

CMUCAM V1.12 interface

Specific for RS232

By: Alexis Mesa

Relevant Documentation:
Before tackling the CMUCAM, you must become familiarized with the following

documents:

XMEGA Manual:

http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf

AVR XMEGA A1 Device Datasheet:

http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf

CMUCAM manual

http://www.seattlerobotics.com/CMUcamManualv15A.pdf

Objective:
Interface the CMCUAM V1.12 via RS232 with the computer using the java

applet provided by the Seattle Robotics and HyperTerminal in order to calibrate (focus)

the camera and become familiarized with the commands. As seen in Figure 1 focusing is

an essential part in performance. Then write code for the PVR board using the RS232

serial connection.

Figure 1

Procedure:
Section 1: Hardware

If you don’t have the Boe-Bot version skip to the next section:

If you do have the Boe-Bot version a couple extra steps must be taken:

In order to connect to the computer an RS232 connection must be established

The Boe-Bot version is stripped down hence it does not include a level shifter

(MAX2332), a couple of capacitors and a power supply. Hence the board must be

populated with the blue components of Figure 2 except the Regulator. A 5V 200mA

power supplied must be provided to the power terminal (according to PVR manual on

500mA could be taken out of the 5V power supply) and a couple of jumpers must be

soldered as seen in Figure 3

 Jumper 1 is used so that the power switch is on all the time.

 Jumper 2 bypasses the regulator hence it is not necessary.

http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
http://www.seattlerobotics.com/CMUcamManualv15A.pdf

Figure 2

Figure 3

Once all the components (see Bill of Materials on CMUCAM manual) and jumpers are

soldered, board is ready for power up and start communicating with the computer.

Section 2: Communication with the computer (HyperTerminal).

From the CMUCAM Manual:

Step 1: If one does not already exist, build a serial and/or power cable as seen in Figure 4

Figure 4

Step 2: Plug both of them in.

Step 3: Open Hyper Terminal (Windows Built in). If you have Windows 7,

HyperTerminal is not installed hence you need to download it. There are plenty of free 30

day trials online.

Step 4: Inside the terminal emulator use a COM port, set the communication protocol to

115,200 Baud, 8 Data bits, 1 Stop bit, no parity. Once opened, go to “properties”,

“Settings” tab, ASCII Setup and make sure send line feeds, append line feed and echo

are check as seen in Figure 5.

Figure 5

Step 5: Turn on the CMUcam board; the Power LED (red) should light up and the Track

LED should not. Make sure that on the bottom left part of HyperTerminal says

connected and that the Baud rate jumpers on the board are off (Baud Rate of 115200bps,

see page 16 of CMUCAM manual)

Step 6: You should see the following on your terminal emulator:

CMUcam v1.12

 :

Once you have seen this, the board was able to successfully configure the camera and

start the firmware.

If nothing happens check if power is connected (red LED), check baud rates of both the

HyperTerminal and Board, check of connection is the same as Figure 4 and if the right

COM port was selected

Step 7: Type gv followed by the enter key. You should see the following:

:gv

ACK

CMUcam v1.12

:

This shows the current version of the firmware. If this is successful, your computer serial

port is also configured correctly and both transmit and receive are working.

Section 3: Communication with the computer (java applet).

In this section you will calibrate the camera.

Go to http://www.cs.cmu.edu/~cmucam/downloads.html and download the beta version

GUI. From the CMUCAM Manual:

Step 1: Running the CMUcamGUI

 Once you have java installed, download a copy of the latest CMUcamGUI java

program. Unzip the CMUcamGUI.zip file. Now, go back to the DOS prompt or shell

that you used in step 1. Using “cd”, navigate to the CMUcamGUI directory that you just

unzipped. You can type “dir” (dos) or “ls” (unix) to see the contents of your current

directory. Once you are inside the CMUcamGUI directory make sure that you see a file

called “CMUcamGUI.class”. If you do not see that file, then either you did not

decompress the the ZIP file, or you are in the wrong directory. If you see the

CMUcamGUI.class file, then type “java CMUcamGUI”.

Step 2: Grabbing a Frame

 You should now see a dialog box that asks you to select the correct COM port. In

windows, type in the number of the COM port that the CMUcam is connected to and

press the “okay” button. In unix, make sure that the path to your com port is correct and

then press “okay”. The CMUcamGUI should now open and display the message

“Camera OK and idle…” in the “Output Window” dialog box. That means that the

CMUcamGUI found and was able to communicate with the camera. Once this works, go

to the “Commands” menu and select “Dump Frame”. After a few seconds you should see

an image appear in the window.

Step 3: Focusing

 Once you have the ability to grab frames from the camera, you should be able to rotate

the front part of the CMUcam lens and see the image change. Try to get the picture to be

as sharp as possible by dumping frames and changing the position of the lens a small

http://www.cs.cmu.edu/~cmucam/downloads.html

amount each time. Usually the camera is in focus when the lens is a few rotations away

from the base.

**

I strongly suggest to use java program for calibration and the HyperTerminal to play

around with the commands since the java program is plagued with bugs.

Section 4: Communication via RS232 on the PVR (code is almost the same for TTL)

Since an RS232 connection must be made in order to communicate with the

computer, it is convenient to use the same connection to interface the board. However if

TTL connection is preferred, the code shown could be adapted to it.

Commented code for communication via RS232 on the PVR TX0 RX0
//Initializaiton

PORTE_DIR = PIN3_bm; //Pin 3 of port E is output

PORTE_OUT = PIN3_bm; //Pin 3 of port E is TXO

PORTE.DIRCLR = PIN2_bm; //Pin 2 of port E is RXO

USARTE0_CTRLC = 0x03; // USART Control Register C: ASYNCHRONOUS,

no parity 1 stop bit 8 bit word

USARTE0_BAUDCTRLA = 0x06; // Page 238 of Atmel manual, fbaud=115200 (my

case)=32MHz/(16*(((2^BSCALE) * BSEL)+1))

USARTE0_BAUDCTRLB = 0xC1; // BSEL= 262 and BSCALE= -4 in 2s comp .

USARTE0_CTRLB |= 0x08; // TX0 is on

USARTE0_CTRLB |= 0x10; // RX0 is on

static char *temp;

//Program

CMUsend("RS\r"); //Reset the camera

delay_ms (5000); //Long enough to wait for ACK and to get the camera ready

CMUsend(“L1 1\r”); //To turn on green light

temp=CMUreceive(); //Receive ACK

delay_ms(5); //For some reason that I havent figure out, there must be a delay between

commands

CMUsend("PM 1\r"); //Activate polling mode

temp=CMUreceive(); //Receive ACK

delay_ms(5);

CMUsend("TC 155 255 0 30 0 30\r"); //Track color

temp=CMUreceive(); // Receive ACK

temp=CMUreceive(); // Receive M packet

delay_ms(5);

lcd_write(temp); //LCD Write function

//CMUCAM functions

void CMUsend(char *command)

{

 int i = 0;

 while (command[i] != '\0') //While command does not end do...

 {

// Data Register Empty Flag: check if data register is empty

while (!(USARTE0_STATUS & (1<<USART_DREIF_bp)));

//USARTE0_DATA is shared by the transmit and receive

 USARTE0_DATA = command[i];

//if data is sent TXCIF is set

while (!(USARTE0_STATUS & (1<<USART_TXCIF_bp)));

 i++;

 }

}

char CMUreceive(void)

{

 int i=0;

 static char *data;

 do

 { // wait for receive is complete

 while (!(USARTE0_STATUS & (1<<USART_RXCIF_bp))){}

 //Put data into string

data[i] = USARTE0_DATA;

 } while (data[i++] != '\r'); //Since all trasnfers are ended by \r wait for it to happen

 return data;

}

