
Smart Presentation Remote: Software Report 

Margaret Garvan and Samuel Smith 

Overview 
The Smart Presentation Remote requires software to run on both the Atmel Xmega microcontroller as 

well as the host PC.  Interfacing between the applications is done through Bluetooth.  The 

microcontroller communicates through a Bluetooth UART device and the host PC connects to the device 

and treats it as a virtual COM port.  Throughout the semester, we have written a functional remote 

control application that demonstrates the capabilities of our device, but the framework was not easily 

extensible.  As our hardware is almost finished, we have allocated most of the remainder of the 

semester to software development. 

Microcontroller Program 
Our microcontroller program is relatively simple.  It starts by initializing all the peripherals and drivers.  It 

also draws the Gator Engineering logo to the screen on startup to demonstrate the features of the 

graphical LCD.  The body of the program runs in a continuous loop in which it polls the gyroscope over 

I²C.  It also checks the keypad.  Debouncing the keypad is performed by only transferring the keypad 

value during an interrupt routine which will be described later. 

Interrupts are used to control the rest of the microcontroller program.  The real-time clock is configured 

to generate interrupts at a rate of 8 Hz to transmit the keypad and gyroscope data to the host computer 

using the Xmega USART. We are hoping to increase this rate to 16 Hz with future optimization. The 

device implements a set of control words to manipulate device functionality from the host computer 

software.  The final version of the software will implement control bytes for the following features: 

1. Clear screen buffer 

2. Move screen buffer pointer to next line 

3. Render and draw text to screen 

4. Laser pointer toggle 

The current implementation is based on using the Bluetooth TX interrupt and transferring each read 

character (except control characters) to a small text buffer.  When the render command is issued, the 

text is drawn to the screen.  We are presently having some timing issues with copying all the Bluetooth 

data fast enough without errors and are considering various possibilities for optimization of the transfer 

such as lowering the baudrate to allow more time for each individual character to be processed.   

Rendering the LCD contents is performed through the driver provided for the screen. The current 

implementation is somewhat inefficient because it requires the entire screen to be rendered and 

transferred at the same time.  If time permits, we will modify the driver to allow for the transfer of 

single lines of the screen as opposed to drawing the entire screen all at once. This would be useful for 

features like the clock or timer, which are updated frequently and only take up a single line. 



A flowchart for the primary functionality of the driver program is provided below: 

Initialize Peripherals (LCD, keypad, 
Bluetooth, gyroscope, timers, etc.)

Bluetooth RX 
Interrupt

RTC Interrupt (8 
to 16 Hz)

On Bluetooth RX, 
copy received data 

(characters) to 
buffer

Transfer gyroscope 
and keypad data to 

Bluetooth TX
Poll gyroscope

Poll keypad
Write Command 

Issued

Render text to 
screen buffer and 
transfer buffer to 

screen

 

  



Driver Application 
The driver application for the PC is written in C# using Visual Studio 2010.  A preliminary version of the 

driver just polled the virtual COM port to which the Bluetooth device was connected and moved the 

mouse based upon gyroscope readings.  It could also emulate keyboard events and allow for simple 

control of a PowerPoint presentation. To demo writing to the screen, the program would place a clock 

on the screen as well as the current location of the mouse cursor. The old version of the program was 

very useful for testing purposes, but is now in the process of being completely rewritten from the 

ground up to allow for a more extensive software architecture. 

The new version of the software features a graphical user interface for the driver that allows the user to 

easily connect to the remote and choose a premade control profile for the remote.  Time permitting, a 

profile editor will be written, but this is not an immediate priority.  Using a text editor a profile can be 

created that enables the following features to be accessed on the remote control: 

1. Bind keys on the remote to keyboard events and mouse events. 

2. Bind gyroscope readings to mouse movements with a specified gain (sensitivity) or other input 

events with a specified threshold. 

3. Enable the timer feature.  This can either be a simple clock or a stopwatch with start, stop, and 

reset buttons. 

4. Enable the notes feature.  Notes are selected from a menu in the GUI. 

5. Enable the “buzzword” feature. A file containing buzzwords is selected in the GUI. 

The current state of the driver application is that the old version is working very well with the current 

version of our microcontroller code. We have just started writing the new version, but we are 

anticipating a smooth development process as we have already figured out how to communicate with 

the microcontroller and perform most operations.  We simply need to write a better program.  Only a 

very small number of changes to the microcontroller code will be required to accommodate the new 

driver application. No flowchart is provided for the driver as the code is event-driven and object-

oriented and thus not very transferable to a linear flow chart. A UML diagram showing all the classes 

and their interactions will be available in our final report. 


