
Everything You Always Wanted To
Know About Programming Behaviors

But Were Afraid To Ask

By Kevin Harrelson

Machine Intelligence Lab
University of Florida

Spring, 1995

Overview
Programming multiple behaviors in IC may seem at first to be a daunting task, but

it can be easily broken up into several steps. The multitasking capabilities of IC even
facilitate this process. This paper will attempt to explain the steps necessary to create
these behaviors.

General System Design

Behavior Array

Behavior
1

Behavior
2

Behavior
3

Behavior
N

Arbitrator Miscellaneous
Sensor & Motor Routines

..................

In my experience, this is a design for the behaviors that I highly recommend. It
consists of several separate, but interrelated parts.

The approach outlined here offers many advantages. Perhaps the greatest is that
the behaviors are completely independent routines. The suggestions outlined here
provide a framework upon which to hang behaviors. This will make it easy to add,
remove, or change behaviors. It also provides a method to allow the behaviors to interact
with each other. Since the behaviors can work out for themselves which one should be
most important at any time, it will not be necessary to change the logic of the arbitrator
whenever a new behavior is added.

Low-Level Routines
A class of low-level routines are needed to perform various housekeeping

functions within the robot. The purpose of these routines is not to provide any sort of
logic or decision-making capabilities, but to perform some of the basic tasks that are
needed in order to make the processes work properly.

Sensor Routines
At the lowest level, some routines will be necessary to control the sensors. The

first job of these routines is to take all data from the sensors, and place them in
descriptive global variables, such as IR_COLLISION_RIGHT, or PYRO_ANGLE. This
will allow all behaviors that depend on these sensor readings to be much more readable
and easier to debug. This will also allow others to use the same code with a minimal
amount of modification.

It will also probably be necessary to have some sensor control routines. Many
sensors require some sort of service. There may be several different IR systems, which
should not operate at the same time, or there may be a sensor mounted on a servo, which
needs to be controlled. The control and scheduling of sensor operations should not be left
up to the behaviors. Instead, separate routines should control these functions. This way,
there will not be any conflicts arising from two different behaviors trying to do two
different things to the same sensor at the same time. If it is necessary, the behaviors can
communicate with the sensor routine by using global variables.

Motor Routines
The motor control routines should be placed in an independent routine. No

behaviors should ever control the motors. Instead, the behaviors should send their
requested motor valued to variables. This will eliminate any conflict caused by behaviors
fighting over the motors. This will also make it easier to create smooth motor control.
One problem that may be encountered while controlling the motors is a sudden change of
the velocity. This may be caused by a behavior, or by different behaviors being active. In
any case, this sudden, jerky motion is undesirable not only for aesthetics, but also because
the motor current will increase substantially, and may cause the board to reset if the
batteries begin to run down.

One way to do this may be to limit the acceleration of to motors to a certain value. This
may be done by recording the last known speed sent to the motor. Then, if the new speed
is different, change the current motor speed by some small value. Another way might be
to use a weighted average method. For example, for a 1/20 weighting, the formula might

be Speed
Old Desired

=
× +19

20
. This approach will create a smooth transition as the current

speed approaches the desired speed, but may be jerky initially. An improved solution
may be to use averaging, and limit the acceleration afterwards.

Actual Velocity

Actual Velocity

Desired Velocity

Limited Velocity

Actual Velocity

Desired Velocity

Weighted Average

Weighted Average with Limited Velocity

Desired Velocity
Exponential
Region

Linear (limited)
Region

These are only suggestions, and not necessarily the best ones. Perhaps a routine
could be written that would limit the change in acceleration (“jerk”). The key is in
experimenting and trying to determine what works best.

Behavior Control
At the heart of the robot are several behaviors. These can be extremely simple

behaviors, such as one to simply avoid an obstacle, or follow a wall, or a complex one
that can calculate the direction to a goal. One of the more difficult problems in
programming a robot is determining which behavior should be active at various times. If
the guidelines in this paper are followed, then adding new behaviors and integrating them
into the existing ones should be relatively straightforward.

In simple terms, each behavior runs at the same time. Each behavior will act upon
the sensor data, and produce an output. This output will then be placed in the behavior
array, along with the outputs of all of the other behaviors. Then a master program, called
the arbitrator, will examine all of the outputs and decide which one should have control
of the robot.

The Behaviors
A behavior is a program that is designed to have the robot perform one simple

action. Several examples are programs that might follow a wall, follow a light, avoid a
light, seek out other robots, circle an object, or get out of a tight spot. In essence, a
behavior is just an algorithm that will take the sensor inputs, and produce the outputs
corresponding to the desired motor speeds. In addition, a behavior should produce a
priority output. This output should correspond to how important a behavior thinks that it
should be. A collision avoidance behavior should have a high priority if a collision is
imminent, but should have a low priority if no obstacles are detected.

The Behavior Array
The behavior array is, in essence, the heart of the system. The purpose of the

array is to hold all of the output from the behaviors, so that the arbitrator can examine
them and determine which one should be active. The array is configured to be N×M,
where N is the number of different behaviors present on the robot, and M is the number
of parameters and outputs associated with each robot. A sample behavior array is shown
below.

A Sample Behavior Array
Behavior 1: Collision 2: Wall Follow N: Find

Beacon
Motor Left -20 40 60

Motor Right 80 40 20
Priority 100 22 8
Strength 0 5 12

Turns 3 0 0

In this simple example, the first two rows consists of the actual output of the
behaviors. In this example, the output is motor left and motor right. It might also have
been forward velocity and rotational velocity, or any other output.

The priority is a number that the behavior itself generates. The collision behavior
gives itself a priority of 100, which means that it must think that what it has to say is
important. This must be because of an imminent collision. The wall follow has a priority
of 22, which must mean that it has found a wall. The find goal routine has a priority of 8.
This could mean that it has found a goal, but that it is far away. Please note that the range
of priorities does not necessarily have to be the same. Perhaps the find beacon behavior
can only have a maximum priority of 15, while wall follow could have a maximum
priority of 40. Also, the numbers chosen for this example are completely arbitrary. A
real robot might have priorities from 0-255, or from 0-10,000.

The next line is the strength. This line allows behaviors to modify the relative
value of other behaviors. In effect, the strength becomes a type of multiplier for the

priority. This will allow a wall following routine to, in effect, turn down the priority of
the collision behavior. Also, a wall following behavior could find a sudden end to it’s
wall, and promote a turn corner behavior so that it has an almost certain chance of
becoming dominant.

Since integer math is far easier to do than floating point, some kind of allowances
need to be made. Simply having the strength as a multiplier may not be the most
effective method. This would not allow a behavior to promote another one by 10%. It
would only allow promotion or demotion in 100% increments. Also, a simple demoting
should probably not be done linearly. It would seem far more intuitive to do a “divide
by” operation.

One good compromise would be to have the initial strength as zero. Each point
would then be 10% of the priority. If the strength were a positive number, then the
priority could be increased by that percentage. For a negative number, a decrease in
priority would result. For positive numbers, the equation would be

new priority old priority
strength

_ _= × +



1

10
. For a negative number, the equation would be

new priority
old iority

strength
_

_ Pr=
+







1

10

.

The strength value could also be used to implement a subsumption type
architecture. Using this, behaviors could be created that would, upon command, suppress
or strengthen other behaviors upon command.

The last row in the sample behavior array is turns. Each time the arbitrator
determines the dominant behavior, it would increment the turns counter of the winner,
and reset the turns counter of the losers to zero. This would result in a counter of the
number of consecutive turns that a behavior has been dominant. This would allow
another behavior to reduce the strength of a behavior that has been dominant too long.

The previous example was just a sample, and was not intended to be the “correct”
solution. There are many more things that could be done. Perhaps, in addition to a
counter for the number of turns, adding a counter for the number of turns since a behavior
was last dominant, or even a counter that counts the total number of turn it has been
dominant since the robot was turned on.

Since the behavior array is a two dimensional array, which IC cannot handle, it
will be necessary to simulate a two dimensional array. Please refer to the Creating
Virtual Multi-Dimensional Arrays in IC section.

The Arbitrator
The job of the arbitrator is extremely easy. After all of the behaviors have

calculated their output, the arbitrator simply steps through the output of each behavior,
and calculates the modified priority, based on that behavior’s priority and strength values.
Then, it determines the dominant behavior. It may also need to modify any additional
counters, such as the Turns counter. It should then place the number of the dominant
behavior in a global variable, such as dominant_behavior. Then, the motor routines
would know which behavior to grab the output from.

Another possibility would be to have the arbitrator calculate an adjusted priority,
based on the priority and strength values. Then, this adjusted priority could be stored in
the behavior array. That would allow the motor routine to take a weighted average, based
on the adjusted priority. This might result in smoother operation.

Programming Advice
Perhaps the most important thing is to keep the behaviors relocatable. This means

that the behavior’s own behavior number should be stored in a variable at the beginning
of the routine. It that behavior is removed, then the other behaviors could be easily
renumbered accordingly. That would also allow a behavior to be transferred from robot
to robot with a minimum of difficulty. This rule also applied to behaviors that modify the
strengths of other behaviors. All behavior number should be in variables at the beginning
of the routine.

It is also possible that one or more behaviors might be extremely process intensive
to the point of slowing all other processes down. In a case like this, such behaviors can
examine the dominant_behavior output of the arbitrator. The behavior could generate its
strength, and then only generate its actual output if it is dominant. Such a scheme would
result in a small, one processing cycle lag when it is activated, but may be the only option
when dealing with extremely complex behaviors.

Creating Virtual Multi-dimensional Arrays in IC
While creating behaviors and programs in IC, a multi-dimensional array may be

necessary. Unfortunately, IC does not have this capability, but it can be added without
too much work. The trick is to create a one-dimensional array that is large enough, and
map it to a virtual multi-dimensional array.

In the following examples, all uppercase letters represent the maximum dimension
size of an array. Lowercase letters represent a specific element. An array of A×B×C is a
three-dimensional array. Also, a×b×c is an element of the array A×B×C. Also, all
uppercase letters assume that a 1 is the lowest allowed number. All lowercase numbers
assume that 0 is the lowest allowed number. For example, an array of 5×5 has the

smallest element of 0×0, and the largest element of 4×4. Also, the array X[] will be the
one-dimensional array that holds the virtual array.

Creating a virtual multi-dimensional array simply requires some multiplication
and addition. For example, the array A×B×C×D can be found be represented by an array
of size X[A*B*C*D]. To access the element a×b×c×d in this virtual array, access
X[((a*B+b)*C+c)*D+d]. The pattern in this formula should be readily observable, and
may be extended to any number of dimensions.

Genesis of These Ideas

These ideas were formed from the construction of my robot, Medusa. My robot
only had a couple of behaviors. At the end of the project, my behaviors had begun to be
organized in a manner similar to the one presented here. Upon completion of the project,
I deliberated long and hard over what I would have done differently if I could do the
project over again. I will, in fact, use these same ideas for my next project.

