
University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 1/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

OBJECTIVES
This lab will introduce you to the concept of developing
with a microcontroller while focusing on the use of
General Purpose Input/Output (GPIO) pins. You will be
introduced to an Integrated Development Environment
(IDE) where you will make a simple program to control
an output device using a simple input device.

THIS Lab expects that you have an understanding of
programming and simple circuit design. If at any time
you are lost, please ask for clarification.

REQUIRED MATERIALS
• Epiphany-DAQ board
• Wire Jumpers
• Switch
• LED
• Resistors
• Breadboard
• Multimeter (if needed)

DISCUSSION
In this section we will review common concepts for
developing a simple circuit and program as this lab will
review. Please read the sections that you may be
unfamiliar with from the following list:

• Digital I/O
• Number Bases
• Ports and Registers
• Masking
• Breadboard Testing

Digital I/O
When building a device, such as a robot, it is often
desired to use a microcontroller to control the behavior of
the system. Though microcontrollers may have many
different abilities, the simplest and most common is the
use of digital (binary) input and output signals. A digital
signal may only be in the form of one out of two
possibilities. Various descriptions may be given to those
possibilities:

Table 1. Digital Signal Descriptions
On Off

High Low
Vcc Ground

5V (3.3V) 0V
1 0

True False

Some examples of digital inputs may be in the form of a
Switch, digital IR Sensor, or digital Tilt Switch. These
types of devices typically have three wires in the form of
a power and ground source, as well as a single output
source acting as the digital signal. A digital input may

enter a microcontroller through GPIO pins that are
typically grouped in the form of 8-bit ports. As the input
enters the microcontroller through a port/pin, software
may be used to detect a change in the pin and react
accordingly.

While digital inputs may be used by the microcontroller
to change the behavior of the system, digital outputs are
typically the result of the behavior change. When
something happens in the system, digital outputs may be
used to cause an external affect. Examples of digital
outputs are in the form of LEDs or Mechanical
Switches/Relays.

When working with digital inputs, some considerations
should be made in regards to the voltage and current
levels of the digital signal as well as the tolerance of the
microcontroller pins. If a pin is 3.3V tolerant, it is best
not to supply the pin with 5V. This means, as an input,
you should limit the signal to the tolerance of the input
pins of the microcontroller. This may require a change in
circuitry, or simply choosing the right sensor to output the
desired voltage.

As for outputs, the consideration should be placed in what
the output capabilities of the microcontroller are, as well
as the required voltage and current levels of the device
being supplied the signal. If you are outputting a digital
signal to an LED, it needs to be at the correct voltage and
current to power the LED with the desired brightness.

Number Bases
When programming microcontrollers, it is typically
required to understand binary and hexadecimal number
systems, which are base-2 and base-16 systems
respectively. Remember that our normal number system
that we use is decimal, base-10 number system. There are
many resources on how bases work through the internet,
however, we will review the concepts.

When working with number systems, they are typically
designated in text by placing a subscript following the
value. The subscript value is set to the base of the system.
For example, a decimal value may be given as 3710. To
represent a number from a base to decimal, the following
equation may be used:

The letter b in the equation represents the base of the
number, while an represents the digit in place of the
number.

When dealing with binary number systems, a digit is
simply either a 0 or a 1. A single digit in binary is often

University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 2/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

called a bit. To represent a number from base-10 as we
are familiar with, it will take many bits. Each bit from
right to left is a higher order of the base, i.e., 22 21 20. See
the following for an example:

12310 = 0111 10112
12310 = 1·26 + 1·25 + 1·24 + 1·23 + 0·22 + 1·21 + 1·20

Hexadecimal systems are handled in the same format as
binary, however at base-16, using values from 0 to 9 and
A – F. Notice that a hexadecimal value represents
decimal values from 0 to 15. It is important to note a
commonality between binary and hexadecimal. Binary
numbers are made of multiple bits. Four bits grouped
together form a nibble and also may be used to form a
hexadecimal value. Eight bits grouped together form a
byte and are also formed of two hexadecimal values. See
a continuation of the previous example below:

12310 = 0111 10112
12310 = 7 B16

PORTS AND REGISTERS
To access ports in the microcontroller, the IDE typically
allows you to type the name and letter designation of the
port. For example when reference PORT E:

PORTE

Typically, ports have registers that tell various things
about the port. The three primary registers used are
DIRECTION (DIR), IN, and OUT. Registers are setup
to reference each bit of the port, therefore, in an 8-bit port
setup, the register will be 8 bits. Understand that these
registers will change the value of every bit of the port.
Each bit of the value set to the register represents the
value or affect that register has to a specific pin. For
example, if I want to reference pin 2 only, my hex value
to represent that pin will be 0x04.

In more detail, the DIR register specifies the direction
that each and every pin of the port is set to, in regards to
input or output. On most chips, the default direction is
input. On Atmel chips, to designate a pin as input, the
DIR register value for that pin must be set to a zero. To
designate a pin as output, the DIR register value for that
pin must be set to a one.

The IN register specifies a value read into the port from
an external source. The OUT register specifies a value to
be sent out from the port. In programming, a port register
may be set to a value with the following command.

PORTD.OUT = 0x01;

This effectively says that pin 1 should have an output of a
high value while all other pins are low. The following
table reviews each standard register.

Table 2. Standard PORT registers
PORTx.DIR Set the Direction of all pins for the port
PORTx.IN Holds the input value read for the port
PORTx.OUT Set the output value for all pins of the

port

Occasionally, registers have extra specifications that
allow further modification of their values. They are
typically in the form of SET, CLR, or TGL. These
modifiers are used in situations where it is desired to
affect only a single pin of a port, and not every pin as the
standard DIR, IN, and OUT registers do. Which pin is
modified still uses the process of changing the value of a
bit representing the pin in either binary or hexadecimal.

When a value is used with the SET modifier, it designates
which pin of the port should be set high. When using the
CLR modifiers, this value designates which pin of the
port should be set low (cleared). The TGL modifier
simply says to toggle whichever pin the value references.
A few examples are below:

PORTD.DIRSET = 0x02
PORTD.DIRCLR = 0x11
PORTD.OUTSET = 0x03

The first example sets pin 1 of PORTD Direction register
to high. The second example sets pin 4 and pin 0 of
PORTD Direction register to low. The final example sets
pin 1 and pin 0 of PORTD Output register to high.

Table 3. PORT Registers with Modifiers
PORTx.DIRSET Set the Direction of specific pins

for the port to output
PORTx.DIRCLR Set the Direction of specific pins

for the port to input
PORTx.DIRTGL Toggle the Direction of specific

pins for the port to the opposite of
current value

PORTx.OUTSET Set the Output Value of specific
pins for the port to high

PORTx.OUTCLR Set the Output Value of specific
pins for the port to low

PORTx.OUTTGL Toggle the Output Value of specific
pins for the port to the opposite of
current value

Masking
When working with PORTs, it is commonly desired to get
a value of a single pin in the port. To do this, we do
something called AND MASKING. To do this, you must

University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 3/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

first generate a hexadecimal byte (two hex characters) that
represents the bit that you are interested in, creating your
MASK. Then, if you simply AND the PORT value with
the MASK, the result will be the value of the pin/bit in
question.

PORTD.IN & 0x08

The example will give the result of whatever is held in
pin/bit 3.

Breadboard Testing
When testing circuits, you may want to use a breadboard.
Breadboards come in many sizes and flavors, however,
you may be using one that is similar to that in Figure 1.

Figure 1 Breadboard

When using a breadboard, you must understand how each
hole is grouped and connected to each other. A close-up
of a breadboard is given in Figure 2.

Figure 2 Breadboard Groupings

The board has two types of regions called socket strips
and bus strips. Socket strips consist of groups of five
holes arranged in a horizontal manner, as shown by the
Yellow, Orange, and Green rectangles. Each hole in a
group is shorted together forming a node. For example,
this means that all five holes in the Yellow rectangle are
connected together. If you place Vcc in the left hole, the
Vcc value will also be in the right hole.

Each socket strip is separate from each other. This means
that all pins in the Orange rectangle are shorted together,
however, they have no connection to the Yellow
rectangle. It is possible to connect a single wire between
each socket strip to make a connection.

Bus strips, designated by the Blue and Red rectangles, are
groupings of five pins arranged in a vertical manner.
Even though these strips are setup in groups of five holes,
every single hole in the column is shorted together.
However, they are not shorted to the next column, i.e.,
Blue column and Red column are not connected. Bus
strips are typically used for supply sections of the board
with power and ground.

LAB PROCEDURE
Epiphany-DAQ board and Atmel Studio
NOTE: The below section describes using an Atmel
based chip. If you have already received your desired
microcontroller, you may use it and demonstrate the
following requirements. Your TA may or may not have
the knowledge of your board to directly help you, but feel
free to ask for assistance.

Today you will be introduced to the Epiphany-DAQ
board for a simple development test program. The board
has two sets of pins on the left and right side of the board;
16 pins for each set. Below is the pinout for the board:

University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 4/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

Table 5. Digital Signal Descriptions
Pin Label Name Pin Label Name

0 PC1 G GND
1 PD0 AI0- ADC0 -
2 PD1 AI0+ ADC0 +
3 PD2 G GND
4 PD3 AI1- ADC1 -
5 PD4 AI1+ ADC1 +
6 PD5 G GND
7 PR1 AI2- ADC2 -
8 PR0 AI2+ ADC2 +
9 PE3 G GND

10 PE2 AI3- ADC3 -
11 PE1 AI3+ ADC3 +
12 PE0 G GND
2.5 2.5V AO- DAC -
5.0 5.0V AO+ DAC +
G GND G GND

Any name in the form of Px# designates a PORT, the
letter designation given to that port, and the pin number
(i.e., PD5 references PORT D pin 5). Any name in the
form of ADC is an Analog to Digital input. There are
four analog inputs on this board. Each analog port has a
negative and positive source. Names in the form of DAC
are Digital to Analog outputs. Both ADCs and DACs will
be discussed in a later lab.

Figure 3 shows the physical Epiphany-DAQ board. The
left and right screw terminals match the various pins
described in Table 4. When you flip over the board, you
will find labels next to each terminal. When connecting
wires to the Epiphany-DAQ board, you must screw the
terminal all the way down to make a tight connection to
the wire. Also take care not to allow a power supply wire
and ground wire to touch.

Figure 3 Epiphany-DAQ Board

The board is programmed and powered via a standard
USB Type B cable. To program the board, you need the
Atmel Studio IDE and the ATmega Xmega Bootloader
software (chip45boot2), each located below:

http://www.atmel.com/Microsite/atmel_studio6/
http://www.chip45.com/avr_bootloader_atmega_xmega_c
hip45boot2.php

Once both applications are installed, ask your TA for the
current library and solution file for the Epiphany-DAQ
board. The project solution file that you receive may be
used to create applications for the board. It includes
various functions and libraries that will simplify certain
functions. It is in your best interest to review any library
or function that you use to better understand the code. If
you do not understand the functions, you may ask your
TA for clarification.

Switch and LED circuit
Once all software has been installed, it is time to create a
simple switch and LED circuit for testing. You should
first collect a push button switch, LED, two resistors, and
a few jumper wires.

For this lab, you should create a simple pull-up switch
using the circuit shown in Figure 4.

University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 5/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

Figure 4 Pull-up Switch Circuit

Any digital signal that acts as a switch type device will
typically be used in the form of the above circuit. The
+5V represents whatever power supply will generate the
correct tolerance for the microcontroller pins. The Red
line with the label A is the digital source leaving the
switch and connecting to the microcontroller input pin.
Using the provided push button switch and resistor, build
the above circuit. Once this circuit is made, Choose any
of the pins connected to Port D and run the digital
input to that pin.

Once the switch circuit is complete, begin the LED
circuit. For the time being, we will create what is known
as an Active High LED circuit. Discussion on what an
Active Low LED circuit may be given at a later time. See
the circuit diagram, in Figure 5, for the LED circuit:

Figure 5 Active-High LED Circuit

The output of the microcontroller should enter the LED
circuit at the label B(H). Pay attention to the direction of
the LED, noticing that the Anode side is on the top and
the Cathode side is on the bottom. When working with a
physical LED, the long lead is the Anode, the short lead is
the Cathode. This may also be noticed by the physical
flat edge of the LED, which also represents the Cathode

side. Using the provided LED and resistor, build the
above circuit. Once this circuit is made, Choose any of
the pins connected to Port D (other than that chosen
for the switch) and run the digital output from that
pin to the LED.

Creating the Program

It is now time to create a simple program. In the top right
of the IDE, right click on the project name, as shown by
the red box in Figure 6, and choose Add -> New Item. In
the new window, Choose C File and give the file a
relevant name for the lab. Now, open the blank.c file
(template for this lab), copy the code, and paste it into
your newly created C File.

Figure 6 Atmel Studio Solution Explorer

To allow for the microcontroller to communicate with the
previously created switch and LED, two ports must be
configured. Going back to the previous section, create
two separate hexadecimal bytes to represent which pin is
being set as output and which is input (NOTE: this can be
done in binary as well).

Using the correct register for the desired port and pin,
write the code required to accurately define the
required directions. This code should be placed in the
setup function. Hint: This should only take 1 to 2
lines.

Now, creating a simple IF/ELSE statement, check the
desired input pin using AND MASKING. If the pin is

University of Florida EEL 4665/5666 -Spring 2016 Dr. Antonio Arroyo, Andrew Gray
Electrical & Computer Engineering Revision 0
Page 6/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16

Simple GPIO and IDE Programming

high, set the desired output pin for the LED to high,
otherwise, set the output pin to low. This code should be
placed in the loop function.

To compile the program, first select the blank.c file in the
solution explorer. Locate the properties window below
the solution explorer, shown in Figure 7. Click on the
Build Action option, select the drop down box, and
change the option from “Compile” to “None”. Repeat
these steps for the file you created for this lab, except
change the option from “None” to “Compile”.

Figure 7 Atmel Studio File Properties

Now, view the menu bar at the top, and choose Build ->
Build Solution. If no errors occur, you are ready to
continue.

Programming the Board
Once the program is complete, open chip45boot2, as
shown in Figure 8. Choose the correct COM Port for
your board. Set the Buadrate as high as you can. Click
the Select Flash Hexfile, button and navigate to the folder
you saved the solution program to. Navigate through
until you get to the debug folder where the hex file is
located.

Figure 8 chip45boot2 GUI for Programming

Select the Connect to Bootloader button. If the Status
light goes Green, then press the Program Flash button,
and finally the Start Application button once the device
is programmed. Begin Testing!!

