 
  { 
  currentBracketNumber = 2; 
  } 
 else if(currentVoltage < (1.2*overloadVoltage)) 
  { 
  currentBracketNumber = 3; 
  } 
 else if(currentVoltage < (1.3*overloadVoltage)) 
  { 
  currentBracketNumber = 4; 
  } 
 else if(currentVoltage < (1.4*overloadVoltage)) 
  { 
  currentBracketNumber = 5; 
  } 
 else if(currentVoltage < (1.5*overloadVoltage)) 
  { 
  currentBracketNumber = 6; 
  } 
 else if(currentVoltage < (1.6*overloadVoltage)) 
  { 
  currentBracketNumber = 7; 
  } 
 else if(currentVoltage < (1.7*overloadVoltage)) 
  { 
  currentBracketNumber = 8; 
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  } 
 else if(currentVoltage < (1.8*overloadVoltage)) 
  { 
  currentBracketNumber = 9; 
  } 
 else if(currentVoltage < (2*overloadVoltage)) 
  { 
  currentBracketNumber = 10; 
  } 
 else if(currentVoltage < (2.3*overloadVoltage)) 
  { 
  currentBracketNumber = 11; 
  } 
 else if(currentVoltage < (2.7*overloadVoltage)) 
  { 
  currentBracketNumber = 12; 
  } 
 else if(currentVoltage < (3.2*overloadVoltage)) 
  { 
  currentBracketNumber = 13; 
  } 
 else if(currentVoltage < (3.7*overloadVoltage)) 
  { 
  currentBracketNumber = 14; 
  } 
 else if(currentVoltage < (4.5*overloadVoltage)) 
  { 
  currentBracketNumber = 15; 
  } 
 else if(currentVoltage < (5.4*overloadVoltage)) 
  { 
  currentBracketNumber = 16; 
  } 
 else if(currentVoltage < (6.6*overloadVoltage)) 
  { 
  currentBracketNumber = 17; 
  } 
 else if(currentVoltage < (8*overloadVoltage)) 
  { 
  currentBracketNumber = 18; 
  } 
 else if(currentVoltage < (9.9*overloadVoltage)) 
  { 
  currentBracketNumber = 19; 
  } 
 else if(currentVoltage < (12.2*overloadVoltage)) 
  { 
  currentBracketNumber = 20; 
  } 
 else if(currentVoltage < (15.1*overloadVoltage)) 
  { 
  currentBracketNumber = 21; 
  } 
 else if(currentVoltage < (18.8*overloadVoltage)) 
  { 
  currentBracketNumber = 22; 
  } 
 else if(currentVoltage < (20*overloadVoltage)) 
  { 
  currentBracketNumber = 23; 
  } 
 else if(currentVoltage < (22.5*overloadVoltage)) 
  { 
  currentBracketNumber = 24; 
  } 
 else if(currentVoltage < (25*overloadVoltage)) 
  { 
  currentBracketNumber = 25; 
  } 
 else if(currentVoltage >= (25*overloadVoltage)) 
  { 
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  currentBracketNumber = 26; 
  } 
 
 
 
 
 
 if(previousBracketNumber == currentBracketNumber)    
 { 
 SPI_MasterTransmit(potCommandValue(currentBracketNumber)); 
 } 
 
 
 
  else if(previousBracketNumber > currentBracketNumber)//too soft 
 { 
  SPI_MasterTransmit(potCommandValue(previousBracketNumber-1)); 
  currentBracketNumber = previousBracketNumber-1; 
 } 
 
 
 
  else if(previousBracketNumber < currentBracketNumber)//too loud 
 { 
  
  SPI_MasterTransmit(potCommandValue(previousBracketNumber+1)); 
  currentBracketNumber = previousBracketNumber+1; 
 } 
 
 
 
 
 
 
displayADCPeakandAttenuation(currentVoltage, overloadVoltage, currentBracketNumber); 
 
 return currentBracketNumber; 
 
 } 
 
 
 
 
 
 
 
//_______________________________________________________________________________________ 
 
 
 
 
 
int bracketNumber(int PotCommand) 
{ 
 if(PotCommand == 0b00000000) return 0; 
 else if(PotCommand == 0b00000001) return 1; 
 else if(PotCommand == 0b00000010) return 2; 
 else if(PotCommand == 0b00000011) return 3; 
 else if(PotCommand == 0b00000100) return 4; 
 else if(PotCommand == 0b00000101) return 5; 
 else if(PotCommand == 0b00000110) return 6; 
 else if(PotCommand == 0b00000111) return 7; 
 else if(PotCommand == 0b00001000) return 8; 
 else if(PotCommand == 0b00001001) return 9; 
 else if(PotCommand == 0b00001010) return 10; 
 else if(PotCommand == 0b00001011) return 11; 
 else if(PotCommand == 0b00001100) return 12; 
 else if(PotCommand == 0b00001101) return 13; 
 else if(PotCommand == 0b00001110) return 14; 
 else if(PotCommand == 0b00001111) return 15; 
 else if(PotCommand == 0b00010000) return 16; 
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 else if(PotCommand == 0b00010001) return 17; 
 else if(PotCommand == 0b00010010) return 18; 
 else if(PotCommand == 0b00010011) return 19; 
 else if(PotCommand == 0b00010100) return 20; 
 else if(PotCommand == 0b00010101) return 21; 
 else if(PotCommand == 0b00010110) return 22; 
 else if(PotCommand == 0b00010111) return 23; 
 else if(PotCommand == 0b00011001) return 24; 
 else if(PotCommand == 0b00011111) return 25; 
 else if(PotCommand == 0b10011111) return 26; 
} 
 
 
 
 
 
 
 
//______________________________________________________________________________________ 
 
 
 
 
 
 
 
int potCommandValue(int bracketNumber) 
{ 
 if(bracketNumber == 0) return 0b00000000; 
 else if(bracketNumber == 1) return 0b00000001; 
 else if(bracketNumber == 2) return 0b00000010; 
 else if(bracketNumber == 3) return 0b00000011; 
 else if(bracketNumber == 4) return 0b00000100; 
 else if(bracketNumber == 5) return 0b00000101; 
 else if(bracketNumber == 6) return 0b00000110; 
 else if(bracketNumber == 7) return 0b00000111; 
 else if(bracketNumber == 8) return 0b00001000; 
 else if(bracketNumber == 9) return 0b00001001; 
 else if(bracketNumber == 10) return 0b00001010; 
 else if(bracketNumber == 11) return 0b00001011; 
 else if(bracketNumber == 12) return 0b00001100; 
 else if(bracketNumber == 13) return 0b00001101; 
 else if(bracketNumber == 14) return 0b00001110; 
 else if(bracketNumber == 15) return 0b00001111; 
 else if(bracketNumber == 16) return 0b00010000; 
 else if(bracketNumber == 17) return 0b00010001; 
 else if(bracketNumber == 18) return 0b00010010; 
 else if(bracketNumber == 19) return 0b00010011; 
 else if(bracketNumber == 20) return 0b00010100; 
 else if(bracketNumber == 21) return 0b00010101; 
 else if(bracketNumber == 22) return 0b00010110; 
 else if(bracketNumber == 23) return 0b00010111; 
 else if(bracketNumber == 24) return 0b00011001; 
 else if(bracketNumber == 25) return 0b00011111; 
 else if(bracketNumber == 26) return 0b10011111; 
} 
 
 
 
 


