
ENVIRONMENTAL REINFORCEMENT LEARNING:
A Real-time Learning Architecture for Primitive Behavior Refinement

TaeHoon Anthony Choi, Eunbin Augustine Yim, and Keith L. Doty
Machine Intelligence Laboratory

Department of Electrical and Computer Engineering
University of Florida

Gainesville, FL 32611
E-mail: tae@mil.ufl.edu, yim@mil.ufl.edu, and doty@mil.ufl.edu

URL: http://www.mil.ufl.edu/

ABSTRACT

This paper presents Environmental Reinforce-
ment Learning (ERL): a real-time learning
architecture for refining primitive behaviors through
repetitive execution of those behaviors in highly
structured environments. Environment plays the key
role in ERL not only by providing a suitable
reinforcement to the agent, but also by forcing the
agent to execute the behavior repetitively. Strength
of ERL lies in the fact that complex factors governing
primitive behaviors can be reduced or simply ignored
by treating the agent’s behavioral interactions with
the environment as a “black box.” In other words,
analysis of different sources of variance in a behavior
is not necessary to refine that behavior. The
specially constrained environment “punishes” or
“rewards” the agent for incorrect or correct execution
of a behavior. Any reward or punishment for a
behavior is relayed to the agent as Environmental
Reinforcement (ER), thereby causing the agent to
adjust its behavioral parameters. An autonomous
mobile agent, Mantaray, experimentally demonstrates
ERL architecture on two primitive behaviors, (1)
traversing in a straight line, and (2) turning 180
degrees.

1. INTRODUCTION

A current trend in autonomous agent learning
deals with optimally sequencing certain combination
of primitive behaviors which require low level motor
skills to reach a goal. There have been many
advances in this area [Lin, 1992; Parker, 1992; Ram
and Santamaria, 1993; Ring, 1994]. However, the
learning process of the primitive behaviors
themselves should not be ignored or trivialized
altogether. Even if a learning algorithm determines
the proper behavior sequence to reach a particular

goal, the crude accuracy of the primitive behaviors
can substantially degrade its overall performance.
Although the accuracy of certain behaviors can be
refined through the use of more precise sensors and
actuators, one pays the price of significantly higher
financial cost for the agent.

In practice, characteristics of each agent are
different; and consequently, the agent’s physical
performance varies greatly one from the other. Even
if equivalent parts are used to assemble two
seemingly identical agents, the actual performance of
these two agents can vary greatly. In fact, possible
sources of errors are almost limitless. For example,
variance can be introduced in the radius of wheels,
mounting of the motors, mounting of the wheels,
motor performance, etc.

As shown in figure 1, adapted from [Yim and
Choi, 1995], minute difference in wheel radius can
result in significant accumulation of position error of
the agent. One possible solution to this problem is to
account for all the possible sources of variance. This
course of action would be tedious, time consuming,
and practically impossible. Furthermore, this process
must be repeated for each new agent.

This paper describes a real-time architecture by
which an agent can learn to correct the problems
encountered in the accuracy or consistency of
primitive behaviors. This architecture, called
Environmental Reinforcement Learning (ERL), is a
learning process where the agent refines the primitive
behavior through multiple iterations of the behaviors
to be refined. The agent executes the behaviors in a
highly structured environment from which the agent
learns through Environmental Reinforcement (ER).
Section 2 describes the ERL architecture, providing
an overview of ERL architecture, assumptions taken,
environmental considerations, mutual refinement,
and strategy for faster convergence. Section 3
presents experimental results and analysis of
physically implemented ERL architecture. This
section introduces the autonomous

Figure 1: Relative Error vs. the Number of Revolutions, where Roff equals the difference in radii of the two
wheels.

mobile agent, Mantaray [Choi, 1995], and two
specific examples of the ERL process by which the
primitive behaviors are refined (traverse a straight
line and turn 180 degrees). Finally, section 4 offers
concluding.

2. ENVIRONMENTAL
REINFORCEMENT LEARNING

As shown in Figure 2, Environmental
Reinforcement Learning (ERL) defines a learning
architecture by which primitive behaviors, like low
level motor skills (turning a certain number of
degrees, traversing in a straight line, wall-following,
etc.), are refined through repetitive execution of the
same primitive behaviors in a highly structured
environment. The environment forces the agent to
perform a set of behaviors, where the execution of
the behaviors results in Environmental
Reinforcement (ER). Due to the iterative nature of
ERL, the environment should be designed with
repetition in mind. This requirement can usually be
satisfied by having an enclosed environment with a
restrictive path for the agent. As long as the agent
can return to its initial starting state, an iterative
process can be guaranteed. Furthermore,
environmental constraints should induce
“punishment” in the agent for incorrect execution of
a behavior. Any reward or punishment conveyed to
the agent in this manner is ER. ER stems from

sensory input triggered by environmental constraints,
such as a proximity sensor indicating an approaching
wall. The punishment induced by the environment
causes the agent to adjust learning behavioral
parameters for the behavior being punished.
Consequently, the agent learns to perform the
behavior “better” on the next trial.

2.1 Assumptions

Although ERL architecture can be adapted for
higher level learning with or without increased
complexity, it is best suited for primitive behaviors.
ERL favors primitive behaviors due to the following
assumptions. First, the variance of a behavior is
constant (time-invariant) for a given state of the
agent. Second, the variance of a behavior depends
only on the practically (easily) observable states of
the agent. Finally, a simple environment can be
configured to force the execution of the desired
behavior and ER can be given to the agent as
feedback. These are quite restrictive assumptions,
especially when dealing with complex behaviors.
However, for primitive behavior these assumptions
become quite reasonable. In fact, ERL can be
applicable even for primitive behaviors which fail the
first or second assumptions, by treating the agent’s
behavioral interactions with the environment as a
“black box.” In other words, analysis of different
sources of variance in the behavior is not necessary
to refine a behavior within acceptable error.
Consequently, one may only be interested in

0 5 10 15 20
0

10

20

30

40

50

60

70

Processor
Board

Processor
Board

Processor

Board

ε

Relative Error

 = (ε / Sd) × 100 (%)

Sd

66.07 %

41.75 %

9.06 %
Roff = 0.01in.

Roff = 0.1in.

Roff = 0.05in.

Relative
Error (%)

number of Revolutions

Environmental
Reinforcement

Structured Environment

Actuation

Autonomous Agent
Actuator

Commands
Sensory

BlackboardERL Architecture

Internal
States

Behavioral
Parameter N

Behavioral
Parameter 1

Reward
or

Punish-
ment Behavior N

Behavior 1

Figure 2: The Environmental Reinforcement Learning (ERL) Architecture

what actuation control is necessary for proper
execution of a behavior without having to understand
the sources of error in that behavior.

2.2 Environmental Reinforcement
(ER) and Environmental
Considerations

Environment plays a critical role, since the
agent learns through its interaction with the
environment. First, the environment must be
configured in such a manner that it forces the agent
to perform the desired behaviors. Second, for each
forced behavior, the agent must receive ER, which
the agent interprets as reward or punishment. ER
allows the agent to evaluate its performance for that
behavior and to adjust the learning behavioral
parameters accordingly. One method of establishing
ER is to specify restrictive paths for the behaviors to
be learned. For perfect behavioral parameters and
ideal hardware, the agent does not receive any

negative ER from the environment. However, due to
non-ideal variation in agent behavior, an agent
receives ER for any deviation from the environmental
constraints. Ultimately, the agent must return to the
initial position for repeated runs under the same
environmental conditions. This ability to find the
initial position guarantees continual repetition of
behaviors for learning purposes.

2.3 Mutual Refinement Process

An agent's ability to refine one primitive
behavior is usually dependent on the refinement of
other primitive behaviors. These dependent
behaviors require mutual refinement process of
several behaviors. By executing the interdependent
behaviors in one series of an iteration, mutual
refinement of several behaviors can be accomplished.
However, Mutual Refinement Process

7.
5

in
ch

es

7 inches

Strabismic IR
Sensor Pair

(d)

Figure 3.1: Mantaray with Strabismic sensory array. (d) shows the Strabismic IR sensor pair.

assumes that the environmental constraints allow for
the required combination of mutual behaviors.
Consequently, the learning performance can be
greatly enhanced by learning the interdependent
behaviors concurrently.

2.4 Faster Convergence Through
“Fine” and “Rough” Adjustment
Trials

By starting with the “rough” adjustment trials,
one can achieve faster convergence to the rough
behavioral parameters. The desired characteristic of
the “rough” adjustment trials is to minimize the time
necessary to execute one iteration, correct by larger
adjustment values, or both. Once the “rough”
adjustment trials converge, “fine” adjustment trials
begin. “Fine” adjustment’s main goad is to fine tune
the behavioral parameter accurately as possible.

3. EXPERIMENTAL RESULTS

The Environmental Reinforcement Learning
(ERL) architecture was tested for the following two
primitive behaviors: traversing in a straight line and
turning a specified amount of degrees. Both
behaviors were implemented concurrently in both the
“rough” and “fine” adjustment trials on Mantaray.

3.1 Mantaray: Autonomous Mobile
Agent

Mantaray, shown in Figure 3.1, is a seven inch
by seven and a half inch, two wheeled mobile agent
with a caster for support. It uses three IR sensors:
one in the center and two orthogonal Strabismic
sensor array [Choi, 1994]. Mantaray comes with all
circuitry for the basic functions built on to the boards

(a) Front View (b) Side View

(c) Bottom View

(a) (b)

Figure 3.2: Environmental setup for the experiment. (a) Environmental Reinforcement (ER) for Straight Line
Traversing. (b) Actual picture of the environment.

themselves. The 68HC11 8-Bit Microcontroller is
clocked at 2 MHz with 32K SRAM memory. An
74HC138 Address Decoder supplies eight 8-Bit
Memory Mapped I/O addresses. One of the memory
mapped I/O is used to control the independent
operation of the IR LED’s. Using the A/D capability
of the 68HC11 8-Bit Microcontroller, the Mantaray
comes equipped with eight A/D ports (E0 - E7).
These A/D ports can be used to collect sensory inputs
from sensors with voltage level outputs. The
UDN2993B Dual H-Bridge Motor Driver can drive
two DC motors, usually used to drive the two wheels
of the robot platform. It must be pointed out that
Mantaray was not made for this experiment.
Mantaray was constructed as a prototype for mass
production (total of eight). However, several
modifications were made to the original body and
circuitry. First, the rolling caster was replaced by a
stationary sliding caster. The rolling caster was
replace due to the unpredictable error it introduced.
Second, a voltage divider was added in parallel to the
battery voltage with an analog tap; thus, allowing the
agent to sense the battery state.

3.2 Learning to traverse a straight
line

Due to numerous sources of errors as
mentioned in the introduction, Mantaray had a
natural tendency to arc left with the same speed
(Pulse Width Modulation) applied to both motors.
The tendency to stray from the straight path was
controlled by the speed coefficient. The speed
coefficient represents a percentage by which the
faster motor is slowed to match other motor’s speed.
The environmental constraints applied to Mantaray
was a straight corridor, shown in figure 3.2, with
width of 18 inches and length of 30 feet for the “fine”
adjustment trials and length of 10 feet for “rough”
adjustment trials. The two ends of the corridor were

blocked off. The Strabismic sensors were used to
keep Mantaray in the center of the corridor, and since
the corridor was straight, Mantaray was forced to
traverse in a straight path. ER occurred when
Mantaray veered off its center path and violated the
ER zone to the left or to the right. As Mantaray
traverses the full length of the corridor, it counts the
number of ER from the left and number of ER from
the right. If Mantaray has more ER’s on one side
than the other with a difference of two or greater, the
speed coefficient was adjusted to equalize the speed
of both sides. The stop condition occurred when the
front sensor detected the end of the corridor.

3.3 Learning to turn 180 degrees

The same straight corridor was also used to
learn the turning coefficient. Turning coefficient
represents the absolute time to turn 180 degrees.
When Mantaray reaches the end of the corridor after
a straight behavior, it ends up parallel to the corridor
facing the enclosed end of the corridor, as in figure
3.3 (a). This forces a 180 degree turn by Mantaray in
order to face the open end of the corridor. Initial
turning reference is obtained by measuring the actual
time it takes Mantaray to turn until the front sensor
detects open space. Since motor speed is dependent
not only on the duty cycle of the pulse width
modulation, but also on the battery voltage applied to
the to the motors, the learned turning coefficient is a
function of the battery voltage measured during the
turn. Once Mantaray obtains the turning reference, it
turns for an amount of time specified by the turning
coefficient, as shown in figure 3.3 (b), and stops in a
position shown in figure 3.3 (c) or (e). Finally,
Mantaray goes forward until an increase (decrease in
distance to the wall) in one of the Strabismic sensor
is detected, as shown in figure 3.3 (d) or (f). This
detection then becomes the ER for this behavior.

ER Hit Left

ER Safe Center

ER Hit Right

Processor
B

oard

30 feet

18 in.

Figure 3.3: Environmental Reinforcement (ER) for Turn 180 degrees.

Depending on whether ER occurred from the left or
the right, the turning coefficient is decreased or
increase.

3.4 Speed and Turning Offset
(adjustment values)

Initially, speed offsets are set to 1%; while,
turning offsets are set to 50 milliseconds. The initial
values of the offsets are not tweaked values. Except
for the obvious extremes like zero, the offset can take
on just about any value. If the offsets start as small
numbers, it would take the agent longer to reach the
correct value but would settle quickly. On the other
hand, if the offsets start as large numbers, it would
take the agent less time to reach the correct value but
due to oscillation, would settle slowly. The values of
each offsets do not change as long as the “trend”
does not change (i.e., consistently increasing or
decreasing). However, as soon as the “trend”
changes, the offset is reduced to half of its previous
value. This strategy allows for fast convergence in
the beginning when the coefficients are far from
their true values. On the other hand, as the
coefficients near their true values, large offsets cause
over adjustments which in turn causes “trend”

changes. Consequently, adjustments become finer
and finer as the offsets decrease. To keep the
adjustments meaningful, lower limits of 0.01% and 1
millisecond were set for the speed and turning
offsets, respectively.

3.5 Mutual Refinement

As the speed coefficient approaches its correct
value, the initial condition for the turning behavior
becomes more stable. Furthermore, being able to go
straight ensures that the ER for the turning coefficient
does not occur due to incorrect arcing of Mantaray.
Similarly, as the turning coefficient approaches its
optimal value, the initial condition for the turning
behavior becomes more stable.

3.6 Experimental Results and
Analysis

The state of the agent and the learning
coefficients were recorded into the agent’s on board
memory after completion of every trial. The
following data were collected at the end of every
trial:

Processor
B

oard

Processor

Board

Pr
oc

es
so

r

Bo
ar

d

Pr
oc

es
so

r

Bo
ar

d

Pr
oc

es
so

r
Bo

ar
d

Pr
oc

es
so

r
Boa

rd

(d) Right First Hit (f) Left First Hit

(a) Transition Point (b) (c)

(e)

or

Figure 3.6: (a) and (b): Turning and Speed coefficients vs. Trials are plotted for a single battery voltage level
of 9.81 Volts. Trials one to 99 represent “rough” trials. The rest represent “fine” trials (c) and (d)
represent the accumulated Turning and Speed coefficients for each battery level.

Current system time (seconds).
Current battery voltage (analog sensor reading in

the range of 225 to 197, which translate into
10.71V to 9.38V).

Current Speed coefficient (percent) used to
decrease the faster motor to equalize the speed
of both motors.

Current Turning coefficient (milliseconds) used
to turn for a set amount of time for 180 degree
turn.

Update Speed coefficient as a function of battery
voltage.

Update Turning coefficient as a function of
battery voltage.

Due to the Mutual Refinement dependencies,
the “rough” trials were used for the first 99 trials.
Consequently, the coefficients were updated three
times as fast. However, “rough” trials using a short
corridor causes problems for the Speed coefficients,
because the agent does not have enough corridor
length to execute the straight behavior, especially as
the turning becomes more accurate. Due to the poor
result of Speed Coefficient during the “rough” trials,

the Speed offsets were reset to their initial values at
the beginning of the “fine” trials. This transition also
points out the Mutual Refinement process. As the
Speed Coefficient over adjusts, the Turning
Coefficient is improperly affected, as seen in the
hump which occurred in the Turning Coefficient
after the 99th trial. But as the Speed Coefficient
settles down, so does the Turning Coefficient.

In figure 3.6 (c) and (d), inconsistent
fluctuations in the coefficients above battery voltage
of 10V is due to the small number of trial runs for
these battery voltages. Eight NiCad batteries should
produce 9.6V when fully charged, but the batteries
actually charge up to 10.7V. However, the batteries
can not hold this charge for very long; thus, resulting
in small number of trial runs at the voltages higher
than 10V. Keeping this in mind, we concentrate in
the interval between 9.38V and 10.0V.

The performance of the Speed Coefficient was
disappointing. It raised more questions than answers.
Even when the motor’s pulse width modulation was
directly controlled through interrupts without any
other over head by using assembly code and the
Speed Coefficient was manually tweaked, the

Speed Coefficients vs. Battery Voltage

0

2

4

6

8

10

12

14

16

18

9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7

Battery Voltage (Volts)
(d)

S
p

ee
d

 C
o

ef
fi

ci
en

ts
 (

%
)

.

Turning Coefficient vs. Trials (Battery = 9.81 Volts)

2800

2820

2840

2860

2880

2900

2920

2940

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

Trials
(a)

T
u

rn
in

g
 C

o
ef

fi
ci

en
t

(m
se

c)

 .
Speed Coefficient vs. Trials (Battery = 9.81 Volts)

12

12.5

13

13.5

14

14.5

15

15.5

16

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

Trials
(b)

S
p

ee
d

 C
o

ef
fi

ci
en

t
(%

)

 .

Turning Coefficients vs. Battery Voltage

1900

2100

2300

2500

2700

2900

3100

3300

9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7
Battery Voltage (Volts)

(c)

T
u

rn
in

g
 C

o
ef

fi
ci

en
ts

 (
m

se
c)

 .

Mantaray’s straight path improved, but was still
unpredictable. This meant that the performance of
the motors varied as a function of some factor which
was poorly accounted for. This variance was great
enough that although ERL improved the behavior,
consistency was not achieved.

On the other hand, good results were obtained
for the Turning Coefficients. The 180 degree turns

were executed with precision where the error was
less than five degree. Linear regression analysis on
the data points less than or equal to 10 Volts resulted
in standard error of 19.56 milliseconds. This
translates into standard error of 1.2 degrees for an
180 degree turn.

4. CONCLUSION

In this paper, two primitive behaviors were
developed using the ERL architecture. This
architecture proposes a novel idea, where, the
environment forces an agent to alter its behavior in
a desired manner. Through ER the agent learns to
modify and refine its behavior. Furthermore,
complexities were reduced by treating the agent’s
behavioral interactions with the environment as a
“black box.”

Refinement of two primitive behaviors,
traversing in a straight line and turning 180
degrees, was attempted. The first behavior showed
significant improvements when compared to the
original performance but lacked consistency. The
180 degrees turning behavior, however, showed the
flexibility and simplicity of the ERL architecture.

Possible future work in the area of ERL
includes turning in subdivisions of 180 degrees
(i.e., 90, 45, 30 degrees). Also, by adjusting the
Speed Coefficient to keep the motor at constant
absolute speed, the motor speed can be independent
of changes in the battery voltage.

As primitive behaviors are refined through
ERL, the problems of object identification and map
building can be simplified. Wonder what an agent
can do if it could measure angles and distances with
negligible or small error? These two problems are
definite candidates applications of the behaviors
refined through ERL.

REFERENCES

[Choi, 1994] TaeHoon A. Choi. Earthcruiser.
Machine Intelligence Laboratory Technical
Report MIL121294TAC, University of
Florida, 1994

[Choi, 1995] TaeHoon A. Choi. Mantaray.
Machine Intelligence Laboratory Technical
Report MIL051595TAC, University of
Florida, 1995

[Lin, 1992] Long-Ji Lin. Self-Improving Reactive
Agents Based On Reinforcement Learning,
Planning and Teaching. In Machine Learning
8, pages 293-321, Kluwer Academic
Publishers, 1992

[Parker, 1992] Lynne E. Parker. Adaptive Action
Selection for Cooperative Agent Teams. In
Proceedings of the Second International
Conference on Simulation of Adaptive
Behavior, pages 442-450, MIT Press, 1992

[Ram and Santamaria, 1993] Ashwin Ram and Juan
C. Santamaria. Multistrategy Learning in
Reactive Control Systems for Autonomous
Robotic Navigation. In Informatica 17 (4),
pages 347-369, 1993.

[Ring, 1994] Mark B. Ring. Continual Learning in
Reinforcement Environments. Ph.D. Thesis,
University of Texas, 1994

[Yim and Choi, 1995] Eunbin A. Yim and
TaeHoon A. Choi. Movement Analysis of a
Dual Wheel-based Autonomous Mobile Agent.
Machine Intelligence Laboratory Technical
Report MIL090395EAY, University of
Florida, 1995

