
i

AUDIO SPEAKER PROTECTION FROM

UNSAFE LEVELS OF AMPLIFIER GAIN

USING SMOOTH LIMITING ALGORITHMS

AND FEEDBACK CONTROL

Bethany M. Moatts and Paul D. Muri

Bachelor of Science in Electrical Engineering

Spring 2009

ABSTRACT

The device we have designed and built is an audio limiting device to

automatically calculate how much limiting of the small signal is needed to protect a

specific speaker cabinet. The user of the device inputs their speaker impedance and

speaker power rating. The audio amplifier's output then can be fed back to the limiter

where the limiter can detect when the power amplifier’s output wattage surpasses the

power the speaker can take. The limiter can then lower the sound level of the audio signal

using an algorithm to perform smooth attenuation in order to maintain the aesthetic

quality of the audio signal.

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

 A Note About Speaker Damage

 A Note About Power Ratings and Distortion

LIST OF TABLES

LIST OF FIGURES

KEY TO ABBREVIATIONS

CHAPTER 1: PROJECT FEATURES AND OBJECTIVES

CHAPTER 2: ANALYSIS OF COMPETITIVE PRODUCTS

 2.1 General Approaches

 2.2 Specific Examples

CHAPTER 3: CONCEPT/TECHNOLOGY SELECTION

3.1 The Attenuator and Analog vs. Digital Considerations

 3.2 The “Brain”

3.3 Digital Potentiometer Model Selection

 3.4 Feedback Signal Incorporation

 3.5 A Temporary Sidetrack

CHAPTER 4: PROJECT ARCHITECTURE

 4.1 From Input to Amplifier

4.2 Inside the Microcontroller: Analog to Digital Conversion

i

ii

ii

ii

viii

viii

iv

1

3

3

4

7

7

9

9

11

12

15

15

16

4.3 Inside the Microcontroller: Attenuation Determination and

Implementation

4.4 Practical Readjustments

4.5 The Analog Attenuation

CHAPTER 5: HARDWARE

 5.1 The Digital PCB

 5.2 The Analog PCB

CHAPTER 6: SOFTWARE

6.1 SPI Communication

6.2 Trial and Error, Lessons Learned

6.3 Attenuation Bracket Considerations

CHAPTER 7: PROJECT LOGISTICS

 7.1 User Manual

 7.2 Separation of Work

 7.3 Bill of Materials

 7.4 Gantt Chart

BIBLIOGRAPHY

APPENDIX: ADDITIONAL PROJECT MATERIAL

18

20

24

25

25

27

29

29

31

35

45

45

46

47

48

49

50

ii

INTRODUCTION

 The ever-expanding realm of technology and electronics is conquering every field

imaginable in this day and the field of music and sound reproduction in general is no

exception. Unfortunately, with the wide range of functions required of electronics in

order to manipulate the sound in the desired fashion, there has developed a need to

incorporate many different individual devices into a single signal chain from input to

output. In most circumstances, the last component accounting for the audible

reproduction of the manipulated sound is the speaker. As with all electronic devices,

however, there are limits on the operating levels of the speaker that determine its safe

operating levels. These limits cause a problem when we consider that the other

components that have manipulated the audio signal up until this point are independent of

the speaker and thus unaware of these safety requirements. The goal of our device is not

only to incorporate a limiting device into a signal chain that would account for these

safety limitations of the speaker in the presence of an amplifier, but to do so in a manner

that would maintain the continuity of the volume’s dynamics in an aesthetically pleasing,

non-distracting manner.

A Note About Speaker Damage:

 With the purpose of our device being to protect speakers, we must first understand

what damages speakers in the first place. When we think of damage to a physical device,

we first consider the mechanically active parts of the device and how the behavior of

these parts could be put in danger. For the speaker’s case, these mechanical

iii

Figure 1: Speaker components

Source: http://p-hardware.blogspot.com/

2008/04/speaker.html

parts are located at the point of the transduction of electrical energy in the incoming

voltage signal to mechanical energy. Here,

the cone of the speaker and its suspension

(which is usually attached to the coil

containing the incoming electrical signal;

some designs allow for the permanent magnet

component to be attached to the cone instead,

as shown in figure 1) oscillate back and forth

in its production of the desired air

pressure variations in order to create the

necessary sound waves. The mechanical

motion of this cone is directly related to the oscillating voltage level entering the speaker.

This means that the higher the peak voltage of the incoming signal, the greater the spatial

displacement the speaker cone will have to undergo in order to achieve a corresponding

sound wave (a higher peak in voltage signal and mechanical oscillatory motion of the

cone results in a louder sound at the output of the speaker). However, as with any

mechanical component, the range of motion of this cone is only designed to oscillate with

amplitudes corresponding the power rating and impedance of the speaker. Any signal

that surpasses these limits puts uncharacteristic strain on the cone and the suspension

attaching the cone to the speaker mainframe due to the extreme accelerations, stretching,

and prolonged over-vibration etc. that it experiences under such conditions. To prevent

this type of damage we need to ensure a safe range of motion for the speaker cone. This

however does not necessarily entail always limiting any sharp intermittent spike

iv

encountered in the audio signal’s amplitude. If the duration of the spike is appropriately

short and the audio signal in the surrounding time window is well below dangerous

operating amplitudes, it is very likely the speaker cone would be able to withstand such a

spike. Most of the time one such over-excursion of the speaker cone will not cause the

damage, but prolonged over-excursions leading to the mechanical fatigue will eventually

result in failure of the mechanical parts, including ripping or tearing of the cone or its

suspension. Another thing to note is the different types of speakers that can be used and

which types are most prone to different types of speaker damage. In the case of a

mechanical failure, woofer and tweeters are the usual culprits. Woofers handle the low

frequency spectrum of the input and are oftentimes overdriven at loud parties, where a

loud bass sound is desired. Tweeters are oftentimes overdriven mechanically when they

are associated with an inadequate crossover system, since these speakers are very small,

fagile, and easily damaged. In our project we will have to find a delicate balance

between protecting the speaker from high-amplitude spikes that are mechanically

hazardous to the system while still leaving the sound levels unaffected if it is determined

that such a spike in sound will not likely be detrimental to the speaker.

 The other type of damage a speaker could encounter is heat damage. If the

speaker is producing a high volume of sound for an extended amount of time, the amount

of power being dissipated rises to very high levels, which causes the speaker to heat up to

extremely high temperatures and puts the speaker at risk for damage by overheating. At

these extremely high temperatures, either the voice coil adhesive can soften and cause the

voice coil to come apart, hence a mechanical failure on the part of the voice coil, or the

voice coil itself or the wires leading to the voice coil can literally melt, causing

v

oftentimes an open circuit in the wiring and thus an inability of the speakers to produce

sound of any kind. The system is not put at risk of heat damage at the occurrence of

sharp spikes of high amplitudes, but only at a continuously high level of sound being

producedand for a reasonably long amount of time. In our device design, our goal is to

protect the speaker from both mechanical and heat damage. Our protection algorithm

does not involve an integration of the power dissipated by the speaker over time,

however, which would be necessary for an absolute guarantee that an over-heating issue

would not occur. Since we are limiting the amplitude of the signal entering the speaker,

however, attenuating the signal appropriately based on both the speaker’s power rating

and impedance, we would expect that under normal operating conditions (where the

speaker is driven with normal music for a couple hours at a time), our device would offer

adequate protection from both mechanical and heat damage.

A Note About Power Ratings and Distortion:

 In our attenuation calculations, we must often incorporate the power ratings of

both the speaker, as input by the user, and the power rating of the amplifier we are using.

We must be aware, however, that even though these power ratings appear to be on the

same scale one another, they in fact are not. The power ratings of an amplifier is based

on the amount of power the amplifier is capable of dissipating with a sinusoidal,

monotone input into the system producing that power. This method of determining he

power rating is as straightforward as the power rating on a light bulb, where the power a

light bulb can dissipate is based on a steady ac power input from a wall socket. The

speaker’s power rating, however, is rated much differently. Since we would almost never

vi

expect to be using a speaker to output a sound that stays at a single frequency, these

speakers are in stead based on typical trends found in music waveforms, where there are

constantly varying amplitudes and frequencies of sound and where, more importantly,

even if the signal may have an instantaneous power dissipation at a high value, this is

usually followed by a period of much lower values, which essentially allows the speaker

time to cool off. Because of this, an amplifier rated at a high level can oftentimes be used

to drive a speaker with a much lower power rating safely. For example, if we have a

speaker rated at 100 Watts, this speaker could not handle 100 Watts worth of a

continuous signal (such as a monotone sinusoid) into the system. However, an amplifier

rated at 400 Watts would be required to carry out the amplification of a music signal that

had instantaneous power peaks of up to 400 Watts. A given music signal with an average

power of 100 Watts would likely be constantly varying between say 50 and 400 Watts of

power, and thus would require an amplifier of at least 400 Watts of power rating to

amplify this signal without clipping. Since we know that the speaker is rated based on

the varying power changes in music, then, we could conclude that a 100-Watt speaker

would be able to safely run the signal, even though it is driven with an amplifier rated at

400 Watts and with a music signal containing 400-Watt peaks.

 We should be aware that the previous example is dependent on the amplifier

operating without distortion, that is, without the clipping of the signal peaks. When the

input is clipped by the amplifier, the transistors saturate and automatically temporarily

output their maximum supply DC voltage of the system to produce the square-like

waveforms characteristic of clipping. When this happens, the speakers are more prone to

over-heating damage than they would be if that signal would have been unclipped and

vii

reached its full amplitude peak. For this reason, it is often said that some speaker damage

can actually be avoided by using a higher rated amplifier, since it would avoid this

distorting clipping from occurring.

 In our project, since we are not detecting if a peak value observed was from a

clipped signal or an unclipped signal, in order to avoid an increased risk of heat damage

due to clipping, we would need to assume that the amplifier is operating in a non-

distorting range. However, since we are taking the power rating of the amplifier into

account in our calculations, this should allow our device to prevent the amplifier from

reaching the range where it would begin such distortion. Therefore, our signal not only

functions to protect our speakers from being damaged, but also to prevent distortion in its

signal output.

viii

LIST OF TABLES

Table 1: overloadVoltage Calculations given all possible user input combinations..........19

Table 2: Potentiometer settings and attenuation statistics..39

Table 3: Division of labor...46

Table 4: Bill of materials..47

Table 5: Gantt Chart..48

LIST OF FIGURES

Figure 1: Speaker components...iii

Figure 2: Feedback control..1

Figure 3: Predictive limiter...3

Figure 4: Example of feedback limiting...5

Figure 5: THAT 4301 Analog Engine12

Figure 6: High level system diagram...15

Figure 7: Software architecture..17

Figure 8: Revised software flowchart..........................23

Figure 9: Digital PCB..........................25

Figure 10: Attenuation of a cosine signal.........................25

Figure 11: Analog schematic..........................27

Figure 12: ADC step-down vs. high-voltage cosine and high-voltage music...................28

Figure 13: Full-wave rectification, diode in series, low pass filter....................................28

Figure 14: SPI communication wiring..........................29

Figure 15: General input vs. output trend of attenuation circuit throughout the range of

operation...40

Figure 16: Input vs. output trend of attenuation circuit, low range only...........................41

Figure 17: Circuit Attenuation in dB for a Low Range of Input Signals...........................43

iv

KEY TO ABBREVIATIONS

ADC – analog to digital conversion: a general signal conversion method; also a register

defined on the Atmega 32 microprocessor for carrying out such a conversion

CS – chip select; an input pin to the MAX 5411 digital potentiometer, active low

PCB - printed circuit board; copper platforms whereupon electronic circuits have been

etched. PCBs are rugged, inexpensive, and can be highly reliable. They require

much more layout effort and higher initial cost than either wire-wrapped or point-

to-point constructed circuits, but are much cheaper and faster for high-volume

production.

QSOP - Quarter-Size Small-Outline package; a chip package with pin spacing of 0.635

mm

SPI – serial peripheral interface; a synchronous serial data link standard of

communication involving a “master” talking to its “slave” over four wires called

master-in-slave-out (MISO), master-out-slave-in (MOSI), clock (CLK), and slave

select (SS)

SS – slave select; acts as a chip select for SPI communication slave enabling; a dedicated

pin on port B of the microprocessor, active low

1

CHAPTER 1

PROJECT FEATURES AND OBJECTIVES

The main distinguishing feature of our device compared to similar devices

currently on the market is our capability to accommodate a wide variety of speakers,

allowing the consumer to use any typical speaker sold commercially today. We

accomplish this by inserting user interfaces whereby the user can specify the impedance

and power specifications of the particular speaker, regardless of the speaker’s make or

model. The current industry standards for speaker impedance values are set at discrete

values of 2, 4, or 8 Ohms and the power consumption levels of a typical speaker ranges

between 50 and 1000 Watts. The user simply selects the levels of these parameters of

their speakers and our device automatically processes these inputs and recalibrates the

attenuation scheme of the limiting algorithms in order to allow for protection for a

speaker with these specified parameters.

Another benefit of our device is that it

employs feedback control, where the feedback

signal is taken directly from the output of the

amplifier, which is also the input signal fed

directly into the speakers (see figure 2). This

provides a greater safety guarantee over another

common design involving predictive control,

since we have direct access to the signal that is to

be seen by the speaker and are not merely trying

to predict this signal.

Figure 2: Feedback control

2

The final benefit of our device design is its attenuation scheme. Unlike other

products intended to protect speakers from unsafe levels of input, our product does not

simply disconnect our circuit once dangerous levels are experienced, thereby abruptly

muting the signal. Instead, our system employs gradual attenuation algorithms that are

continuously yet subtly limiting the system input. By beginning to slightly attenuate the

signal in the upper range of the safe levels of speaker operation, once the threshold of the

speaker’s capability is reached the limiting function of our device has already begun and

therefore moves seamlessly over this threshold.

3

Figure 3: Predictive limiter

Source: http://www.rane.com/note127.html

CHAPTER 2

ANALYSIS OF COMPETITIVE PRODUCTS

2.1 General Approaches

 Essentially, our device is simply a limiter programmed to accomplishing a

specific goal. There are many different kinds of limiters that would be physically capable

of performing the same signal attenuation as our device, but very few would be “smart”

enough to automatically and continuously adjust this attenuation towards the goal of

protecting a speaker of a specific speaker.

 Within the realm of limiters designed to protect speakers, there are in general two

different types: predictive limiters and negative feedback limiters. Predictive limiters are

convenient in that they are more portable in general than feedback limiters and aren’t

necessarily used as dedicated speaker protectors all the time. However, their drawbacks

far outweigh this slight benefit. As seen in figure 3 below, the predictive limiters merely

predict the output of the amplifiers that the speakers will be exposed to and do not have

any connection to the actual voltage the speakers are exposed to. As such, in order for

the limiter to adequately calculate the amplifier’s output from its input, the amplifier must

be held at a constant value. Once the amplifier’s gain has changed, the limiter must be

4

recalibrated or else the speaker is in danger of being over driven.

 Negative feedback limiting is the concept our design is based off of, though we

were not aware of the existence of this technology upon the conception of the idea for our

project. This type of limiting in regards to speaker protection has become more popular

than its predictive counterpart for its many benefits. In general, this limiting technique

can guarantee safer, more reliable limiting since it is receiving its feedback directly from

the signal line that is being directly fed into the speaker itself (see figure 4 in section 2.2).

Because of this, that signal information can be used directly without having to back

calculate the gain of the amplifier, hence the limiter does not require recalibration upon

each readjustment of amplifier gain. Also, in this set-up knowledge of the parameters

regarding the amplifier, such as impedance and power rating, does not have to be as exact

as it does for the predictive set-up. Since we are presented with the output of the

amplifier, the main parameters we are concerned with in this situation becomes the

parameters of the speakers, so that slight variations or discrepancies from ideal amplifier

parameters are not as crucial to the functionality of the limiting device in this case.

2.2 Specific Examples

United States Patent #41737401 is a device that uses feedback control in an

attempt to protect speakers from being overdriven, but instead of actually attenuating the

signal as it approaches dangerous levels this device simply “cuts off the supply voltage to

a power amplifier circuit in disconnecting a loudspeaker from the output terminal of the

power amplifier circuit when an overvoltage is developed at the output of the power

amplifier circuit.” Our device has a significant advantage over this approach to speaker

5

Figure 4: Example of feedback limiting

Source:

http://www.arx.com.au/pdf/old/LSP1manual.pdf

protection in that we allow the audio signal to continue to play uninterrupted even once

the input has reached unacceptable levels because of our limiting scheme.

 A low frequency loudspeaker

processor called the LSP-1 (see figure

4) is built with a high signal input line

to monitor exactly what the gain of the

power amplifier is. However, for every

different model of loud speakers

this device requires a PCB card.

The only pre-made cards available

are for a few different types of speakers manufactured by their own specific company. If

a user wanted to use this device for another speaker not manufactured by the Australian

company, they would have to submit a request for a custom card to be made in

accordance with their speaker type. With the introduction of user inputs of their speaker

specifications, our speaker processor allows the user full customization for this device to

work with any traditional loudspeaker model without the need of any kind of chip to be

custom made for the device to function properly.

 One speaker protection design that is currently on the market, called TruPower!

Limiting by the Meyer Sound Company, however, appears to be much more sophisticated

than our design, taking into account other details regarding speaker operations that our

design does not consider. However, we must first take into consideration that this design

is merely a technology that has been directly incorporated into a company’s speakers they

themselves manufacture. Since the design is literally embedded within the speaker

6

cabinet itself, there leaves no room for this device to be used on any speaker/amplifier

combination the user wishes and therefore does not offer the same freedom of speaker

choice to the user as our device does.

 TruPower! is literally designed to calculate the “true power” that is being

delivered to the speaker. For example, though in our device we assume that the

impedance of the speaker (as specified by the user as an input to our system) remains a

constant, this impedance actually varies slightly both over the frequency range of the

signal and over the operation time of the speaker as the speaker coils warm up and

experience a slight increase in impedance. The impedance increase in the speaker coils

causes a slight drop in the overall dynamic range of the speaker system over time and this

TruPower! technology seeks to correct this problem. On the opposite end of the

spectrum, the frequency dependency of the speaker impedance can cause the speaker

impedance to unknowingly decrease at certain frequencies and thus open the speaker up

to potential damage occurring at signal levels that under normal impedance would have

passed as harmless. Though this frequency vs. impedance relationship is likely hard to

determine directly, this technology seeks to prevent any speaker overload due to this

phenomenon by automatically attenuating the signal by a couple extra dB after a long

period of operation time to prevent overheating of the speaker.

7

CHAPTER 3

CONCEPT/TECHNOLOGY SELECTION

3.1 The Attenuator and Analog vs. Digital Considerations

We knew from the start that the three major functions that needed to be performed

by our device were the collection of user input and feedback loop data, the processing of

that data to form the appropriate attenuation algorithms, and, finally, the actual

performance of the attenuation on our input signal. We knew that in order to interpret

and process information regarding analog data, we would likely find it best to perform

our processing in digital form. Our initial idea was to first perform analog to digital

conversion from our feedback signal to determine the amount of attenuation needed, and

then to go back and attenuate a digitized form of the input signal by that amount before

sending the analog version of the newly attenuated input signal through the amplifier.

Under this design, we thought it would be best to use either a digital signal processor

(DSP) or a microprocessor to carry out the attenuation of the signal in its digital form.

However, the problem with using the microprocessor for this purpose was a fear of

severe distortion of the audio signal, as a microprocessor would likely not be able to

produce a high quality of sound once the signal had been converted from analog to digital

form and then back again. The option of using a DSP chip would be beneficial in that not

only is it commonly used in manipulating audio signals and reproducing a high quality of

sound, but also it would be capable of some very complex limiting algorithms and would

even give us the option of using frequency distinction in our attenuation scheme.

However, neither of us had very strong knowledge of digital signal processing nor any

practical experience in the use of a DSP chip. We were both enrolled in the Electrical

8

Engineering Department’s Introduction to Digital Signal Processing class at the time, but

feared we would not learn enough about the practical functionality of such a device in

order to successfully incorporate this into our project with only a month or two of

lessons.

Our next idea was to employ the use of a potentiometer to control the attenuation

of our input signal in its original analog form, avoiding the possible distortions and

complications of digitization. However, a traditional analog potentiometer would need to

be controlled by our system’s “brain” and the only way to control such a potentiometer is

by physically turning a knob. The only way to accomplish this with electrical signals

would be through control of a motor, which would involve adding another component to

our device that would make matters unnecessarily complicated. To circumvent the

problems presented us by the traditional analog potentiometer, we decided on using a

digital potentiometer that could be controlled directly by the “brain” of our system. The

digital potentiometer would contain physical wipers and resistors so that the attenuation

of our input signal should preserve the quality of our audio signal. The drawback to this

is that the digital potentiometer, unlike the analog potentiometer, has discrete positions

for the wiper to be located at, whereas the analog potentiometer’s wiper position can

continuously span between the high and low terminals of the potentiometer. The benefit

of being able to directly control the wiper’s position by the same device that will perform

the attenuation algorithm calculations and in a very accurate and precise manner,

however, was seen as a benefit well worth the loss of a continuous spectrum of

attenuation from our potentiometer, and thus the digital potentiometer was chosen over

its analog counterpart.

9

3.2 The “Brain”

We then needed to select a device that would act as the “brain” of our device.

This would need to first take in our user inputs and our feedback loop information; from

this it would not only determine the attenuation algorithms necessary to protect the

speaker in question but then send commands to perform that attenuation. Once we had

decided that using a digital potentiometer to perform the attenuation would be best, it was

an obvious choice to use a microprocessor for this purpose. Once this was decided, the

two main considerations for settling on a final device were the type of microcontroller to

use and what size of a microcontroller was needed. Our choice of an Atmel brand

microcontroller over a PIC (Peripheral Interface Controller) controller was made on the

basis of code familiarity. Bethany was in charge of the software programming of the

microprocessor, so she chose the c programming coding language of the Atmel controller

over the basic coding language of the PIC due to her experience with the related C++

programming language. Regarding size considerations, with our experience with the

Atmega 32 microcontroller and our general estimation of the number of pins and the

types on functions that would be needed (analog to digital conversion, communication

with the digital potentiometer, dedicated user inputs, and potential LCD output pins) we

decided that this device would be sufficient to meet the needs of our project.

3.3 Digital Potentiometer Model Selection

 To begin with, we had very little knowledge regarding not only the types and

different features of digital potentiometers but also regarding which of these features

10

would be most suitable and beneficial to our device. What we did know, however, was

that we were to be attenuating an audio signal and that detecting changes in audio signals

in our brains is calibrated in terms of a logarithmic, or decibel (dB), scale. Therefore, if

we were to use a linear-based digital potentiometer and were to start attenuating our

signal in linear correspondence with the increasing input signal, it would appear at first

that there was a huge decrease in the sound being produced by the speaker, and then as

further attenuation occurred as the signal got louder and louder there would seem to be

almost no attenuation occurring at all in the signal. We were able to circumvent this

problem fortunately by finding digital potentiometers designed specifically to deal with

audio signal attenuation with wiper positions at taps positioned along the resistor to allow

resistance changes to occur on a decibel scale instead of on a linear scale.

 Our initial approach was to order a wide variety of audio-tapered digital

potentiometers and to investigate which one we felt would be best suited for use in our

project. We ordered the following devices from the Maxim/Dallas Semiconductor

company: DS1801, DS1802, DS1808, DS1881, DS1882, MAX5411, and MAX5486 and

researched the features of each device. Our initial decision was to use the DS1881 model

that provided 63 wiper steps of 1 dB per step, a power supply range within the 5 V limit

of the microprocessor we were using, zero-crossing detection to eliminate the clicking

and popping sounds that tend to accompany wiper position changes in audio chains, and

an option to store wiper position information in an EEPROM upon power off. However,

we were forced to abandon using this potentiometer once we discovered that the

difficulty of using the Atmega 32 microprocessor for I2C (Inter-integrated Circuit)

11

communication far surpassed that of using the SPI (serial peripheral interface)

communication required for the MAX5411 potentiometer.

 The functionality for carrying out SPI communication was built right into the

hardware configurations of the Atmega 32 microprocessor as accessed by the dedicated

pins at port B. The Atmega processor already had registers set up in order to allow the

parameters of the SPI communication to be adjusted to suit the needs of the given SPI

communication application and some simple sample code was already presented in the

data sheet to initiate SPI communication and to begin sending information via SPI

communication. The only major drawback to using this new potentiometer model was

the fact that this model only allowed 32 wiper positions of 2 dB per step, which would

result in less resolution in our attenuation accuracy and a slight loss of smoothness as the

wiper transitions took place. It was determined that the ease in communication format

and microprocessor coding was well worth this slight sacrifice in attenuation quality.

3.4 Feedback Signal Incorporation

 Our next task was to find a way to tap into the signal coming out of the amplifier

and feed back a version of this signal into the microprocessor where it could easily and

safely be measured by the microprocessor in determining the attenuation algorithms

necessary. The main problem here was that once the small signal input was fed through

the amplifier, it was at voltage levels that were unsafe to be directly fed into the

microprocessor, which could only safely handle voltages roughly in the range of 0-5.5

Volts. Therefore, we needed to design a circuit that would step down the voltages from

the amplifier from their current values to lie within the 0-5.5 Volts range. We also

12

Figure 5: THAT 4301 Analog Engine

Source: http://www.ka-electronics.com/that4301/that4301.htm

needed to only submit positive voltage values to the microprocessor, so we decided to

add step down circuitry that probes the voltage output fed to the speaker. Since this

output is a 100-volt peak to peak swing an op-amp steps the voltage down by 1/10. Then

op-amp circuitry rectifies the negative voltages and then an active low pass filter

smoothes it out. This is explained further in the hardware section.

3.5 A Temporary Sidetrack

 Early on in our project’s development we encountered an alternate route that

seemed like another adequate way we could solve our problem of speaker protection.

The website for the THAT Corporation’s THAT 4301 Analog Engine (see figure 5)

included an application note on how this device could be used as a “Signal Limiter for

Power Amplifiers.” This chip sounded promising and included many components of the

design we had already envisioned all on one chip, with only the addition of a couple

smaller components such as capacitors, resistors, and diodes needed. Another benefit,

besides convenience, that

this new solution had to

offer was its use of an

analog voltage-

controlled amplifier,

which would allow the attenuation to occur through a continuous set of values. This

would provide smoother-sounding volume transitions over the discrete wiper position

changes that would be necessary in our use of a digital potentiometer. Also, the device

not only was designed to operate by taking in the feedback signal from the amplifier’s

13

output, similar to our original design, but it additionally contained an RMS detector to

enable that feedback signal’s strength to be more readily detectable by the device. This

would eliminate the need of our originally intended “step-down circuitry.”

 However, there was one crucial drawback to this design that made it implausible

to use: it had no real user-defined flexibility. One of the main distinguishing features of

our device is its capability to be used with any speaker the user wishes, where the user

only has to select two simple parameters of their speakers and our device will

automatically recalibrate itself to fit their speaker’s needs. This new design was meant to

operate around a threshold value and automatically attenuate the audio signal past that

value, but this threshold value was determined by a relationship of resistance values used

in the circuit. In order for such values to be extracted from the user’s input and then a

determination to be made about how the attenuating algorithms operate according to

these values, we would require the use of a “smart” devise to take in such inputs and

carry out the necessary calculations. The only real logical solution for this is to

incorporate the use of a microprocessor, for there is no functionality in the Analog

Engine device that would allow for such calculations to be made. An option would then

be to use a microprocessor along with the circuitry recommended for the “Signal Limiter

for Power Amplifiers,” but then the problem would become both an unnecessary increase

in complexity between the microprocessor to Signal Limiter circuitry and the inflexibility

to completely control all features of the Signal Limiter circuit due to their dependence on

set resistance values that would be hard-wired into the circuitry. The Signal Limiter

circuitry does allow some flexibility in setting the limiting threshold and compression

ratio by incorporating 3 different variable resistors, but even so many of its parameters

14

are set using a combination of these variable potentiometers and set resistors. Even if we

could set up our system to use digital potentiometers in place of these variable resistors

so that we could control the threshold and limiting parameters with our microprocessor,

this would seem to be at least three times as complicated as our original design involving

communication with only one digital potentiometer and without the worry of having to

hard-wire some parameters of the limiting into our circuit through the use of set resistor

values. Therefore, we decided that our original design would be the simplest and most

efficient way to accomplish our goal of speaker protection.

15

Figure 6: High level system diagram

CHAPTER 4

PROJECT ARCHITECTURE

4.1 From Input to Amplifier

A very high-level system diagram can be seen in figure 6. The very first function

our device serves upon

system power up is the

input of the user’s

speaker parameters. This

is accomplished through

the use of toggle

switches. The user can

select speaker

impedances (2, 4 or 8 ohms) and speaker power ratings (100, 200… 1000 watts). With

this information the microprocessor calculates what the threshold voltage is to start

attenuation (the details of such calculation will be explained in section 4.3). The audio

signal itself originates from some electronic instrument, microphone, etc. as a very low-

voltage signal representing the pressure variations in the air produced by the music

desired to be amplified out to the general public. This signal travels through the power

amplifier where it experiences an amount of voltage gain depending on the position of the

“Volume” knob on the amplifier. We will assume for our project that this gain can be

varied at any point in time and do not require it to be set at a constant level for any

amount of time. Here is where the signal branches off: we have this amplified signal

both connected to the speaker, where it will act as a transducer converting electrical

16

waves into pressure waves in the air to produce sound, and we also run this signal

through a step-down circuit that will attenuate and manipulate the signal in preparation

for its entrance into our Atmega 32 microprocessor. The current step-down circuit

attenuates the voltage signal by .08x and then rectifies it and smoothes it out with a low

pass filter. The hardware architecture for this circuit is further explained in chapter 5, the

hardware section.

4.2 Inside the Microcontroller: Analog to Digital Conversion

This small signal version of the amplifier’s output is fed into a pin on our

microcontroller from port A (see figure 7 for the software architecture of the

microcontroller). (Please note that all the code for our Atmega 32 processor is included

in the Appendix.) This port’s pins are linked to dedicated hardware responsible for

controlling the microprocessor’s analog to digital conversion functionality. We utilize

the microcontroller’s ADC (analog to digital conversion) registers to configure and carry

out such an operation, converting our small 0-5.5 V signal from the feedback loop into a

set of discrete integer numbers valued between 0 and 1023 (corresponding to a 10-bit

digital result). Here we have the difficulty of an analog signal at our port A pin that is not

only is not sitting at a constant voltage level due to the changes in the amplifier’s gain,

but also fluctuates in a half-rectified fashion between 0 Volts and its peak voltage even

while the amplifier gain remains constant due to the sinusoidal characteristic of musical

frequencies. To be able to accurately interpret the signal level we first acquire sets of 100

samples of ADC readings and then perform statistical analyses (namely, calculating the

average value and the maximum value) on each set of data in order to be able to make a

17

Figure 7: Software architecture

better decision on how much attenuation is needed based on each sample period. The

goal here is to, in general, set up our attenuation to cater to the peaks experienced in order

to allow for maximum protection of the speakers, but to ignore this peak value and

instead use the average value in the case that a very short-lived spike in voltage is

experienced that is well above the rest of the values of that sample (see code in the

Appendix for details regarding this selection criteria). If we were to only observe the

peaks as a rule, we would always be responding to every little voltage peak in the system,

which would lead to both a general sense of over-attenuation and a significant drop in the

dynamic range experienced by the listener at the speaker output and lead to many abrupt

and dramatic attenuation leaps between load and soft as any intermittent spike was

encountered.

18

4.3 Inside the Microcontroller: Attenuation Determination and Implementation

Once we have the peak or average information from the ADC results, the user’s

inputs that were read into the system upon the device’s power up come into play. These

user inputs of speaker resistance and power rating are used to calculate the software

variable called the overloadVoltage, which is the threshold determining safe operation of

the user’s speaker.

As a short side note: we are using the term “threshold” more loosely for our

actual attenuation implementation where we allow the signal to float close to

and even slightly above this threshold level and consider this safe operation

for the speaker. This is due to the lax definition on how the actual speaker

rating is calculated, as mentioned in the Introduction, where the threshold is

assigned to an average level over time and allows for slight up and down

fluctuations in the music around this level.

The overloadVoltage equation is:

!

overloadVoltage = (wattage_ rating " impedance " .08 "1023) /5 . This comes from the

fact that:

!

Power =
voltage

2

resistance
, so then

!

Power " resistance = voltage
2. The step down

circuitry attenuates a signal to .08 of its peaks, so

!

voltage = Power " resistance " .08 .

Voltage is the overloadVoltage, power is the power a speaker can take, and resistance is

the speaker’s impedance, which is commonly 2, 4 or 8 ohms. Below is a chart of

common speaker impedances and power ratings that the user can set with their

corresponding overloadVoltage values:

19

Table 1: overloadVoltage Calculations given all possible user

input combinations

overloadVoltage overloadVoltage Impedance

Speaker

Power

[decimal] 0~1023 [volts] [Ohms]

 Rating

[Watts]

231.4784759 1.13137085 2 100

327.36 1.6 4 100

462.9569518 2.2627417 8 100

327.36 1.6 2 200

462.9569518 2.2627417 4 200

654.72 3.2 8 200

400.9324811 1.959591794 2 300

567.0041524 2.771281292 4 300

801.8649622 3.919183588 8 300

462.9569518 2.2627417 2 400

654.72 3.2 4 400

925.9139036 4.5254834 8 400

517.6016074 2.529822128 2 500

731.9992131 3.577708764 4 500

1023 5 8 500

567.0041524 2.771281292 2 600

801.8649622 3.919183588 4 600

1023 5 8 600

612.4344811 2.993325909 2 700

866.1131492 4.233202098 4 700

1023 5 8 700

654.72 3.2 2 800

925.9139036 4.5254834 4 800

1023 5 8 800

694.4354277 3.39411255 2 900

982.08 4.8 4 900

1023 5 8 900

731.9992131 3.577708764 2 1000

1023 5 4 1000

1023 5 8 1000

Once this voltage limit value has been scaled down by the same proportional

amount used on the voltage during the step down process (0.08) in order to put it in the 0-

5 Volt range, that value is then multiplied by a factor of (1023/5) in order to put the

parameter into a value on the same scale as that of the data from the ADC process, as a

value between 0 and 1023, so that the two values can be compared accurately. This

newly calculated threshold value is saved by the software as the variable

20

“overloadVoltage” and is carried, along with either the peak or average parameter from

each ADC set, as an argument into a function establishing attenuation levels based on a

comparison between the ADC set statistic and the threshold voltage for safe operation.

For example, if the peak voltage from a set of ADC conversions is equal or less than less

the “overloadVoltage” value, the first attenuation bracket bracketNumber = 0) would

send a command to the digital potentiometer to position the wiper to allow for 0 dB

attenuation. With increasing ADC peak or average values in relation to the

“overloadVoltage” value, the wiper position is commanded to position itself to allow for

increasing amounts of attenuation. Also incorporated into this same function is a

calculation of how drastic of a change in position a wiper must undergo in order to move

from its current location to the newly calculated location and based on this calculation

send the wiper through an appropriate amount of intermediate steps in order to more

smoothly transition from one attenuation level to another. For example, if we had a

wiper in a position corresponding to bracket 0 (for no attenuation) and we wanted to

move this wiper to the position corresponding to bracket 12 (to reduce the signal to about

1/5 of its current value), we would command the wiper to move through two other

intermediate positions on its way from the bracket 0 position to the bracket 12 position.

4.4 Practical Adjustments

 One of the lessons learned from this project is that no matter how much thought,

analysis, and calculation you put into a design, once you test that design there is a great

likelihood that you will encounter some issues that never occurred to you from a

theoretical standpoint. This was the case with the attenuation algorithms that had been

21

coded in the software portion of our system. During the final testing stages of our device

our code worked perfectly, but that fact ended up being our only problem. During

testing, when the amplifier was causing the feedback signal to fall in the upper ranges of

attenuation, we would see the code step through the steps needed to reach the destination

attenuation bracket that had been specified for it in our code and then once it got there, as

a verification that the attenuation levels had been indeed calculated correctly, we saw the

ADC readings to go from the high values of the amplified signal to low values that were

well within the overloadVoltage safety threshold value. The problem, then, was that the

next command in our code was to run the function again to calculate an appropriate

attenuation bracket for the feedback signal. Since this function had already run once and

had done its job of bringing the signal into the range where it would not need further

attenuation, this second time around the code put the attenuated signal into bracket 0,

where no attenuation was required and the potentiometer’s wiper would be moved

accordingly. We must realize here, though, that by lowering the level of our small signal

audio input when we first commanded the attenuation, we did not change the high gain

setting present on the amplifier, so that once we bring this attenuation back to 0 dB, the

high amplifier gain is still present. Therefore, essentially the current code was causing

the attenuation for a high feedback signal to toggle between a given attenuation level and

0 dB of attenuation: once through the attenuation function and the attenuation would be

set, a second time through and the level would be in the safe range again so the

attenuation would be unset. This behavior both made the sound output from our system

to be distracting, unnatural, and aesthetically unpleasing and caused the output signal

22

going to our speaker to oftentimes reach very high levels that would very likely allow for

damage to the speaker to occur.

 In order to change this, we only had to modify a few lines of our code, but this

drastically changed the behavior of the system in practice. We decided that instead of

calculating a destination attenuation bracket the potentiometer should reach based on its

current level (which would lead often to the toggling 0 dB bracket once the attenuation

did its job of bringing the signal back to safe levels), we should have the system only

change its attenuation bracket one at a time. To do this, we used the framework of the

existing attenuation bracket definitions to assign the current level to a bracket number

(the bracket numbers 0 – 23 correspond to wiper settings 0 – 46 dB, with a multiplication

of 2 factor to convert between the two) and then compared this bracket number with the

last bracket the wiper was assigned to. If the new bracket was lower than the previous

one, that meant that less attenuation was needed than was previously set, so our system

commands that the wiper position be moved +2dB from its previous setting. If, on the

other hand, the new bracket was higher than the previous one, that meant that less

attenuation was needed than was previously set, so our system commands that the wiper

position be moved -2dB from its previous setting. After making only this slight 2dB

change in the wiper position within our attenuation function, the code loops back to again

take a new ADC reading and calculate a new bracket number, where it can be determined

if the wiper should be moved for more or less attenuation. Also it should be noted that if

the signal has not changed levels enough to associate it with a different bracket number,

then the wiper is simply commanded to stay at its current position. By employing this

new algorithm, the safety threshold is reached a bit more slowly, but once it is reached it

23

Figure 8: Revised software flowchart

stays within a reasonable limit of the threshold (per our “lax interpretation of the

threshold” explained in section 4.3), which is the main point of the speaker protection

function of our device. See figure 8 for the new software flowchart.

 Under this new algorithm, the initial purposes for the bracket definitions are

nearly lost. Originally, these brackets were meant to calculate out where a wiper should

be, based on the signal level presented to the ADC sampler, for that signal to lie within

the threshold value. However, since we are not sending the wiper automatically to this

pre-calculated level but instead changing the attenuation only step-by-step and checking

each time to see if the level has yet reached safe values, these levels are only used as a

means of comparison. The function they now

serve is to tell how far away the new ADC

voltage level has to be from the old ADC

level in order to command the 2 dB change.

In this function, then, the bracket definitions

are still serving a useful purpose, so that the

wiper’s position will not be changed every

single cycle of the function. Also, built into

the attenuation bracket calculations is the

natural dB characteristic of the

potentiometer’s wiper, so that signals

requiring only a low level of attenuation

will be more sensitive to voltage changes

24

whereas it will take more drastic changes in ADC voltage level for changes to occur at

higher levels of attenuation.

4.5 The Analog Attenuation

 The digital potentiometer changes resistance and is input into the non-inverting

terminal of a TLC2272 op-amp. As the potentiometer’s resistance goes down, the

resistance lowers and the signal attenuates. The output of the op-amp is fed back into the

input terminal, making it a simple voltage follower. The low terminal of the digital

potentiometer receives a 2.5 Volt DC signal. The high terminal of the potentiometer

receives the music with a Vcc/2 = 2.5 Volt bias. To make sure no DC component is

present in the original signal, coupling capacitors were used on the input to the resistors

and on the output of the TLC2272 op-amp.

25

Figure 9: Digital PCB

Figure 10: Attenuation of a cosine signal

CHAPTER 5

HARDWARE

 The premise of the hardware for the limiter and speaker protector was using a

potentiometer to attenuate the small signal of an iPod or guitar before the signal reaches

the input of the guitar amplifier. The

potentiometer would be digitally controlled by an

atmega32 microprocessor using SPI protocol

serial communication. The processor made the

decisions of controlling the digital potentiometer

to change the music volume based on a signal

fed back from the amplifier.

5.1 The Digital PCB

 It was decided that one printed circuit board (PCB) would be built to handle the

digital components and another board would handle the analog elements. The first digital

board was built to house the atmega32 processor, digital potentiometer (maxim,

Max5411), 12-volt to 5-volt regulator (LM7805), and headers that plug into an LCD

display. Figure 10 shows how a cosine signal was

attenuated using the digital potentiometer.

 The MAX5411 was chosen because it had a

logarithmic taper digital, with 32-tap points each. It can

replace mechanical potentiometers in audio applications

26

 requiring digitally controlled resistors. The chip also has a SPI-compatible serial

interface that controls the wiper positions. The MAX5411 has a factory-set resistance of

10k!. A zero-crossing detection feature minimizes the audible noise generated by wiper

transitions. Switching amplitudes through a digital potentiometer when there is any sort

of voltage cause small audible cracks. The zero-crossing feature has the potentiometer

wait until the low input and high input are equal to change its resistance. For the purpose

of mounting the MAX5411 on our PCB the 16-pin quarter-size small-outline package

(QSOP) package was chosen. 10 mil traces were routed to the 16-pin QSOP.

The digital board would receive the audio signal needing attenuation through its

high input on the digital potentiometer header. Since the digital potentiometer’s power

supply is ground the 5-volts the music needs a vcc/2 bias voltage. The music into the high

input terminal of the pot is then biased by 2.5 volts. The input to the low terminal is

simply 2.5 volts. The wiper is then connected to a voltage follower op-amp is then plugs

into the large personal amplification system.

27

Figure 11: Analog Schematic

Figure 11: Analog schematic

5.2 The Analog PCB

The digital PCB also

received a feedback input into

its analog to digital conversion

port (ADC). This feedback input

was stepped down using the

analog board. The schematic

for the analog board is shown

on the right. The board

consists of two power

regulators to regulate +12

volts and -12 volts to +5 volts

and -5 volts. A number of

resistors were using to bias

to high and low terminals,

which are sent to the MAX5411. Two large 33uF capacitors were used to couple and DC

signal connected to the music inputted. Two capacitors were used because 33uF capacitor

are polarized electrolytic, thus the terminal charges must be symmetric. So, the two

positive sides of each capacitor were connected leaving the negative terminals on the

outside. The power was regulated to +5 volts and -5 volts because the op-amps used the

analog PCB circuitry required +/-5 volts. Fast rail-to-rail op-amp built by TI (TLC2272)

was used as a voltage follower for the small signal output.

28

Figure 13: Full-wave rectification (left), diode in series

(middle), low pass filter (right)

Figure 12: ADC step-down vs. high-

voltage cosine (top) and high-voltage

music (bottom)

The TLC2272 was also used as a step-down

op-amp. Since the large personal amplifier outputs a

high voltage signal of up to 100 volts peak-to-peak.

The first stage (U5A) of the step-down circuit op-amp

reduces the gain of the signal to 10 volts peak-to-peak.

The next two op-amps (U5B and U6A) full wave

rectify the signal. To smooth out the signal a low-pass

filter was built with a capacitor and resistor. The full-

wave rectification circuitry was based on figure X

from the book “Introduction to Operational

Amplifier Theory and Applications”

(Huelsman,1975). The top of figure 12 shows

how a simple cosine signal swinging from +50 voltage to -50 volts is rectified and then

smoothed out to be about 4 volts. The bottom of figure 12 shows how the rectified signal

changes with music and jump up and down depending on the music’s amplitude. The

figure below takes one through the step of how the cosine signal voltages look at each

stage of the analog board.

29

CHAPTER 6

SOFTWARE

6.1 SPI Communication

 The use of Serial Peripheral Interface (SPI) communication was required for our

microprocessor to be able to control the digital potentiometer model we had chosen: the

MAX5411. As mentioned in chapter 3,

the prime reason for using this SPI

format of communication was that the

Atmega 32 chip contains pins that

are connected to internal hardware

designed to carry out such communication. Also, to correspond to such hardware, there

are registers featured on the microprocessor that enable the SPI hardware to be

configured and utilized easily.

 As shown in figure 14, SPI communication is carried out between two devices

(the devices can be daisy-chained so that one master can communicate with multiple

slaves, be we only require two-device communication in our project), one being specified

as the “master” device and the other as a “slave” device. In our case we configure the

internal SPI Control Register (SPCR)’s bit corresponding to master mode (MSTR) to

have our microprocessor act as the master who is then responsible for sending data to the

digital potentiometer slave (which acts as a slave by default, since it lacks the capabilities

to perform the duties of a master device, such as generating its own clock signal). SPI

communication requires 4 different wires running between the two devices as shown in

Figure 14: SPI communication wiring

Source: http://dev.emcelettronica.com/category/tags/spi-

protocol

30

figure 14, labeled SCLK (serial clock), MOSI (master out, slave in), MISO (master in,

slave out), and SS (slave select). The SCLK line is the clock that synchronizes the timing

between the two devices. This clock signal is generated by our microprocessor master

and its frequency is determined by setting registers corresponding to certain division

factors from the internally generated clock signal always present in the microprocessor.

The MOSI line is the most important connection in our SPI communication system. This

is where the transmitted message is sent as a series of ones and zeros from the

microcontroller to the digital potentiometer. The timing of the transmission of this

message is determined by the SCLK signal and the relationship between the phase and

polarity relationship between the clock signal and the message signal are set up using

registers in the microcontroller; this phase and polarity must match the phase and polarity

required by the SPI slave you are communicating to or else the signal will not be

interpreted correctly. The MISO line is meant to enable the slave to “talk” back to the

master device, but is not used in our project. The potentiometer would be reading back to

the microprocessor the current position of its wiper via the MISO line, but in our case we

are merely concerned about telling the digital potentiometer where to position its wiper

and based on that command from the master, as long as the slave device interprets the

commands correctly, we should already have knowledge of the current wiper position at

any point in time. The SS line is an active low line where the master prepares the slave

device to receive a transmission. This line is most important when more than one slave is

present in a system, where the master can define many SS output pins to be able to select

each slave device to talk to one at a time. The master’s SS line is usually connected to

the slave device’s CS (chip select) active low so that only the chip that is selected by the

31

master will be able to actively interpret the master’s commands. This same connection is

made between our microprocessor and our digital potentiometer’s chip select pin. The

details about the functionality of this line in regards to our single-device project will be

explained below in section 6.2.

6.2 Trial and Error, Lessons Learned

 Our first step in creating our device was to ensure the functionality of the digital

potentiometer, which was not only the pivotal function of our device, responsible for

ensuring speaker safety, but also likely one of the most complex, due to the SPI

communication protocol intricacies. At first, we made the mistake of ignoring the sample

code provided in the Atmega 32 processor, thinking it would not provide fully SPI

communication functionality, so we attempted to get some bits of sample code from

online databases. Once we constructed an initial bread board-based design in order to

facilitate a piece of sample code (commanding the digital potentiometer to move through

each of its wiper positions) and hooked up a multimeter to the wiper to try and verify if it

was in fact following the commands sent by the microprocessor, we were seeing voltage

changes on the wiper and interpreted this to mean at least a partial success of the

potentiometer’s functionality. We learned on multiple occasions, however, that seeing an

apparent movement of the wiper, unless it exactly matches the value your code is setting

it to and is consistent upon running the program may times, does not at all mean that the

SPI communication code is working correctly. The two major mistakes we initially

found were that first we did not have the digital potentiometer wired up to power and

ground correctly and secondly that our sample code was much too complex and outdated.

32

From this realization, we discovered that the sample SPI code for master mode operation

on the microprocessor’s data sheet was all the code you needed in order to carry out SPI

communication. With our new set of code, we were seeing some very perplexing results.

For example, on a couple occasions, we would observe the voltage on the wiper to be

showing appropriate values most of the time, but would skip many values or oftentimes

jump between the power or ground voltage levels in the middle of a voltage progression

that was supposed to be in between those two values. We attempted to find our problem

by inserting some debugging code that blinked an LED (light-emitting diode) at crucial

points in our code to ensure it was running properly, but sometimes even this method was

no use when the LED seemed to show that the system was running through each line of

our code properly, but the wiper position was not changing at all.

 Finally, we made our first step towards realization of our problem when we went

through a simulation of our code line-by-line on the AVR Studio 4 program (the same

program we were using to write, compile, and program our code into our device with),

checking that the register values that we were setting in our SPI initialization command

were setting properly and that our code was in general operating correctly. Through this

process, we immediately discovered that the bit in the SPI Control Register (SPCR) that

was responsible to setting the microprocessor to operate as the SPI master (the MSTR bit)

was being set properly, but was being unset in the very next, completely unrelated

command. Upon receiving some guidance from a TA (teaching assistant), we discovered

that the active low chip select (CS) pin on the digital potentiometer worked more like a

reset pin than it did like a traditional chip select pin whereby the device is enabled to

work for the duration of time that the active low select signal is held low. Therefore,

33

instead of outputting a continuously low signal from the SS pin of the microprocessor to

the CS pin of the potentiometer, we would need to start with the SS pin in the high

voltage position, transition this to a low right before communication with our

potentiometer began, and pull it back high again once one byte of information was

successfully transmitted. Prior to this, under the impression that we would simply need

the CS pin on the digital potentiometer to always be low, signifying that we always

wanted to talk to that chip, we had simplified the connections between the two devices by

simply tying the CS pin on the microcontroller to ground and ignoring the SS pin on the

microcontroller. Right away we saw this new “CS pin with reset functionality” concept,

we knew that we needed to run a wire between the microprocessor and the potentiometer

in order to enable communication to the device each time before any byte of information

could be transmitted.

After some further research on our MSTR bit-setting issue, we found this

sentence in a Wikipedia article entitled “AVR SPI C Snippets”: “When running master

mode, a low level at the slave select pin SS will force the device into slave mode.” At

first this seemed completely contradictory to our basic understanding of SPI

communication, for clearly figure 14 shows the SS pin on the SPI master connected to the

SS pin (in our case, called CS: chip select) on the slave, both being active low, with the

master being in charge of selecting which device it will be talking to. However, we were

not cautious in noticing a slight technicality in the operation of the SS pin on the

microprocessor. In our case, we did not need the pin specified as SS on the

microcontroller, for its primary function was in fact to operate as its own version of our

potentiometer’s chip select pin in the case that someone were to need the capability of

34

having the microprocessor serve the function of a SPI slave device, where this pin would

be configured as an input and then driven low by an outside SPI master device when

communication to this microprocessor was desired. However, the simple fact that this

functionality was not needed by our system did not mean that we were safe in ignoring

this pin. If this pin is configured as an output pin while the device is in master mode (for

it cannot be configured as an output in slave mode or it would lose its ability to be

selected as such a slave), it becomes a general-purpose output pin and the SPI

communication system is not affected by this pin’s value. However, we were not

observant of the fact that in the code from the Atmega 32 datasheet we were using they

left this SS pin set as an input, expecting the user to desire the microcontroller’s option to

act as a SPI slave (note that inputs are configured to a port value of 0, so that through the

lack of mentioning the input/output functionality explicitly in the code, the SS pin’s

function as an input was implied). The simple fact of the SS pin being configured as an

input would not have caused any problems, however, had this pin not been an active low

pin. Unfortunately, an input pin with no signal to drive it high is sitting at a low value.

Therefore, under the configuration we were using, our microcontroller was being

informed that it was required to act as a slave and was not actively trying to send

information but to receive it. Our problem was fixed once we combined these two bits of

insight into the functionality of the chip and slave select pins of our two devices: we first

set the SS pin on the microcontroller to be an output pin and then connected a separate

general purpose output pin, having no ties to the SPI system itself, to act as an output

signal to the potentiometer’s CS pin that would carryout the reset-like function required

for communication with our slave device.

35

6.3 Attenuation Bracket Considerations

 The goal of our attenuation is to gradually limit our input signal as it approaches

and exceeds levels that would be considered unsafe for the speaker in consideration.

Since all of our considerations regarding what signal levels to attenuate are made based

on this threshold of safe limits for our speaker and the safe limit for our speaker’s

operation is based on the impedance and power rating parameters as defined by the user

inputs into the system, we first must establish this safety threshold which is referred to as

the variable “overloadVoltage” in our code. As briefly mentioned in section 4.2, we use

the relationship (power = voltage
2

/ resistance) along with our user inputs of power and

impedance to obtain a maximum voltage we want to have entering our speakers from the

output of the amplifier. After this formula is used to find the correct voltage value, we

must remember that the voltage information we are comparing this threshold value to is

from the result of analog to digital conversions of the stepped-down feedback signal and

being as such will be an integer value between 0 and 1023 due to the 10 bits of resolution

available to the ADC hardware. Therefore, to get this within an equivalent range we

must multiply this high-level voltage value by a factor of (1023*.08/5=16.4). This factor

comes from the step-down circuitry. Since we know that this threshold value will be

different for every given set of speaker parameters, we need a way of defining bracket

levels, where each “bracket” corresponds to a range of incoming data from the ADC that

translates into a certain command for the potentiometer’s wiper position and hence a

certain amount of attenuation of the input audio signal. Since this attenuation depends on

the overloadVoltage value, we define each bracket based upon the division of the statistic

36

(whether it is the peak or the average value) describing the set of incoming ADC values

by the overloadVoltage value. For example, 1.0 would mean that either the peak or

average value from the set of values that were sampled using the

 microprocessor’s ADC function is exactly equal to the corresponding voltage threshold

 value that would likely blow the speakers and 25.0 would mean that the peak or average

 ADC value is twenty-five times the value of the safety threshold for the speaker (the

point at which our device essentially begins to mute the incoming audio signal).

 Next, actual levels must be defined to both keep our signal at safe levels and to

avoid any abrupt changes in attenuation, so that the sound coming out of the speaker

retains as much of its original volume continuity as possible. The resistance positions of

the potentiometer’s wiper change by two decibels per discrete position of the wiper,

varying from 0 dB with the wiper connected to the high terminal of the potentiometer all

the way down to -62 dB where the wiper has very little resistance between it and the low

terminal of the potentiometer. The resistor also features a mute function that guarantees a

resulting gain of less than -90 dB. For our purposes, however, we must take into account

that the stated attenuation of each wiper position is for use of the digital potentiometer

alone in developing that amount of attenuation. In our case, the digital potentiometer is

merely one component, albeit the most important one, in our analog attenuation circuitry

(see chapter 5 for details). This translates into the fact that not only are the actual

changes in attenuation we get for each wiper step less than -2 dB, but also that even at the

potentiometer’s 0 dB level, we will still have a series of resistors present that will

function as attenuators to the incoming signal and thus the actual attenuation we

37

experience will be -1.22 dB (see table 2 for discrepancies between wiper positions and

actual circuit gain).

Once we had defined what gain levels were achievable by our circuit, we decided

that a Microsoft Excel spreadsheet would be most useful in developing a list of the range

of input values and then determining the best level of attenuation amongst those values.

Since we are basing all of our calculations around the overloadVoltage safety threshold

value, our list of inputs is given in terms of multiples of this value, from 0 meaning an

input voltage that is zero times the overloadVoltage value and 25 meaning an input

voltage that is twenty-five times the overloadVoltage value.

We must make a side note here that since the speaker thresholds in general should

be located a reasonable amount higher than the levels of normal operation, a signal level

that is twenty-five times higher than that threshold will likely not ever be encountered in

actual operation. However, since the range of the potentiometer and associated gain

function is capable of attenuating even a signal of this abnormally large magnitude back

down to within safe levels, we decided we would program the device to be able to handle

such levels. This way, we can be sure to account for the case of a speaker with a very

low power rating and resistance that could easily be overblown and could potentially,

though not likely, experience levels that are in fact twenty-five times that of its safety

threshold. It should also be noted that in fact the attenuation our device offers could

potentially limit input levels even above this (25 * overloadVoltage) point. For example,

-62 dB is the lowest position offered by the wiper within its normal range of operation

and even below that the device features a mute function that guarantees attenuation of -90

dB or below. Converted to a gain in units of Volts/Volts, -62 dB translates into 0.006345

38

and -90 dB translates into 0.0002542, which would mean that using one of these

attenuation levels would theoretically allow for an input that is either 141.8 or 3540.5

times the level of our overloadVoltage safety threshold level while still attenuating this

input to attain an output value that is still only 0.90 times that threshold value or less.

However, first of all, the -90 dB wiper position is intended for use as a mute function and

if we were to specify that our signal could function up until such extremely high input

levels under the -90 dB setting we would no longer have a way of muting the input signal

if the level was ever exceeded or for other emergency purposes. More importantly, as

previously stated, a level of (25*overloadVoltage) should be high enough that, regardless

of the speaker’s parameters, the input would never reach levels high enough to even

come close to this limit; thus, we would expect the mute function of our device never to

have to be employed.

Our final attenuation brackets allow for inputs to be smoothly attenuated until the

input reaches a level twenty times the threshold value. Between twenty and twenty-five

times this threshold value we start attenuating the signal toward a zero output in order to

alert the user that they are operating at extremely high levels and the amplifier’s gain

either needs to be turned down significantly or if the gain continues to increase our

device will soon merely mute the input signal (see figure 15 for this trend). Finally, we

set the attenuation ranges or input signals in the normal operating range of 0 to (20 *

overloadVoltage). Our first decision we make is to keep the output at least 10% below

the overloadVoltage safety threshold level. This will leave a small margin of error in our

attenuation to first account for the slight time delay between the time the audio signal is

input into the device until our device has calculated the necessary attenuation and has

39

dB dB in V/V Potentiometer

resistance (in

Ohms)

Overall

Attenuation

Circuit gain

(V/V)

Overall

Attenuation

Circuit gain

(dB)

SPI

Command

sent to

Potentiometer

- -90 3.16228E-05 0.313065488 2.54174E-04 -71.89736676 10011111

-62 7.94328E-04 7.863849524 0.006344658 -43.95183576 00011111

-60 0.001 9.9 0.007974009 -41.96646563 00011110

-58 0.001258925 12.46336158 0.010017459 -39.98484857 00011101

-56 0.001584893 15.69044261 0.012577757 -38.00793614 00011100

-54 0.001995262 19.75309692 0.015781718 -36.03691468 00011011

-52 0.002511886 24.86767567 0.019785044 -34.07325957 00011010

-50 0.003162278 31.30654884 0.024777644 -32.11879988 00011001

-48 0.003981072 39.41260988 0.030989194 -30.1757943 00011000

-46 0.005011872 49.61753613 0.038694486 -28.24701832 00010111

-44 0.006309573 62.4647771 0.048217748 -26.3358615 00010110

-42 0.007943282 78.63849524 0.059934712 -24.4464316 00010101

-40 0.01 99 0.074270619 -22.58365911 00010100

-38 0.012589254 124.6336158 0.091691784 -20.75339154 00010011

-36 0.015848932 156.9044261 0.112687809 -18.96246128 00010010

-34 0.019952623 197.5309692 0.137741483 -17.21870491 00010001

-32 0.025118864 248.6767567 0.167284115 -15.53090594 00010000

-30 0.031622777 313.0654884 0.201636184 -13.9086306 00001111

-28 0.039810717 394.1260988 0.240937014 -12.36192953 00001110

-26 0.050118723 496.1753613 0.285072579 -10.9008911 00001101

-24 0.063095734 624.647771 0.333616218 -9.535056912 00001100

-22 0.079432823 786.3849524 0.385800493 -8.272744426 00001011

-20 0.1 990 0.440536686 -7.12035839 00001010

-18 0.125892541 1246.336158 0.496489492 -6.081798781 00001001

-16 0.158489319 1569.044261 0.552199867 -5.158074045 00001000

-14 0.199526231 1975.309692 0.606233744 -4.347197873 00000111

-12 0.251188643 2486.767567 0.657325434 -3.64439126 00000110

-10 0.316227766 3130.654884 0.70448641 -3.042547604 00000101

-8 0.398107171 3941.260988 0.747061825 -2.532869108 00000100

-6 0.501187234 4961.753613 0.784732911 -2.105562662 00000011

-4 0.630957344 6246.47771 0.817476546 -1.750493971 00000010

-2 0.794328235 7863.849524 0.845499799 -1.45772983 00000001

0 1 9900 0.869166975 -1.217935669 00000000

Table 2: Potentiometer settings and attenuation statistics

40

implemented that attenuation. For

instance, if we detect a significant

jump in the signal level, if that

signal was in fact a crescendoing

signal (increasing steadily in

volume), by the time our device

begins to attenuate that signal the

signal will be even higher than we

anticipated. Under this 10% safety net system, that signal would have room to still be

higher than we expected and be attenuated to a safe level. The other possible discrepancy

this allows us to compensate for is the existence of peaks in the system that are either

undetected by our ADC sampling or are overlooked by our calculation of the ADC

statistic we decide to base our attenuation on. The possibility of our system not detecting

a peak in the system is very unlikely, since based on a 8 MHz internal clock rate of the

Atmega 32 microprocessor, our use of a division of 64 in the initialization of our ADC

conversion (see avr32_adc.h file in our code in the Appendix), and the 8 clock cycles that

is typically required to carry out each analog to digital conversion, that gives us a sample

rate of about 15.625 kHz. If we consider that the human range of hearing can only detect

tones up to 20 kHz and that 4.186 kHz is the highest frequency of a standard piano, we

can state with a reasonable amount of confidence that our system should be able to detect

nearly all the spikes within the human range of hearing. We should also near in mind that

when we talk about “spikes” we are implying that these high amplitude signals are very

short-lived and will likely not cause any damage to the speakers, for if they are of a

Figure 15: General input vs. output trend of

attenuation circuit throughout the range of operation

41

Figure 16: Input vs. output trend of attenuation

circuit, low range only

longer and more threatening duration, our system should be fully capable of detecting

them and setting the attenuation accordingly. As for a discrepancy between the statistic

values we choose from our ADC sampling sets, as briefly mentioned in section 4.2 (and

as shown in our code in the ADCAveragingandLCDFunctionsBethany.h header file)

under most circumstances we base all of our attenuation off of the incoming voltage’s

peak value from the set of ADC samples we have taken. However, we must take into

account that sometimes we may measure a very short-lived and therefore essentially

harmless spike to our system. In that case we have decided that it would be more

appropriate to use the average value of the incoming ADC sample data in order to get a

better characterization of what the incoming signal is like without consideration of the

spike. Therefore, our selection criteria becomes: 1) calculate both the peak and the

average of the incoming voltage signal 2) use the peak as the determining ADC statistic

to characterize that data unless that peak is greater than 3.5 times the average value 3) if

the peak is in fact greater than 3.5 times the average value, use the average value as the

statistic instead.

 Now that we have

justified our use of imposing

a (0.9*overloadVoltage)

limit on our output signals,

we then are left with simply

calculating the definitions

between where one attenuation

level (potentiometer wiper position) stops and another starts based on when the output

42

signal approaches that limit while using the first attenuation bracket. Such transitions can

be seen clearly in Figure 16.

 As the signal approaches the (0.9*overloadVoltage) output line, the signal shows a

sharp drop, signifying a change in the potentiometer’s wiper position. Note, however,

that even though these drops appear to be abrupt and of a significant size, from figure 17

it can be seen that these drops between attenuation levels are well less than 1 dB in

magnitude for reasonable levels of signal input magnitude. This graph does alert us to

the fact that as the input levels, and thus attenuation levels, increase this drop becomes

larger and thus more in danger of being heard. As mentioned earlier, the just noticeable

difference (JND) of a change in volume that a human ear can detect is 1 dB (this was how

the system of decibels was created: to define a unit that corresponded to the capacities of

human hearing), so any change in signal attenuation levels would not be perceived until

the input voltage reached the value corresponding to (1.8*overloadVoltage). Under

normal operation, though there may be a few peaks in this region and slightly beyond, a

majority of the time the signal will likely stay below this level and thus the wiper level

changes should not lead to an abrupt drop in signal level. The other consideration was

determining at what level we should begin our attenuation in order to produce a smooth

transition up towards the safety limit. The trade-off here was that if we started the

attenuation too early, then we would unnecessarily shrink the dynamic range of the audio

signal with excessive attenuation even before it approached dangerous levels, but if we

waited too long before attenuating, we would have an abrupt drop in signal level once it

reached its overloadVoltage limit that would likely be distracting to the listener. We

sought a compromise between these two extremes and decided that attenuation beginning

43

Figure 17: Circuit Attenuation in dB for a Low

Range of Input Signals

at (0.8*overloadVoltage) would be adequate for our purposes and the smoothness of our

attenuation and the signal’s dynamic

integrity can be seen best from figure

16.

 Once we had our signal

attenuation levels defined, there was

one more issue to consider in order to

smooth out the general purpose

operation of our device. Once we had assigned a specific potentiometer wiper position

command to each appropriate range of inputs, all we had was code that essentially said:

“Given this level of input, move potentiometer wiper to this position.” What we failed to

take into account, however, was the possibility that the wiper would sometimes need to

jump over a significant number of attenuation positions to adjust for a changing input

value. For example, if a signal had been at a level corresponding to

(0.7*overloadVoltage), which would put it in attenuation bracket number 0 (see

digpotControlFinalBethany.h header file in code in the Appendix for attenuation bracket

numerical definitions) and lead to a positioning of the wiper at its 0 dB position, but then

abruptly jumped up to a level of (1.35*overloadVoltage), corresponding to a wiper in the

-12 dB position, under the current “direct command” method we would command the

wiper to make the leap between these two positions instantaneously. This abrupt and

dramatic change in wiper levels would cause an abrupt and unnatural drop in sound

presented to the listener that would likely be very distracting and would take away from

the aesthetic sound of the music. In order to make up for this, we altered our code to step

44

through each wiper position of the potentiometer between the previous wiper position and

the position the wiper is currently being commanded to go to, pausing for a very short

amount of time at each position to allow the gradual smoothing of the attenuation have

audible results. Originally, this stepping code only allowed the wiper to step through 1-3

additional positions, depending on how far away the previous wiper position was in

relation to the position being currently commanded. However, this was determined to be

both inefficient in both the bulkiness of the code and in its ability to produce a genuinely

smooth transition between positions, since stepping through one extra position is no

where near as smooth as a transition as is stepping through all possible wiper positions

between the origin and destination positions. Our final code to implement this feature

was an implementation of two if loops, each containing a for loop to cycle through all the

potentiometer positions (see the calculateAttenuationBracket function within the

digpotControlFinalBethany.h header file in code in the Appendix for full implementation

details). The introduction of this feature into our code was crucial to maintaining the

aesthetic integrity of the sound we are processing.

NOTE: In our final code, some unexpected practical considerations had to be

accounted for based on the results of some of the final phases of the testing our

device, causing some major changes to the overall nature of our system’s

functionality. See section 4.4 for updates to the attenuation algorithms and the

function of the aforementioned attenuation bracket calculations.

45

CHAPTER 7: PROJECT LOGISTICS

7.1 User Manual

 Operation of our device is simple and nearly self-explanatory. The left most jack

receives the power amplifier's high voltage signal. This signal is captured using the red

cable that came with our device. The cable splits the output of the power amplifier. One

end goes to the speaker, and the other goes to this left most high signal jack. The middle

jack receives the small signal output of the your instrument. The right most jack is the

output into your power amplifier. Once the device has been properly connected, the user

first powers on their amplifier and speaker with the amplifier gain knob at a modestly low

setting (since the user has not entered the correct parameters for their speaker at this point

and proper attenuation to ensure speaker safety is therefore not yet operational) and

power on our device’s power supply by flipping the black power switch at the rear of the

device. Next, the user dials in the speaker impedance and power rating as given by the

speaker manufacturer’s specifications. The impedance is to be dialed in on the knob on

the left and has settings of 2, 4, or 8 Ohms; the values increase with a clockwise turn of

the knob and the current value set can be seen on the LCD screen display as it is changed.

The power rating is to be dialed in using the knob on the right and has settings of 50

Watts to 800 Watts with the current power rating also being displayed on the LCD

screen. Once these two values have been dialed into the system, the amplifier’s gain can

be changed by the user at will and our system will protect the speaker from being

damaged. Also displayed on the LCD screen is the “overloadVoltage” value of the safety

threshold corresponding to the user specified speaker ratings and the amount of

attenuation currently affect on the device. Once the use of the amplifier and speaker is no

46

Table 3: Division of Labor

longer needed, cut off the power to the speaker and amplifier first before cutting off

power to our device (by flipping the black power switch again at the rear of the device) to

ensure that speaker safety is maintained for the entire duration of speaker operation.

7.2 Separation of Work

Bethany

Paul

Processor breakout

Processor breakout

Atmel coding design

Design of PCB

uP code testing

Hardware testing

UI coding and testing

Power sensing testing

Final board population

Final board population

Test/debug

Test/debug

In general, Bethany was in charge of the software of our device and Paul was in

charge of the hardware of our device. In addition to designing the attenuation scheme we

47

Table 4: Bill of Materials

intended to use in our limiting algorithms, writing the software code, debugging the code,

and testing the code’s functionality with various hardware components at different stages

during the design process, Bethany was also the main contributor towards composing and

doing research for the final report and she designed and constructed the poster for the

final demonstration in the NEB rotunda. In addition to deciding what exact functionality

was needed in hardware in order to implement our design, designing both the attenuation

and step-down circuits for our system, designing and populating the PCBs, and

debugging the hardware during both the breadboard and PCB stages, Paul also was

responsible for the “finishing touch” work on our hardware in order to make it look

professional for our last presentation in the NEB rotunda (including buying and soldering

custom plugs for our device’s external wirings, adding LED lights to show audio output,

changing out the LCD screen, cleaning up any wire-wrappings, etc.).

7.3 Bill of Materials

Product Quantity

Price Per

Unit Total

Aluminum Face 1 $12.45 $12.45

1/4' Mono Input Jacks 3 $4.34 $13.02

Red LEDs 21 $0.95 $19.95

LCD screen 4x20 Winstar 1 $18.97 $18.97

Power Supply +12/-12/+5 1 $0.00 $0.00

19' Rackmount Casing 1 $0.00 $0.00

Electrolytic Capacitors 20 $0.20 $4.00
Operational Amplifiers

TLC2272 5 $0.13 $0.65

THAT electronics 12 $1.56 $18.72

PCB standoffs 3 $4.56 $13.68

Atmel Atmega32 1 $0.00 $0.00

Toggles 2 $0.00 $0.00
Digital Potentiometer

MAX5411 3 $0.00 $0.00

 Total: $101.44

48

Table 5: Gantt Chart

7.4 Gantt Chart

49

BIBLIOGRAPHY

“8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash: Atmega 32

– Atmega 32L.” 2008. Atmel.

“AVR SPI C Snippets.” Open AVR. 2009. Wikipedia. 27 Mar. 2009

<http://www.openavr.org/AVR_SPI_C_Snippets>.

Clark, Richard. “A2420 Some Facts About Distortion and Speaker Damage.” 2000.

Autosound. 9 Apr. 2009

<www.monstercable.com/mpc/stable/tech/A2420_Some_Facts.pdf>.

“Dual, Audio, Log Taper Digital Potentiometers.” 2005. Maxim. 3 Feb. 2009. <

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2567>.

Korn, Huelsman, Wait. “Introduction to Operational Amplifier Theory and

Applications.” New York: McGraw-Hill, 1992.

“LSP-1 Concert Series Speaker Protector Owner’s Manual.” 2000. ARX. 23 Jan. 2009

<http://www.arx.com.au/pdf/old/LSP1manual.pdf >.

McCarthy, Bob. “Sound Systems.” Transmission. Focal Press, 2007. 28-30.

Ross, Monty. “Limiters Unlimited.” 1997. RaneNote. 5 Apr. 2009

<http://www.rane.com/note127.html>.

“Sound Equipment Resources.” 2009. Images Entertainment Superstore. 11 Apr. 2009

<http://www.images2.co.uk/Sound_Equipment/resources_loudspeakers_explaine

d_blowing_a_speaker.html>.

“THAT Corporation Application and Design Notes.” 2009. THAT Corporation. 15 Feb.

2009 <http://www.thatcorp.com/appnotes.html>.

 “TruPower Limiting.” 2009. Meyer Sound Labratories, Inc. 11 Apr. 2009

<http://www.meyersound.com/products/technology/tpl_tech.htm>.

50

APPENDIX

ADDITIONAL PROJECT MATERIAL

51

52

//**
// File Name : 'Bethany4-10.c'
//**
#include <avr/io.h>
//#include <avr/interrupt.h>
#include "util/delay.h"
//#include "spi.h"
#include <math.h>
#include "adcAveragingAndLCDfunctionsBethany.h"
#include "digpotControlFinalBethany.h"
#include <stdio.h>

#define SPI_PORT PORTB
#define SPI_DDR DDRB
#define DD_MISO 6
#define DD_MOSI 5
#define DD_SCK 7
#define DD_SS 4
#define POT_CS 1
#define LED 0

int main(void)
{
DDRC = 0x00;
SPI_PORT |= 0x01;
delay_ms(10);

int speakerImpedence;
int speakerPowerRating;
int overloadVoltage;
int previousBracketNumber = 0; //initially no attenuation
unsigned int adcStatistic;

LCD_INIT(); //initialize the LCD screen
SPI_MasterInit(); //initialize SPI communication
SPI_MasterTransmit(0xFF); //analog power up
SPI_MasterTransmit(0b10111111); //enable zero-crossing detection

while(1)
{
//take in user impedence
if((PORTC | (0b11110000)) == (0b11110001)) speakerImpedence = 2;
if((PORTC | (0b11110000)) == (0b11110010)) speakerImpedence = 4;
if((PORTC | (0b11110000)) == (0b11110100)) speakerImpedence = 8;

//take in user’s speaker power rating
if((PORTC | (0b00001111)) == (0b00001111)) speakerPowerRating = 100;
if((PORTC | (0b00001111)) == (0b00011111)) speakerPowerRating = 200;
if((PORTC | (0b00001111)) == (0b00101111)) speakerPowerRating = 300;
if((PORTC | (0b00001111)) == (0b00111111)) speakerPowerRating = 400;
if((PORTC | (0b00001111)) == (0b01001111)) speakerPowerRating = 500;
if((PORTC | (0b00001111)) == (0b01011111)) speakerPowerRating = 600;
if((PORTC | (0b00001111)) == (0b01101111)) speakerPowerRating = 700;
if((PORTC | (0b00001111)) == (0b01111111)) speakerPowerRating = 800;
if((PORTC | (0b00001111)) == (0b10001111)) speakerPowerRating = 900;
if((PORTC | (0b00001111)) == (0b10011111)) speakerPowerRating = 1000;

overloadVoltage = (sqrt(speakerImpedence*speakerPowerRating)*0.08*1023)/5;

//calculate the overloadVoltage
 //safety threshold
adcStatistic = adcPeakOrAve();
previousBracketNumber = calculateAttenuationBracket(adcStatistic, overloadVoltage,

previousBracketNumber);
 //The above code goes through one cycle of adc converting a set of
 //100 values, returning either its peak or its average, then using that

53

 //info along with the overloadVoltage and the old wiper position the command
 //1) determines the destination attenuation bracket the wiper needs

//to reach while defining each level as a ratio comparison of the adc reading
 //to the overloadVoltage 2) determines how far away from that destination it
 //is currently 3) goes through gradual steps to set the wiper to its new position

//4) returns the new bracket number of the wiper's position so that it can be set
//as the new previousBracketNumber in the main function

displayADCPeakandAttenuation(adcStatistic, overloadVoltage, previousBracketNumber);
 //update the display of the LCD screen to show the peak from the current set of

//ADC data (a value between 0 and 1023), the overloadVoltage value calculated
//from the user’s input data (on the 0 to 1023 range), and the attenuation level
//of the digital potentiometer (from 0 dB and –90 dB)

}
return 0;
}

//**
// File Name : ‘adcAveragingAndLCDfunctionsBethany.h’
//**
#include <avr/io.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "LCD.h"
#include "avr32_adc.h"

unsigned int adcPeakOrAve()
{
ADC_INIT(); // Initialize ADC

unsigned int adc_val[100];
unsigned int adcSum=0;
unsigned int adcPeak =0;
 for(int i = 0 ; i < 100 ; i++)
 {
 adc_val[i] = ADC_START(0); //set current adc value at channel 4

//to value in int
 adcSum = adcSum + adc_val[i]; //keep tally of adcSum for this set

//of 100 adc conversions
 if(adc_val[i] > adcPeak)
 {
 adcPeak = adc_val[i]; //if new high value, set that as peak
 }
 _delay_ms(10);
 //this is the wait time between

//samples (plus the 8
//clock cycles or so it takes between
//each ad conversion as occurs

 //in the ADC_START function
 }
return adcPeak;
}

void displayADCPeakandAttenuation(int adcPeak, int overloadVoltage, int

previousBracketNumber)
{
 char adcPeak_string[20];
 char previousBracketNumber_string[20];
 char overloadVoltage_string[20];

 sprintf(adcPeak_string,"%d",adcPeak); // Convert ADC int value to ASCII string

54

 sprintf(previousBracketNumber_string,"%d", (previousBracketNumber*2));

// Convert ADC binary value to ASCII string
 sprintf(overloadVoltage_string,"%d", (overloadVoltage));

// Convert overloadVoltage binary value to ASCII string
 LCD_COMMAND(LCD_CLEAR_HOME);

// Clear the LCD and send cursor to the beginning
 LCD_STRING("ADC: "); // Print text to LCD
 LCD_STRING(adcPeak_string); // Print ASCII adc value
 LCD_STRING(" OV: "); // Print text to LCD
 LCD_STRING(overloadVoltage_string); // Print ASCII overloadVoltage value
 LCD_ADDR(0x40); // Move cursor to second line
 LCD_STRING("Attenuation: -");
 LCD_STRING(previousBracketNumber_string);
 LCD_STRING("dB");
 _delay_ms(30); // Pause for 100ms before looping again
}

//**
// File Name : ‘avr32_adc.h’
//**

void ADC_INIT(void)
{
 ADMUX = 0b00000000;
 ADCSRA = 0b10000110; // ADC clock prescalar of 64
}

int ADC_START(unsigned char channel)
{
 ADMUX = channel;
 ADCSRA |= (1 << ADSC); // Start conversion
 while(ADCSRA & (1 << ADSC)); // wait for conversion to complete
 return ADC;
}

//**
// File Name : ‘digpotcontrolfinalbethany.h’
//**

#include <avr/io.h>
#include "util/delay.h"
#include "math.h"
#define SPI_PORT PORTB
#define SPI_DDR DDRB
#define DD_MISO 6
#define DD_MOSI 5
#define DD_SCK 7
#define DD_SS 4
#define POT_CS 1
#define LED 0
#define Bitset(port,pin) port|=(1<<pin)
#define Bitclr(port,pin) port&=~(1<<pin)

void SPI_MasterInit(void)

55

 {
 /* Set MOSI and SCK output, all others input */
 SPI_DDR = (1<<DD_MOSI)|(1<<DD_SCK)|(1<<DD_SS)|(1<<POT_CS)|(1<<LED);
 /* Enable SPI, Master, set clock rate fck/16 */
 SPCR=(1<<SPE)|(1<<MSTR)|(1<<SPR0);
 Bitset(SPI_PORT, 4);
 }

//__

void SPI_MasterTransmit(unsigned char cData)
 {
 /* Set SS low */
 Bitclr(SPI_PORT,1);
 /* Start transmission */
 SPDR = cData;
 /* Wait for transmission complete */
 _delay_ms(100);
 /* Set SS high */
 Bitset(SPI_PORT,1);
 _delay_ms(10);
 }

//___

int calculateAttenuationBracket(int currentVoltage, int overloadVoltage, int
previousBracketNumber)
{
int currentBracketNumber;
//setting up the attenuation bracket definitions
 if(currentVoltage < (0.9*overloadVoltage))
 {
 currentBracketNumber = 0;
 }
 else if(currentVoltage < (1.0*overloadVoltage))
 {
 currentBracketNumber = 1;
 }
 else if(currentVoltage < (1.1*overloadVoltage))
 {
 currentBracketNumber = 2;
 }
 else if(currentVoltage < (1.2*overloadVoltage))
 {
 currentBracketNumber = 3;
 }
 else if(currentVoltage < (1.3*overloadVoltage))
 {
 currentBracketNumber = 4;
 }
 else if(currentVoltage < (1.4*overloadVoltage))
 {
 currentBracketNumber = 5;
 }
 else if(currentVoltage < (1.5*overloadVoltage))
 {
 currentBracketNumber = 6;
 }
 else if(currentVoltage < (1.6*overloadVoltage))
 {
 currentBracketNumber = 7;
 }
 else if(currentVoltage < (1.7*overloadVoltage))
 {
 currentBracketNumber = 8;

56

 }
 else if(currentVoltage < (1.8*overloadVoltage))
 {
 currentBracketNumber = 9;
 }
 else if(currentVoltage < (2*overloadVoltage))
 {
 currentBracketNumber = 10;
 }
 else if(currentVoltage < (2.3*overloadVoltage))
 {
 currentBracketNumber = 11;
 }
 else if(currentVoltage < (2.7*overloadVoltage))
 {
 currentBracketNumber = 12;
 }
 else if(currentVoltage < (3.2*overloadVoltage))
 {
 currentBracketNumber = 13;
 }
 else if(currentVoltage < (3.7*overloadVoltage))
 {
 currentBracketNumber = 14;
 }
 else if(currentVoltage < (4.5*overloadVoltage))
 {
 currentBracketNumber = 15;
 }
 else if(currentVoltage < (5.4*overloadVoltage))
 {
 currentBracketNumber = 16;
 }
 else if(currentVoltage < (6.6*overloadVoltage))
 {
 currentBracketNumber = 17;
 }
 else if(currentVoltage < (8*overloadVoltage))
 {
 currentBracketNumber = 18;
 }
 else if(currentVoltage < (9.9*overloadVoltage))
 {
 currentBracketNumber = 19;
 }
 else if(currentVoltage < (12.2*overloadVoltage))
 {
 currentBracketNumber = 20;
 }
 else if(currentVoltage < (15.1*overloadVoltage))
 {
 currentBracketNumber = 21;
 }
 else if(currentVoltage < (18.8*overloadVoltage))
 {
 currentBracketNumber = 22;
 }
 else if(currentVoltage < (20*overloadVoltage))
 {
 currentBracketNumber = 23;
 }
 else if(currentVoltage < (22.5*overloadVoltage))
 {
 currentBracketNumber = 24;
 }
 else if(currentVoltage < (25*overloadVoltage))
 {
 currentBracketNumber = 25;
 }
 else if(currentVoltage >= (25*overloadVoltage))
 {

57

 currentBracketNumber = 26;
 }

 if(previousBracketNumber == currentBracketNumber)
 {
 SPI_MasterTransmit(potCommandValue(currentBracketNumber));
 }

 else if(previousBracketNumber > currentBracketNumber)//too soft
 {
 SPI_MasterTransmit(potCommandValue(previousBracketNumber-1));
 currentBracketNumber = previousBracketNumber-1;
 }

 else if(previousBracketNumber < currentBracketNumber)//too loud
 {

 SPI_MasterTransmit(potCommandValue(previousBracketNumber+1));
 currentBracketNumber = previousBracketNumber+1;
 }

displayADCPeakandAttenuation(currentVoltage, overloadVoltage, currentBracketNumber);

 return currentBracketNumber;

 }

//___

int bracketNumber(int PotCommand)
{
 if(PotCommand == 0b00000000) return 0;
 else if(PotCommand == 0b00000001) return 1;
 else if(PotCommand == 0b00000010) return 2;
 else if(PotCommand == 0b00000011) return 3;
 else if(PotCommand == 0b00000100) return 4;
 else if(PotCommand == 0b00000101) return 5;
 else if(PotCommand == 0b00000110) return 6;
 else if(PotCommand == 0b00000111) return 7;
 else if(PotCommand == 0b00001000) return 8;
 else if(PotCommand == 0b00001001) return 9;
 else if(PotCommand == 0b00001010) return 10;
 else if(PotCommand == 0b00001011) return 11;
 else if(PotCommand == 0b00001100) return 12;
 else if(PotCommand == 0b00001101) return 13;
 else if(PotCommand == 0b00001110) return 14;
 else if(PotCommand == 0b00001111) return 15;
 else if(PotCommand == 0b00010000) return 16;

58

 else if(PotCommand == 0b00010001) return 17;
 else if(PotCommand == 0b00010010) return 18;
 else if(PotCommand == 0b00010011) return 19;
 else if(PotCommand == 0b00010100) return 20;
 else if(PotCommand == 0b00010101) return 21;
 else if(PotCommand == 0b00010110) return 22;
 else if(PotCommand == 0b00010111) return 23;
 else if(PotCommand == 0b00011001) return 24;
 else if(PotCommand == 0b00011111) return 25;
 else if(PotCommand == 0b10011111) return 26;
}

//__

int potCommandValue(int bracketNumber)
{
 if(bracketNumber == 0) return 0b00000000;
 else if(bracketNumber == 1) return 0b00000001;
 else if(bracketNumber == 2) return 0b00000010;
 else if(bracketNumber == 3) return 0b00000011;
 else if(bracketNumber == 4) return 0b00000100;
 else if(bracketNumber == 5) return 0b00000101;
 else if(bracketNumber == 6) return 0b00000110;
 else if(bracketNumber == 7) return 0b00000111;
 else if(bracketNumber == 8) return 0b00001000;
 else if(bracketNumber == 9) return 0b00001001;
 else if(bracketNumber == 10) return 0b00001010;
 else if(bracketNumber == 11) return 0b00001011;
 else if(bracketNumber == 12) return 0b00001100;
 else if(bracketNumber == 13) return 0b00001101;
 else if(bracketNumber == 14) return 0b00001110;
 else if(bracketNumber == 15) return 0b00001111;
 else if(bracketNumber == 16) return 0b00010000;
 else if(bracketNumber == 17) return 0b00010001;
 else if(bracketNumber == 18) return 0b00010010;
 else if(bracketNumber == 19) return 0b00010011;
 else if(bracketNumber == 20) return 0b00010100;
 else if(bracketNumber == 21) return 0b00010101;
 else if(bracketNumber == 22) return 0b00010110;
 else if(bracketNumber == 23) return 0b00010111;
 else if(bracketNumber == 24) return 0b00011001;
 else if(bracketNumber == 25) return 0b00011111;
 else if(bracketNumber == 26) return 0b10011111;
}

