
1

Machine Intelligence Laboratory

1

Robot Control

•  Introduction
– There is a nice review of the issues in robot control in

the 6270 Manual
– Robots get stuck against obstacles, walls and other

robots.
Why? Is it mechanical or electronic or sensor failure?
Answer: Sometimes! More often than not it is because

of POOR SOFTWARE design. The robot is not
mechanically stuck, it is mentally stuck! The program
did not account for this situation and did not provide
a “way out” of the dilemma.

Machine Intelligence Laboratory

2

Robot Control

•  Example
– Bump sensors (switches) do not always trigger!
– A robot wall follows for a while and then for no

apparent reason bumps the wall.
– A robot approaches a corner and “trembles” (that is,

gets trapped!)
•  How long does it take to write robot software?

 One or two days like in other courses?
Two factors to consider:
You are running in real-time and you are multitasking

2

Machine Intelligence Laboratory

3

Robot Control

 You cannot predict every situation, further, there
are always situations you never thought about
when designing the software

•  How often do we deal with time-varying data in
our engineering curriculums?

•  Can you write contest/demo day software at the
same time you are modifying your platform?

•  What happens if your code has “values” the were
obtained by calibration (e.g., servos) and you
now have to replace your servos?

Machine Intelligence Laboratory

4

Arroyo’s Rules of Thumb

•  Successful robots are those that have their
platform completed by pre-demo day.

•  Successful robots demo at the 90-95% level on
pre-demo day/week.

•  Successful robots have software that modularly
and systematically test subsystems independently

•  Successful robots have software that was
developed deliberately, using sound software
engineering design principles and follow
established conventions and hints given in class.

3

Machine Intelligence Laboratory

5

•  Negative Feedback - it is called negative
feedback because corrections decrease the error.
– You compute an error signal
– You make a change that is proportional to the error
– Consider a wall-following example

•  Sense the values
•  Determine if too close or too far
•  Turn either toward the wall or away from the wall

accordingly

Robot Control Strategies

Machine Intelligence Laboratory

6

Int Wall_dist(sensor_value Int)
 {If Sensor_value < Too_far_threshold Return Too_far

 If Sensor_value > Too_close_threshold Return Too_close
 Return Ok}

Void Follow_wall ()
 {While (1) {
 Int Sense = Analog(ir_sensor);
 Int State = Wall_dist(Sense);
 If (State==Too_close) Turn_away();
 else If (State==Too_far) Turn_toward();
 else Go_straight;
 }}

Robot Control Strategies

4

Machine Intelligence Laboratory

7

•  Negative Feedback - Point
– How sharply we turn the motors affect performance
–  IR & other sensors need calibration
– Threshold values need to be EXPERIMENTALLY

determined
– How fast we go around the loop determines

performance
– Can we change the motors smoothly?

Robot Control Strategies

Machine Intelligence Laboratory

8

•  Open Loop Control - Figure a priori how long or
how well you perform an action and program the
robot to perform the action w/o measuring the
results (i.e., no feedback).
– Example: Use a shaft encoder to generate pulses and

figure the relationship between pulses and distance
– Requires a high degree of accuracy & predictability
– Requires careful tuning
– Errors accumulate (like compound interest)
– Has not historically worked well in IMDL robots

Robot Control Strategies

5

Machine Intelligence Laboratory

9

Robot Control Strategies
•  Feedforward Control - Attempts to predict (via

measurement) parameters that affect open loop
programs (like dynamically figuring a priori how
the pulses in shaft encoders change as a function
of battery voltage level and correcting “a priori”
the pulse ticks vs distance measurements.)

•  Another way of thinking about this is that it is like
“compensating” open loop programs via “a priori”
measurements.

Machine Intelligence Laboratory

10

Sensor Calibration

•  Threshold values for sensor levels, as measured by
the A/D system (0-255, 1024, 4096) are correlated
to physical units before encoding in your software

•  As a minimum these should be #define constants
•  The better IMDL robots have included self-

calibration or dynamically adjusted calibration
routines to automatically adjust the sensors.

•  Example: Jose Diaz’s robot when first turned on, would
approach a wall and dynamically adjust the Too_close /
Too_far sensor thresholds.

6

Machine Intelligence Laboratory

11

Sensor Calibration

•  Tae Choi’s PhD work at MIL - the robot learns its
own threshold values (uses machine learning).

•  Light Sensors (CDS cells)
– Affected by room lightning levels
– Should be physically shielded
– You must control the source of the light if the “degree

of light” is important
– You should measure the “ambient light level” is

possible

Machine Intelligence Laboratory

12

Sensor Calibration
•  Motor/Servo Sensing

– Depend heavily on battery level, which can be sensed
using a voltage divider circuit

– You can sense battery charge by using a thermistor
– You should measure “free”, “geared” and “stall”

currents
•  You should use “persistent global variables” for all

your calibration values

7

Machine Intelligence Laboratory

13

Failures
•  Mechanical Failures: careful design exploiting

modularity and with counter-measures
•  Electrical Failures: loose connections, cold solder

joints, shorted leads, etc. Use good techniques and
plenty of hot glue and preventive measures

•  Unreliable Sensors: sensors provide “noisy”
samples (the value changes given the same
physical conditions) or fails to register (e.g., a
bump sensor that does not trigger).

Machine Intelligence Laboratory

14

Sensor Failures
•  Spurious Sensor Data - (can software filtering be

used?) Fix via averaging or taking differences
•  Missed data - electrically or because of software

design you may miss reading a sample (the change
may have been too fast/slow for the software to
detect it)

•  Corruption - battery level or a change of
environment change the sensor readings

•  Since filtering is equivalent to averaging it is
possible to filter and detect anomalies and fix

8

Machine Intelligence Laboratory

15

Problems in
Task-Oriented Control

•  Robot runs into a wall, object or other robot
Respond to bump/switch sensor
The bump/switch sensor did not trigger

•  Robot wanders and never “sees” anything
How long do you wander and not see (spin in place)

•  Robot slams into a wall, object or other robot
Respond forcefully to a bump/switch sensor (oscillate)

Machine Intelligence Laboratory

16

•  Sensor, bump mechanism fall off or disconnects
Detect anomalous readings and stop(?)

•  The board fails
•  The board resets
•  Electrical noise
•  Multiple battery packs

Problems in
Task-Oriented Control

9

Machine Intelligence Laboratory

17

To Handle Possible
Problems in Task-
Oriented Control

•  Exit Conditions
–  If a robot does not sooner or later run into an obstacle,

or sense a value, then something is wrong
–  Instead of while(1) use while (!stuck()) and return

either Normal_exit or Error_exit values
•  Timeout -- add a timer-based exit condition or

count the number of actions. If too many, then do
something random

Machine Intelligence Laboratory

18

To Handle Possible Problems
in Task-Oriented Control

•  Monitor Transitions
– Correct sequences are determined a priori, and if you

get a wrong sequence something is wrong or do
something random (e.g., you cannot be following a
wall if all you get is Turn_left commands…)

•  To multi-task or not to multi-task
– Task sequence (use a loop to execute tasks)
– Allow concurrent tasks that do not compete
– Use priority or other tricks to resolve task conflicts

