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Robot Control 

•  Introduction 
– There is a nice review of the issues in robot control in 

the 6270 Manual  
– Robots get stuck against obstacles, walls and other 

robots. 
Why? Is it mechanical or electronic or sensor failure? 
Answer: Sometimes! More often than not it is because 

of POOR SOFTWARE design. The robot is not 
mechanically stuck, it is mentally stuck! The program 
did not account for this situation and did not provide 
a “way out” of the dilemma. 
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Robot Control 

•  Example 
– Bump sensors (switches) do not always trigger! 
– A robot wall follows for a while and then for no 

apparent reason bumps the wall. 
– A robot approaches a corner and “trembles” (that is, 

gets trapped!) 
•  How long does it take to write robot software? 

 One or two days like in other courses? 
Two factors to consider: 
You are running in real-time and you are  multitasking 
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Robot Control 

 You cannot predict every situation, further, there 
are always situations you never thought about 
when designing the software 

•  How often do we deal with time-varying data in 
our engineering curriculums? 

•  Can you write contest/demo day software at the 
same time you are modifying your platform? 

•  What happens if your code has “values” the were 
obtained by calibration (e.g., servos) and you 
now have to replace your servos? 
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Arroyo’s Rules of Thumb 

•  Successful robots are those that have their 
platform completed by pre-demo day. 

•  Successful robots demo at the 90-95% level on 
pre-demo day/week. 

•  Successful robots have software that modularly 
and systematically test subsystems independently 

•  Successful robots have software that was 
developed deliberately, using sound software 
engineering design principles and follow 
established conventions and hints given in class. 
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•  Negative Feedback - it is called negative 
feedback because corrections decrease the error. 
– You compute an error signal 
– You make a change that is proportional to the error 
– Consider a wall-following example 

•  Sense the values 
•  Determine if too close or too far 
•  Turn either toward the wall or away from the wall 

accordingly 

Robot Control Strategies 
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Int Wall_dist(sensor_value Int) 
 {If Sensor_value < Too_far_threshold Return Too_far 

    If Sensor_value > Too_close_threshold Return Too_close 
   Return Ok} 

Void Follow_wall ( ) 
 {While (1) { 
  Int Sense = Analog(ir_sensor); 
  Int State = Wall_dist(Sense); 
  If (State==Too_close) Turn_away( ); 
  else If (State==Too_far) Turn_toward( ); 
  else Go_straight; 
   }} 

Robot Control Strategies 
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•  Negative Feedback - Point 
– How sharply we turn the motors affect performance 
–  IR & other sensors need calibration 
– Threshold values need to be EXPERIMENTALLY 

determined 
– How fast we go around the loop determines 

performance 
– Can we change the motors smoothly? 

Robot Control Strategies 
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•  Open Loop Control - Figure a priori how long or 
how well you perform an action and program the 
robot to perform the action w/o measuring the 
results (i.e., no feedback). 
– Example: Use a shaft encoder to generate pulses and 

figure the relationship between pulses and distance 
– Requires a high degree of accuracy & predictability 
– Requires careful tuning 
– Errors accumulate (like compound interest) 
– Has not historically worked well in IMDL robots 

Robot Control Strategies 
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Robot Control Strategies 
•  Feedforward Control - Attempts to predict (via 

measurement) parameters that affect open loop 
programs (like dynamically figuring a priori how 
the pulses in shaft encoders change as a function 
of battery voltage level and correcting “a priori” 
the pulse ticks vs distance measurements.) 

•  Another way of thinking about this is that it is like 
“compensating” open loop programs via “a priori” 
measurements. 
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Sensor Calibration 

•  Threshold values for sensor levels, as measured by 
the A/D system (0-255, 1024, 4096) are correlated 
to physical units before encoding in your software 

•  As a minimum these should be #define constants 
•  The better IMDL robots have included self-

calibration or dynamically adjusted calibration 
routines to automatically adjust the sensors. 

•  Example: Jose Diaz’s robot when first turned on, would 
approach a wall and dynamically adjust the Too_close / 
Too_far sensor thresholds.  



6 

Machine Intelligence Laboratory 

11 

Sensor Calibration 

•  Tae Choi’s PhD work at MIL - the robot learns its 
own threshold values (uses machine learning). 

•  Light Sensors (CDS cells) 
– Affected by room lightning levels 
– Should be physically shielded 
– You must control the source of the light if the “degree 

of light” is important 
– You should measure the “ambient light level” is 

possible 
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Sensor Calibration 
•  Motor/Servo Sensing 

– Depend heavily on battery level, which can be sensed 
using a voltage divider circuit 

– You can sense battery charge by using a thermistor 
– You should measure “free”, “geared” and “stall” 

currents 
•  You should use “persistent global variables” for all 

your calibration values 
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Failures 
•  Mechanical Failures: careful design exploiting 

modularity and with counter-measures 
•  Electrical Failures: loose connections, cold solder 

joints, shorted leads, etc. Use good techniques and 
plenty of hot glue and preventive measures 

•  Unreliable Sensors: sensors provide “noisy” 
samples (the value changes given the same 
physical conditions) or fails to register (e.g., a 
bump sensor that does not trigger). 
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Sensor Failures 
•  Spurious Sensor Data - (can software filtering be 

used?) Fix via averaging or taking differences 
•  Missed data - electrically or because of software 

design you may miss reading a sample (the change 
may have been too fast/slow for the software to 
detect it) 

•  Corruption - battery level or a change of 
environment change the sensor readings 

•  Since filtering is equivalent to averaging it is 
possible to filter and detect anomalies and fix  
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Problems in  
Task-Oriented Control 

•  Robot runs into a wall, object or other robot 
Respond to bump/switch sensor 
The bump/switch sensor did not trigger 

•  Robot wanders and never “sees” anything 
How long do you wander and not see (spin in place) 

•  Robot slams into a wall, object or other robot 
Respond forcefully to a bump/switch sensor (oscillate) 
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•  Sensor, bump mechanism fall off or disconnects 
Detect anomalous readings and stop(?) 

•  The board fails 
•  The board resets 
•  Electrical noise 
•  Multiple battery packs 

Problems in  
Task-Oriented Control 
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To Handle Possible 
Problems in Task-
Oriented Control 

•  Exit Conditions 
–  If a robot does not sooner or later run into  an obstacle, 

or sense a value, then something is wrong 
–  Instead of while(1) use while (!stuck()) and return 

either Normal_exit or Error_exit values 
•  Timeout -- add a timer-based exit condition or 

count the number of actions. If too many, then do 
something random 
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To Handle Possible Problems 
in Task-Oriented Control 

•  Monitor Transitions 
– Correct sequences are determined a priori, and if you 

get a wrong sequence something is wrong or do 
something random (e.g., you cannot be following a 
wall if all you get is Turn_left commands…) 

•  To multi-task or not to multi-task 
– Task sequence (use a loop to execute tasks) 
– Allow concurrent tasks that do not compete 
– Use priority or other tricks to resolve task conflicts 


