
University of Florida EEL 4665/5666 - Spring 2016 Dr. Antonio Arroyo, Dr. Eric Schwartz
Electrical & Computer Engineering Revision 0 Andy Gray

Page 1/5 Lab 2: Intro to ADC and USART January 18, 2016

OBJECTIVES
This lab will further introduce you to the concept of
developing with a microcontroller. Focus will be placed
on the use of the Analog to Digital Converter (ADC)
system as well as the Universal Synchronous /
Asynchronous Receiver/Transmitter (USART).

THIS Lab expects that you have an understanding of
programming and simple circuit design. If at any time
you are lost, please ask for clarification.

REQUIRED MATERIALS
• Epiphany-DAQ board
• Wire Jumpers
• IR Rangefinder Sensor
• LED
• Resistors
• Breadboard
• Multimeter (if needed)

DISCUSSION
In this section we will review common concepts for
developing a simple circuit and program as this lab will
review. Please read the sections that you may be
unfamiliar with from the following list:

• Analog Devices
• ADC
• IR Rangefinder
• USART
• Terminal Emulator

Analog Devices
An analog device is a component that typically outputs
some sort of analog signal (a ranging voltage value). This
signal can be connected to an Analog to Digital Converter
(ADC) to read in a digital representation of the analog
signal. Analog devices may come in the form of various
sensors such as IR Rangefinders, Sonar, CDS cells, etc.

Most analog devices use a three wire connection: vcc
(power), ground, and signal. To understand the wiring,
you will typically review a datasheet for the device to
understand how the wiring is setup.

ADC
An Analog to Digital Converter (ADC) system gives the
ability to take an analog signal and convert it to a digital
signal. A digital representation of an analog signal is only
as accurate as how many bits are used to represent the
signal. The process of conversion is called quantization,
where ranges of analog values are tied to a specific digital
value, i.e., 0-0.25 V is 000, 0.26 – 0.5 V is 001, etc.

To be specific, if the resolution was performed using 8
bits, then the number of quantization levels is:

28 – 1 = 256 – 1 = 255 quantization levels

The resolution of such a system depends on the range of
voltage values that may be sent via the analog signal. For
example, if the range of the sensor was -5 V to 5 V with
255 quantization levels:

(10V – 0V) / 255 = 10V / 255 = 0.039 V

To use an ADC system, it is typically simple enough to
connect an analog signal to the ADC.

To use an ADC system on most microcontroller
development boards, analog signals are typically
connected via a single source pin, while ground and vcc
pins are connected through the typical ports. The ADC
value read in is compared to a reference value during the
process. The reference value may be customized and
given, or it may be configured to be set to ground.

This is the case with the Epiphany and Arduino boards,
where an analog device is connected via a single line and
the reference voltage is already configured to be ground
for you.

The Epiphany-DAQ board is multi-purpose, so it requires
a small modification. A single analog channel on the
Epiphany-DAQ consists of an ADCx- and an ADCx+ pin,
where x represents which ADC is being used (0 – 3). The
ADCx- pin behaves as a reference pin. For our purposes,
this pin can just be set to ground, while the ADCx+ pin is
used as the single input pin for the analog device.

IR Rangefinder
For the ADC in this lab, you will use an IR Rangefinder
similar to that shown in Figure 1. The sensor,
information, and datasheet may be found at the following
website for sparkfun:

https://www.sparkfun.com/products/8959.

In this case, see Figure 2 for the wiring diagram and note
that V0 is the analog signal wire.

University of Florida EEL 4665/5666 - Spring 2016 Dr. Antonio Arroyo, Dr. Eric Schwartz
Electrical & Computer Engineering Revision 0 Andy Gray

Page 2/5 Lab 2: Intro to ADC and USART January 18, 2016

Figure 1 IR Rangefinder

Figure 2 IR Rangefinder Wiring

USART
The Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) system is used for
transmitting data between devices such as computers,
microcontrollers, bluetooth, or RF devices. Data is a
single direction transmission, where data is either going in
or coming out at the same time, but not both directions.

A USART consists of TX and RX lines beyond the
standard power and ground lines. When wiring the
USART, which port to use is often found by reading your
chip’s datasheet and finding out which pins are used per
USART. When connecting devices using the USART
system, the TX line of device one connects to the RX line
of device two. This is also done for the other path where
the RX line of device one connects to the TX line of
device two. Basically, the idea is to cross the lines when
connecting devices.

1. Choose a specific USART port and find the TX
and RX pins for that port.

2. Connect the RX of the device to the TX of the
board.

3. Connect the TX of the device to the RX of the
board.

For this lab, we will use the already wired and configured
USB USART that the board has for debugging. For the
Epiphany-DAQ, the USB is setup on PORTD USART
channel 1.

You will use a Terminal Emulator program to
communicate between the device and your computer.

Terminal Emulator
When working with a USART device like you will in this
lab, one end of the USART device is connected to the
microcontroller while the other is connected to your
computer. This then generates a communications (COM)
port for that device. In some cases, you want to
communicate to the device directly from your computer.

Terminal emulator applications are very useful in creating
a connection between a device such as a USART and your
computer. A suggested application that you may use is
X-CTU, shown in Figure 3, which can be downloaded at
(pick X-CTU Installer):

http://www.digi.com/support/productdetail?pid=3352&os
vid=57&type=utilities

University of Florida EEL 4665/5666 - Spring 2016 Dr. Antonio Arroyo, Dr. Eric Schwartz
Electrical & Computer Engineering Revision 0 Andy Gray

Page 3/5 Lab 2: Intro to ADC and USART January 18, 2016

Figure 3 XCTU Terminal Emulator Setup

To use X-CTU, use the following steps:

1. Choose which Com Port is your device (which
can be seen by connecting and disconnecting
your device while opening X-CTU).

2. You then set the USART settings on the right.
Most default settings are normally fine, but you
will probably need to change the Buad Rate.

3. You can then choose the Terminal tab to connect
to the device and begin communication.

4. In Figure 4, you will see Red text to represent
data received and Blue text to represent text
transmitted. To transmit data, simply type in the
text box.

5. If needed, you can close the Com Port to switch
to another program that connects to the port.

Figure 4 XCTU Terminal Emulator Communication

LAB PROCEDURE

ADC and USART Program
Today you will continue learning how to use a
microcontroller. The following sections will be used to
create a program combining an Analog Device and USB
USART. Steps 1 – 9 must be completed, while any
further steps are for better understanding the USART
system.

1. Setup LED circuit on breadboard.
2. Open Project Solution and create new file.
3. Wire ADC on any channel to read in the IR

Rangefinder
4. Wire USART if required
5. Initialize the ADC
6. Initialize the USART
7. Read in the analog value from the IR

Rangefinder
8. Print analog value out to the USB USART (great

for future debugging)
9. If the analog value is within a certain threshold

(distance from target), then trigger the LED to
turn on. Experiment and choose this value
yourself

REACH GOAL STEPS:
10. Initialize the debug LED

University of Florida EEL 4665/5666 - Spring 2016 Dr. Antonio Arroyo, Dr. Eric Schwartz
Electrical & Computer Engineering Revision 0 Andy Gray

Page 4/5 Lab 2: Intro to ADC and USART January 18, 2016

11. Setup the code to read in a single character from
the USB USART. If that character is ‘w’, turn
the debug LED on. If the character is ‘s’ turn the
debug LED off. You are welcome to choose
whichever characters to use.

Setting up the Program for Epiphany-DAQ

First, collect the required LEDs, resistors, wires, IR
Rangefinder, and breadboard. Next, setup an Active High
LED circuit similar to that created for lab 1 (Figure 5).
You should then take the input to the circuit and attach it
to one of the PORT pins of the board.

Figure 5 Active High LED Circuit

Now, you should create a new C file and copy the code
in the blank.c file just as you did in lab 1.

ADC Setup
You will setup the IR Rangefinder device by wiring it to
the Epiphany-DAQ. To do this, you use the following
steps:

Choose one of the four ADC inputs (AI0, AI1, AI2,
AI3)

1. Connect the ADCx- pin to any G pin
2. Connect VCC (Power) to the 5V pin
3. Connect GND to any G pin
4. Connect the Analog Signal (V0) to the ADCx+

pin. Make sure this signal is using the same
ADC Port number as step 1

USART Setup
There is no work needed to wire and setup the USB
USART. At this point, you may wire up a separate device
such as Bluetooth or XBee RF, but that is not covered by
this lab. Just know that it is setup for USARTD1.

Programming the ADC
For the ADC, code must be added to the Setup function
for initialization and to the Loop function for collecting
the analog value. In the setup function, add the following
initialization function to initialize the ADC system.

adcInit();

To read from the ADC, all that is needed is the function:

analogRead(x)

X is replaced by the ADC port number being used. The
value returned is based on a resolution of 0 – 8192 (14 bit
resolution). You can either use the exact value returned,
or convert it into the real value by using the following
equation:

5 * (adcValue + 1) / 8192

Programming the USART
For the USART, code must be added to the Setup
function for initialization and to the Loop function for
sending and receiving data over the USART. In the setup
function, add the following initialization functions to
initialize the USART system.

usartInit(&usartChannel, baudrate)
sei();

Select which channel you want to use for the USART
based on your wired settings. Once the USART is
selected (USARTD0, USARTD1, USARTE0, etc.),
replace the usartChannel option with the correct value.
Also enter a baudrate for the device into the function. For
the USB USART, select 115200. The sei() function is to
initialize the interrupt system, which the USART uses.

Once the USART is initialized, the Epiphany is setup to
send data via the function

fprintf(&usartStr, string)

Where usartStr is a preconfigured string (USB is set to
USB_str). The string component of fprintf follows
standard rules of printf functions, which can be found at
http://www.cplusplus.com/reference/cstdio/printf/. If you
are unfamiliar with printf and C programming, you may
need help for this section.

To create your own usartStr, if needed, you can create
your own string definition before any function in the
included space by creating a precompiler definition:

An example of using the fprintf command is below:

fprintf(&USB_str, “%c”, char_value);

Reading in data via the USART is done using the function

University of Florida EEL 4665/5666 - Spring 2016 Dr. Antonio Arroyo, Dr. Eric Schwartz
Electrical & Computer Engineering Revision 0 Andy Gray

Page 5/5 Lab 2: Intro to ADC and USART January 18, 2016

fscanf(&usartStr, string, variable)

The string component of the function also follows the
printf standards. The fscanf function is used to read in
characters via the USART buffer and then store it into a
variable.

fscanf(&USB_str, “%c”, value_read);

When reading data, it is typically better to wait until data
is on the USART buffer to attempt a read. The following
function may be used to check if there is data in a port:

dataInBufXY()

X designates the PORT and the USART channel
designated by Y. An example with an if Block is below:

if(dataInBufD1) {
 ……..
}

Programming the Debug LED
The Debug Led for the Epiphany is on PORT C pin 0. To
initialize the Debug LED use the following command:

PORTC.DIRSET = 0x01; // For Epiphany-DAQ

To turn the LED on or off, use the same port described in
part 5, but the OUTSET and OUTCLR functions like lab
1.

