University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 Robot Programming Professor EE
: Reid Harrison

University of Florida
Department of Electrical Engineering
EEL 5934 Intelligent Machines Design Lab

Robot Programming

CRITTER: AN EXAMPLE ROBOT 1

. GATHERING SENSORY INFORMATION 2
PROGRAMMING BEHAVIORS ' 3

WHY WAIT IS BETTER THAN SLEEP ' 9

University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 : Robot Programming ‘ Professor EE
Reid Harrison

CRITTER: AN EXAMPLE ROBOT

Let's consider a robot that was built at MIL several years ago. The robot, called Critter,
has two actuators: a left and right drive motor. Critter has nine sensors. The sensors are
described below.

o photosensitive ""nose': Critter's nose is an array of three Cadmium Sulfide (CdS)
photocells. The array points at the floor in front of Critter and can be used to detect
light or dark areas on the floor.

o photosensitive "eye': Critter's eye is also an array of three CdS cells. These cells
are aimed parallel with the ground.

o puck sensor: Critter can push small pucks around the floor. He has a microswitch
near the floor that is tripped by the presence of a puck.

o whiskers: Critter has two touch-sensitive whiskers--one on each side facing forward.

This fairly simple robot will 'b‘e used for several programming examples.

GATHERING SENSORY INFORMATION

IC makes it very easy to write processes that run in the background and perform useful
tasks. Perhaps the most useful task these processes can perform in robot software is that
of automatically gathering sensory information.

Consider the common IR proximity sensor. This sensor consists of an IR transmitter and
an IR receiver.” With the transmitter turned on, the sensor detects nearby obstacles. With
the transmitter turned off, the sensor can still detect IR beacons. Why not build a circuit
that allows the processor to switch the transmitter on and off? Then we can detect both
beacons and obstacles.

A sensory module that runs in the background can make this type of sensor very easy to
use.—Consider the following code segment: —

/* global variables */
int obstacle_sense, beacon_sense;

void sensor_module ()
{
while (1) {
turn transmitter on{();
wait (50); /* Wait 50 msec for transients to die */
obstacle_sense = analog(0); v

turn transmitter off();
wait (50); /* Wait 50 msec for transients to die */
beacon_sense = analog(0);

University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 Robot Programming Professor EE
Reid Harrison

void main()

{
start_process (sensor_module());

/* Put the rest of the program here */
}

Aslong as sensor_module () is running in the background, any other piece of code
can tell what the robot is sensing by looking at the global variables obstacle sense
and beacon_sense. Itis easy to see how a background process that "runs" the sensors
can make the programmers life much easier in the long run. Even if your sensors are much
simpler than this example, a sensory module can ease programming by translating
expressions like analog (5) into descriptive variable names. Even more importantly, if-
you ever reroute your sensors in hardware, you need only to change one small piece of
code.

PROGRAMMING BEHAVIORS

In this class, we are building agents to operate in the real world. When designing software
for real robots, it is important to keep a tight sensing-acting loop. The robot should
swiftly react to changes in the world it is sensing. A good way to build up functionality in
your robot is to develop several simple behavior modules. Each behavior links some
subset of the robot's sensors to some (or all) of its actuators.

The following program listing illustrates a complete program that contains a behavior
module called 1ine_following behavior (). This module implements a line-
following behavior on Critter, the robot described previously.

Program Listing 1: Simple Line-Following Behavior
/* GLOBALS */

/* Sensory Registers */

int left nose, center nose, right nose:
int left eye, center eye, right eye;

int puck_sense;

void sensor_module() /* Read sensors into global variables at 10 Hz */
{

while (1) {
left_nose = analog(0);
center nose = analog(l);
right_nose = analog(2);
left_eye = analog(3);
center eye = analog(4);
right eye = analog(5):;
puck_sense = analog(6);
wait (100); /* Wait 100 msec */

University of Florida 2 November, 1994 _ Keith L. Doty
EEL 5934 Robot Programming Professor EE
‘ Reid Harrison

void line_following behavior()
{

while (1) {
if (left nose < center_nose && left nose < right_nose) {
motor (0,0);

motor (1,100);

}
else if (right nose < center nose && right _nose < left nose) {

motor(0,100) ;
motor(1,0);

}

else {
motor (0,100) ;
motor(1,100);

}

}
}

|void main ()

{
beep () 7
start_process (sensor_module());
start_process(line_ following_ behavior()):;

}

With a minimal number of modifications, we could change the line-following behavior into
- a light-following behavior. We just change the sensory input from Critter's "nose" sensor
array to Critter's "eye" sensor array. We also change the greater-than signs to less-than
signs so that Critter will follow the brightest stimulus instead of the darkest stimulus. -

Program Listing 2: Light-following behavior module

void light following_ behavior ()
{
while (1) {
if (left_eye > center eye && left_eye > right eye) {
motor (0,0);

motor(1,100);

}

eise—dﬂ?—eEight:eye—>~een%ef:eye~&&—righ%:eye~>-&eft:eye) {
motor (0,100);
motor(1l,0);
}
else {
motor(0,100);
motor(1,100);
}

Now that we have developed a small repertoire of behavior modules, we can link them
together to achieve more advanced performance. Suppose we want Critter to follow a
dark line until he happens upon a puck. When he gets a puck, we want him to follow a

University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 Robot Programming Professor EE

_ Reid Harrison
light until he loses the puck. This functionality clearly involves more than one behavior.
Notice that both behavior modules (line-following and light-following) output to Critter's
drive motors. We need to develop a behavior arbitration scheme to decide which
behavior module gets to control Critter's drive motors at a given instant in time.

The following listing is a complete program which implements the line-following and light-
following behaviors, as well as an arbitration module which routes the motor commands
from the line-following behavior module to the motors whenever the robot is not pushing
a puck. Notice that the two behavior modules have been slightly altered. They do not
directly control the motors. Instead, they output left and right motor commands as global
variables. The arbitration module decides which commands reach the motors. In IC, the
only way to pass information between processes is through global variables.

(Note: If two behavior modules output to different actuators, there may be no need to
arbitrate between the behaviors. For example, you could have one set of behaviors drive
the robot around while another set of behaviors drive motors that keep sensors pointed in
appropriate directions. These two sets of behaviors could operate independently with no
interference.)

Program Listing 3: Line-following and light-following behaviors with arbitration
/* GLOBALS */

/* Sensory Registers */

int left_nose, center nose, right_nose;
int left_eye, center_eye, right_eye;
int puck_sense;

void sensor_module() /* Read sensors into global variables at 10 Hz */
{
while (1) {
left nose = analog(0);
center nose = analog(l);
right nose = analog(2);

Teft_eye = analog(3)s

center eye = analog(4):;
right—eye——=—analog{5)
puck_sense = analog(6);

wait (100); /* Wait 100 msec */

/* globals */
int line follow_left, line_follow_right;

void line following behavior()
{
while (1) {
if (left_nose < center nose && left nose < right_nose) {
line follow left = 0;
line follow right = 100;

University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 Robot Programming Professor EE
Reid Harrison

}
else if (right nose < center nose && right_nose < left nose) {

line follow_left = 100;

" line_follow_right = 0;

}

else {
line follow_left = 100;
line follow_right = 100;

}

}
}

/* globals */
int light follow left, light_ follow_right;

void light_following behavior ()
{
while (1) {
if (left_eye > center_eye && left_eye > right_eye) {
light follow_left = 0;
light_follow right = 100;
}
else if (right_eye > center eye && right _eye > left_eye) {
light_follow_left = 100;
light follow_right = 0;
}
else {
light_follow_left = 100;
light follow _right = 100;
}
}
}

void behavior arbitrate()
{
while (1) {
if (puck_sense < 127) {
motor(0,line_ follow_left);
motor (1, llne follow . _right):;
}

else {

motor(0,light follow_ left);

motor(l,light follow right);

-

}
}
}

void main()

{
beep() ;
start_process (sensor_module());
start_process(line following behavior()):;
start process(llght following behavior()):
start_process(behavior arbitrate());

See Figure 1 for a graphical representation of this program. It often helps to draw these
box-and-arrow diagrams when writing behavior programs. Each box represents a module,

University of Florida 2 November, 1994 ' Keith L. Doty
EEL 5934 Robot Programming Professor EE

Reid Harrison
or process. Each arrow represents some information that is passed. This information
usually takes the form of a global variable.

You may notice that the line-following and light-following behaviors are both always
actively running in the background, consuming processor time. This may strike many as a
wasteful programming practice since only one behavior is "active” at a given time.
However, building robot programs in parallel by using many multitasked processes pays
off in the long run. Additional behaviors can easily be added in parallel with minimal

- modifications to the arbitration module. Also, if you are worried about wasting processor
time just remember that few robots need to get new sensory information or update
actuators at greater than about 10 Hz. We are using microprocessors that run at 2 MHz.

Arbitrate

University of Florida 2 November, 1994
EEL 5934 Robot Programming
Sensors Software
Motor
Eye Sensor Light Commands
—_— .
Following
| —>
Puck Sensor
>
——
Nose
Sensor Line
Commands

Figure 1 Graphical representation of behavior program.

Keith L. Doty
Professor EE
Reid Harrison

Actuators

Drive
Motors

University of Florida 2 November, 1994 Keith L. Doty
EEL 5934 Robot Programming - Professor EE
Reid Harrison

WHY wait IS BETTER THAN sleep

The IC library 1ib_rw10. c contains a function called sleep (int msec) that
causes a delay of msec milliseconds. This function is not good to use in processes that
will be multitasked, because it actively "counts time" to produce the delay. The following
listing implements a superior function.

void wait (int milli seconds)
{

long timer a;

timer a = mseconds() + (long) milli seconds:
while(timer a > mseconds()) {

defer();
} .
}

The wait function avoids a "busy wait" by looking at the system clock. If the clock has
not reached a sufficient count, a defer () isissued. The defer () function tells the
multitasking executive to skip to the next task without wasting any more time on this one.
It lets multitasking programs make much more efficient use of time.

If you are using IC, you should add this command to your pi'ograms, or to your personal
library. Notice that the argument passed to wait is the time in milliseconds, not seconds.

CRITTER

COMPUTER Motorola MC68HCI1 (256B RAM, 512B EEROM)
. LANGUAGE Assembly |
| SENSQR SUITE Six CdS light sensitive resmtors ‘Two contact whiskers
[No. [Sensor Type Range —[Precision [Function Location
2 [Contact whisker |100mm NA Object detection Front
3 |CdS Smm NA Dark path follo Front-down
Photoresistor . | ‘T
3 |CdS - |INA NA | Follow light| above | Front-
Photoresistor | ambient forward
1 | Microswitch NA NA Disk contact detect |Front
ACTUATION Gearhead DC motors on ea’E‘h wheel.
BEHAVIORS |

Follows black lines. Captures ‘black disks. Seeks li

‘Whiskers for obstacle detection. Backs up and turns a

whiskers touched.

- FUNCTION . Anibot (Animal-Robot)

Follows dark trail, gathers disks found on trail, deposits

- with captured disk.
random angle when

them at a light source.

