
University of Florida

College of Engineering

ECE Dept.

Course: EEL 5666C

Instructors: Dr. Schwartz

 Dr. Arroyo

 TA’s: Mike Pridgen

 Thomas Vermeer

Sensor Report

Brian Long’s

FanBot

Dec 8, 2009

Page 2 of 75

Table of Contents

1. Abstract .. 3

2. Executive Summary .. 3

3. Introduction ... 4

4. Integrated System ... 5

5. Mobile Platform .. 7

6. Actuation .. 8

7. Sensors ... 9

8. Behaviors ... 11

9. Experimental Results .. 11

10. Conclusion ... 22

11. Documentation .. 22

12. Appendices ... 23

Page 3 of 75

1. Abstract

 FanBot is an alligator shaped robot made out of balsa wood. Naturally, it is a fan of the

Gators. As such, it is not a fan of Alabama. If it sees an Alabama fan, it will go up to them and

attack by biting. If it sees a fellow Gator, it will go up to them and play the Gator Fight song.

 It uses 7 IR sensors for obstacle avoidance. It also has a SONAR sensor for ranging and a

CMU Cam for color blob detection. By using these sensors, it can distinguish between targets

and navigate towards them.

 FanBot also has an Arduino board with an Adafruit Waveshield for making sound. It has 3

servos to actuate the head, tail, and jaw. Finally, Fanbot has 4 motors for propulsion.

 Taken together, these components have made an entertaining and successful robot.

2. Executive Summary

 FanBot seeks out targets and identify which SEC team they support. After navigating

towards the target, it will play various sounds depending on the team allegiance identified. It

will then seek out a new target.

 FanBot utilizes the PVR board developed by Mike Pridgen and Thomas Vermeer. This

board features an Atmel Xmega 128 microcontroller. One advantage of the PVR board is that it

has an onboard voltage regulator for the Xmega and two 5V regulators for servos and A/D

conversion. The other advantage is the well thought out pinout of the PVR board and the

software library provided by Mike and Thomas. There are more than enough available ports to

support serial communication, A/D conversion, Digital I/O, and PWM. This gives the student a

lot of freedom in design and development of the robot.

 FanBot uses a CMU Cam for color blob recognition. The two colors FanBot will look for is

green for a Gator fan and red for a Crimson Tide fan. The CMU cam is used to distinguish

targets and to line up on the target while it is approaching it. The PVR board communicates with

the CMU Cam using RS-232 serial communication.

 The other sensors Fanbot has includes seven IR sensors and one SONAR sensor. There is one

IR sensor on each side and three in the front on the snout. There is also an IR sensor to detect

low lying targets and one sensor on the tail used when backing up. All seven IR sensors are used

for obstacle avoidance. The two side IR sensors will wake up FanBot from the wait state. The

front three IR sensors also let FanBot know that it has reached the target. The SONAR is used

for ranging.

Page 4 of 75

 FanBot has three servos. Two high torque servos actuate the tail and the head. A third servo

actuates the jaw. The other actuators include four propulsion motors, two on each side. These

motors are extremely high torque and are run at 40 – 50% of top speed. This allows FanBot to

find more readily find targets and avoid obstacles.

 FanBot uses an Arduino board with an Adafruit Wave Shield for sound. The Wave Shield

will uses an SD card with .wav files to produce sound. The PVR board communicates with the

Arduino board using parallel communication. The bit sequence detected by the Arduino is used

to select which file to play. Two battery powered Sony speakers are used to play the sound.

3. Introduction

 FanBot was a project to create a fun robot that shows off Gator pride. Creating a nearly life

size alligator was challenging, but was the best was the best way I knew of to integrate

engineering skills with being a Gator fan.

 I was determined to make FanBot as lifelike as possible. Having the jaw, head, and tail

actuate using servos was a key factor in accomplishing this.

 This report will detail the various systems in FanBot including sensors, actuators, and

platform. It will also discuss the behaviors. Finally, it will detail the lessons learned so that

other students can learn from my mistakes and observations.

Page 5 of 75

4. Integrated System

PVR Board

IR Sensors

CMU Cam

Sensors

LCD Display

Arduino Board

Jaw Servo

Tail Servo

Head Servo

Actuators

Leg Motors (x2)

Drive Motors (x4)

Wave Shield

Visual Display

Audio

SONAR

Figure 1 – Integrated Block Diagram

Page 6 of 75

 The microcontroller board used for FanBot is the Atmel XMega based PVR board designed

by Mike Pridgen and Thomas Vermeer. This is an excellent and well thought out board for any

future student to use. The pinout of the board gives enough serial communication ports, Digital

I/O pins, A/D connections, and PWM connections to support a wide variety of possible projects.

 The sensors guides FanBot toward a target, distinguishes a Gator fans from other ones, and

for obstacle avoidance. They consist of the following:

1. Two Sharp GP2Y0A21YK IR sensor are mounted on the each side of FanBot for obstacle

avoidance. These have a maximum range of about 18 inches and an effective range of

about 9 – 10 inches.

2. One Sharp GPY0A21YK IR sensor is mounted at the bottom of the throat to detect small

obstacles in front of FanBot.

3. Three Sharp GP2Y0A02YK0F sensors on the snout for detecting obstacles in the front of

FanBot. They have a maximum range of 36 inches and an effective range about 24 inches.

4. One EV-LZ0 SONAR sensor is mounted on the front of FanBot for ranging and target

detecting. This sensors has an effective range of about 12 feet.

5. The CMU camera is mounted on the head for target detection and distinguishing between

the teams.

 The LCD display is used to troubleshooting and for functionality checks.

 The Arduino board drives the Wave Shield for sound production. A battery powered speaker

produces the sound.

 The jaw servo actuates through coordination of the PVR board and the Arduino board using

parallel communication. Proper timing is done through using a series of delay statements in the

code.

 The propulsion system consists of two DC planetary gear motors per side. The left side

motors are driven by one motor driver and the right side motors are driven by a second motor

driver. This allows the control of each side to be synchronized for propulsion and turning.

 Two high torque standard size servos will be used to move the head and tail from side to side

to give a natural motion. They drive a turntable assembly for torque transfer.

 Two motors drive offset cams on the rear and on the front of FanBot. These motors were

supposed to actuate four “legs”. This was to be for appearance only and not for propulsion. The

motors could not provide enough torque to actuate the legs. Mechanically the design works. If I

had more time, I would have implemented the design using four servos instead of the two

motors.

Page 7 of 75

5. Mobile Platform

The platform is made of balsa wood to reduce the weight. The platform consists of four

sections: the body, the connector pieces, the head, and the tail. The goal was to make a lifelike

alligator.

 The body is a box. It is approximately 14” long, 12 inches wide, and 4 inches tall. The top is

hinged to allow access to components. The body houses the propulsion system, the leg system,

and all major electronics. A removable tray mounts the electronics.

 The head is 14 inches long and consists of a neck that extends out from the body and the head

itself which will be slightly raised up. The CMU is mounted on top of the head and the SONAR

sensor is mounted on the snout. The three GP2Y0A02YK0F IR sensors are mounted on the

snout. The GPY0A21YK is mounted on the throat. The throat will also house the Wave Shield

and the speakers. A caster is on the bottom of the neck for support and to reduce the torque on

the servo.

 The tail will be about 14 inches long and consists of two parts. The back part will connect to

the front part with via two hinges. This allows a more realistic motion. Each section has casters

underneath for support. The tail also houses the rear IR sensor.

 I did not the parts into Mike early enough. As a result, I was severely hampered in building

and integrating behaviors. I would recommend that future students get any T-Tech requests in as

early as possible.

Page 8 of 75

6. Actuation

 The propulsion system layout can be seen in Figure 2 below.

Figure 2 – Bottom of Body Section

 Each motor powers one of the wheels. Each side is synchronized via a motor driver to control

turning, direction, and speed of FanBot.

 The leg system will consist of two parts. There are two motors that drive offset cam systems.

One assembly drives the rear legs and one the front. The legs will be balsa wood cutouts and

will almost touch the ground. They are for appearance and not for propulsion.

Page 9 of 75

 The head and tail servos will turn each from side to side while FanBot is looking for a target.

 The Wave Shield and Arduino Board are both from Adafruit.com. Timothy Martin used them

in his project last year and offered to provide me with any technical assistance needed. The

Wave Shield can play mono sounds and outputs a signal through a stereo mini jack to battery

powered speakers. The sounds are stored on an SD card. The Arduino board interfaces with the

PVR board via an RS-232 connection. The Arduino drives the wave shield. The jaw servo

actuates when the Wave Shield plays sound.

7. Sensors

 IR Sensors:

 A total of three GP2Y0A21YK IR sensors and

associated pigtails were ordered from www.sparkfun.com .

Two are mounted on each side and one in the low in the

front for obstacle avoidance. The experimental data can be

seen in Part 9.

 Figure 3 – GP2Y0A21YK [1]

A total of three GP2Y0A02YK0F IR sensors and associated

pigtails were also ordered from www.sparkfun.com . These

are mounted on the snout for obstacle avoidance. The

experimental data can be seen in Part 9.

 Figure 4 – GP2Y0A02YK0F [1]

http://www.sparkfun.com/
http://www.sparkfun.com/

Page 10 of 75

 SONAR Sensors:

 Two Maxbotix LV-EZ0 sensors were ordered from

www.sparkfun.com. The LV-EZ0‟s will be used on

the front and on the rear of FanBot. The front sensor

is used for ranging and target detection, the rear one is

used for obstacle avoidance when backing up.

Originally, a LV-EZ4 was going to be used, but it was

shown to too sensitive. SONAR‟s were also shown to

be a little slow when it comes to obstacle avoidance. I

made the decision to limit their use to searching for a

target and for ranging. Experimental data is in Section

9.

Figure 5 – LV-EZ0 SONAR [1]

 CMUcam:

 A CMUcam is used for color blob detection. It uses

the mean color value in its window to differentiate

targets. It is connected to the PVR board via RS-232

connections. Experimental data is seen in Section 9.

It is important for future students wanting to use the

CMU Cam to get started early. This was the hardest

part to integrate and to code for properly. Also it is

important to realize that reds, pinks, and oranges are

virtually indistinguishable from each other. Do not use

similar colors for any targets.

Figure 6 – CMUcam 1 [2]

http://www.sparkfun.com/
http://www.seattlerobotics.com/cmuinfo.htm

Page 11 of 75

8. Behaviors

 FanBot will initialize and then say, “All Systems Go.” It will then be in a wait state. While

in the wait state, it will growl if anyone walks in front of it. It will leave the wait state when the

side sensors are covered. When the side sensors are covered, the head will move from side to

side and the jaw will move up and down. It will also play the Tickle Me Elmo laugh.

 FanBot then goes into a search mode looking for an Alabama target. Once the target is

located using the CMU Cam, it will play the Jaws theme. It will then approach the target and

use the CMU Cam to make course corrections. When it gets to the target, it uses the IR sensors

to determine when it is close to the target. It will then stop and the jaws will actuate with

chomping sounds. It then says, “That‟s how I roll.”

 After locating the Alabama target, it will then search for a Gator target. When the target is

located it will say, “Hail to the King!” It will approach the target, as above, and when it gets

close it will stop and play the Gator fight song. It will then look for another Alabama target.

 The code for these behaviors can be seen in Appendix B.

9. Experimental Results

a) R Sensors

The code used to test the IR Sensors can be seen in Appendix A, Part 1. Each IR sensor

was connected to the same port and tested. I took a measuring tape and recorded the analog

values I got from a white and then a black target. I did that for 3 lighting conditions for each

sensor including fluorescent lighting, incandescent lighting, and sunlight. I then averaged the

white and black target results for each lighting condition and used curve fitting to get a best fit

curve. A fourth order polynomial seemed to work best. I used this best fit curve to compare the

results are as follows:

Page 12 of 75

1. For the Right IR Sensor, a Sharp GP2Y0A21YK0F:

Distance
(Inches)

Incandescent Fluorescent Sunlight

White Black White Black White Black

2 3197 3257 3157 3183 3257 3257

4 3197 3257 3257 3257 3257 3257

6 3512 3512 3257 3257 3257 3257

8 3325 3368 3357 3097 3567 3569

10 3082 3155 3097 2544 3321 3057

12 2237 2175 2297 2137 2390 2233

14 2043 1945 2053 1963 2053 2066

16 1625 1869 1931 1625 1936 1866

18 921 1625 1803 1621 1625 1625

20 921 921 1621 921 921 921

22 921 921 921 921 921 921

24 921 921 921 921 921 921

26 921 921 921 921 921 921

28 921 921 921 921 921 921

30 921 921 921 921 921 921

Figure 7 – Right IR Sensor Results

Resulting curves after curve fitting:

Figure 8 – Right IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Incandescent

Fluorescent

Sunlight

Page 13 of 75

2. For the Left IR Sensor, a Sharp GP2Y0A21YK0F:

Distance
(Inches)

Incandescent Fluorescent Sunlight

White Black White Black White Black

2 3197 3197 3197 3178 3167 3167

4 3197 3197 3197 3178 3167 3233

6 3567 3569 3578 3578 3512 3233

8 3327 3257 3369 3571 3326 3568

10 3082 3083 3165 3167 3083 3155

12 2175 2160 2458 2571 2233 2295

14 2137 1949 2161 2237 2045 2169

16 1866 1866 2160 2233 1968 2168

18 1625 1625 1625 1625 1625 1945

20 921 921 921 921 921 1621

22 921 921 921 921 921 921

24 921 921 921 921 921 921

26 921 921 921 921 921 921

28 921 921 921 921 921 921

30 921 921 921 921 921 921

Figure 9 – Left IR Sensor Results

Resulting curves after curve fitting:

Figure 10 – Left IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Incandescent

Fluorescent

Sunlight

Page 14 of 75

3. For the Lower, Front IR Sensor, a Sharp GP2Y0A21YK0F:

Distance
(Inches)

Incandescent Fluorescent Sunlight

White Black White Black White Black

2 3197 3257 3157 3178 3257 3257

4 3197 3257 3257 3257 3257 3257

6 3545 3545 3257 3257 3385 3257

8 3325 3368 3357 3097 3567 3569

10 3082 3155 3097 2544 3321 3057

12 2238 2175 2297 2237 2390 2233

14 2137 1945 2053 1961 2053 2066

16 1625 1869 1931 1625 1936 1866

18 921 1625 1803 1621 1625 1625

20 921 921 1621 921 921 921

22 921 921 921 921 921 921

24 921 921 921 921 921 921

26 921 921 921 921 921 921

28 921 921 921 921 921 921

30 921 921 921 921 921 921

Figure 11 – Lower, Front IR Sensor Results

Resulting curves after curve fitting:

Figure 12 – Lower, Front IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Incandescent

Fluorescent

Sunlight

Page 15 of 75

4. For the Left Snout IR Sensor, a Sharp GP2Y0A02YK0F:

Distance
(Inches)

Incandescent Fluorescent Sunlight

White Black White Black White Black

12 3187 3197 3187 3197 3187 3197

14 3512 3512 3521 3512 3569 3512

16 3587 3587 3577 3567 3569 3567

18 3577 3581 3577 3517 3361 3391

20 3261 3192 3261 3233 3165 3263

22 3167 3097 3183 3197 3157 3097

24 3167 2544 3097 3161 2513 2537

26 2499 2458 3488 3037 2391 2335

28 2233 2369 2401 2497 2161 2153

30 2161 2237 2233 2197 2132 2047

32 2137 1943 2107 2143 1945 1941

34 1945 1866 2002 2042 1861 1625

36 1869 1930 1940 1920 1625 921

38 1731 1934 1803 1968 921 921

40 1625 921 1625 1867 921 921

42 921 921 921 921 921 921

Figure 13 – Left Snout IR Sensor Results

Resulting curves after curve fitting:

Figure 14 – Left Snout IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25

Incandescent

Fluorescent

Sunlight

Page 16 of 75

5. For the Center Snout IR Sensor, a Sharp GP2Y0A02YK0F:

Distance
(Inches)

Incandescent Fluorescent Sunlight

White Black White Black White Black

12 3187 3197 3167 3197 3187 3197

14 3512 3568 3521 3567 3569 3512

16 3587 3587 3577 3567 3569 3567

18 3577 3581 3577 3517 3361 3391

20 3261 3192 3261 3233 3165 3263

22 3167 3097 3183 3197 3157 3097

24 3161 2544 3097 3161 2513 2537

26 2538 2458 3488 3037 2391 2335

28 2233 2369 2312 2497 2161 2153

30 2161 2237 2233 2197 2132 2047

32 2137 1943 2037 2143 1945 1941

34 1945 1866 1949 2042 1861 1625

36 1869 1930 1940 1920 1625 921

38 1731 1934 1803 1968 921 921

40 1625 921 1625 1867 921 921

42 921 921 921 921 921 921

Figure 15 – Center Snout IR Sensor Results

Resulting curves after curve fitting:

Figure 16 – Center Snout IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25

Incandescent

Fluorescent

Sunlight

Page 17 of 75

6. For the Right Snout IR Sensor, a Sharp GP2Y0A02YK0F:

Distance
Incandescent Fluorescent Sunlight

White Black White Black White Black

12 3187 3197 3167 3197 3187 3197

14 3512 3568 3521 3567 3569 3512

16 3587 3587 3577 3567 3569 3567

18 3577 3581 3577 3517 3361 3391

20 3261 3192 3261 3233 3165 3263

22 3167 3097 3183 3197 3157 3097

24 3161 2544 3097 3161 2513 2537

26 2538 2458 3488 3037 2391 2335

28 2233 2369 2312 2497 2161 2153

30 2161 2237 2233 2197 2132 2047

32 2137 1943 2037 2143 1945 1941

34 1945 1866 1949 2042 1861 1625

36 1869 1930 1940 1920 1625 921

38 1731 1934 1803 1968 921 921

40 1625 921 1625 1867 921 921

42 921 921 921 921 921 921

Figure 17 – Right Snout IR Sensor Results

Resulting curves after curve fitting:

Figure 18 – Right Snout IR Sensor Analog Value vs. Distance in Inches

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25

Incandescent

Fluorescent

Sunlight

Page 18 of 75

b) SONAR

 The LV-EZ0 SONAR sensors are almost identical in their performance. I recorded their output
as I moved a target progressively farther away. 13 feet seemed to be the cutoff point. I took the
data, plotted it, and then did curve fitting. A third degree polynomial gave the best results. The
delay required between analog readings and the possible interference that can occur between
SONAR sensors placed close to each other resulted in my decision to use IR for obstacle avoidance
and SONAR for target detection. I also decided not to use the LV-EZ4 because the narrow beam
made it extremely sensitive. The code used to test the SONAR is in Appendix A, part 2.

The results are as follows (all distances are in feet):

Feet FRONT REAR

1 471.27 473.9744

2 394.64 397.2932

3 402.51 407.6748

4 482.46 492.1076

5 622.07 637.58

6 808.92 831.0804

7 1030.59 1059.597

8 1274.66 1310.119

9 1528.71 1569.634

10 1780.32 1825.13

11 2017.07 2063.596

12 2226.54 2272.021

13 2396.31 2437.393

14 2513.96 2546.7

15 2567.07 2586.93

16 2543.22 2545.072

Figure 19 – Front and Rear SONAR Results

Page 19 of 75

After curve fitting:

Figure 20 – Front SONAR Analog Value vs. Distance in Feet

Figure 21 – Rear SONAR Analog Value vs. Distance in Feet

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Page 20 of 75

c) CMUcam

 The CMUcam was the hardest device to integrate. A lot of problems came from initializing

the XMEGA‟s USARTs since it is different than the more familiar ATmega. Joshua Phillip‟s

wrote some initial code that I heavily modified to get the interface between the PVR Board the

CMUcam to work. By setting up the camera in polling mode, 9600 baud, and using raw data

mode I was able to get usable data from the camera. The Java based interface is essential to

determining color values and visualizing what the camera is detecting.

 The connections are made as follows:

Figure 22 – Connections between PVR board and CMUcam [3]

 The first thing done was to test the interface between the camera and the motherboard. The

easiest way to do this is to turn the tracking light on and off. The code for this can be seen in

Appendix A, Part 5. Appendix A, Part 3 and 4 are the modified uart.c and uart.h files actually

used. This was successful.

 The next thing done was getting usable data from the camera. The code for this is in

Appendix A, Part 6. Data is continuously sent from the camera and displayed on FanBot‟s LCD.

 The Java interface was used to get mean and deviations for incandescent and fluorescent

lighting. I tested fluorescent lighting first with white balance on and off. The white balance on

seemed to give the best results. I then tested in incandescent lighting with the white balance on.

Fluorescent lighting gave the best results. Even though there is a red shift under fluorescent

lighting, it is more pronounced under incandescent lighting. Data is as follows:

Page 21 of 75

1. Fluorescent Lighting:

White Balance Off

Color Red Mean Green Mean Blue Mean Red Dev Green Dev Blue Dev

Green 122 120 62 20 26 8

Orange 134 38 16 28 6 0

Blue 127 132 137 12 12 11

Red 150 17 18 16 2 2

Yellow 138 98 16 19 12 1

White Balance On

Color Red Mean Green Mean Blue Mean Red Dev Green Dev Blue Dev

Green 130 127 67 21 27 8

Orange 142 40 16 27 6 0

Blue 136 135 135 13 14 12

Red 149 17 18 16 2 2

Yellow 138 94 17 19 13 1

Figure 23 – CMUcam Results Under Fluorescent Lighting

2. Incandescent Lighting

Color Red Mean Green Mean Blue Mean Red Dev Green Dev Blue Dev

Green 144 99 99 15 12 9

Orange 145 49 47 31 26 6

Blue 136 99 110 12 11 10

Red 157 44 28 21 5 5

Yellow 141 65 30 21 7 5

Figure 24 – CMU Cam Results Under Incandescent Lighting

Page 22 of 75

10. Conclusion

 I successfully integrated almost everything I set out to do. The camera and all sensors worked

properly. I had problems with CMU Cam, but eventually got it working. I had some silly

mistakes along the way such as leaving the lens cap on. The CMU Cam works best at extremely

low baud rates. There is no need to operate at 115, 000 baud. Also, leaving the auto gain and

white balance on interferes with the ability to track targets. I recommend that future students

fully read the CMU Cam Manual to understand the impact of the various settings.

 Initially, FanBot moved far too quickly. This interfered with the ability to find targets and

avoid obstacles. This was corrected by limiting the speed. The motors were probably over

designed, but this is better in the long run. The planetary gear motors worked really well.

 Fully testing all sensors paid off when integrating everything. It was a matter of small

tweaking instead of major coding. Experimentation will save time. To quote Dr. Schwartz, “Be

the tortoise and not the hare.”

 My biggest failure on the project was the feet. If I had to do over again, I would use servos

and not motors. It would be far easier to accomplish what I wanted.

 Finally, I want to thank the TA‟s Mike and Thomas for the outstanding support along the

way. I highly recommend their PVR board for future students. I also would like to thank Dr.

Schwartz and Dr. Arroyo. This was the best and most challenging course I have ever taken.

Thanks also to Tim Martin for his advice and support on using the Wave Shield. Lastly, I want

to thank all my fellow students for the suggestions and recommendations.

11. Documentation

[1] IR Sensor and Sonar photos taken from www.sparkfun.com.

[2] CMUcam 1 photo taken from www.seattlerobotics.com

[3] CMUcam 1 Manual v. 2.0, Carnegie Mellon University, 2003

http://www.sparkfun.com/
http://www.seattlerobotics.com/

Page 23 of 75

12. Appendices

A. Appendix A – Sensor Testing Code

1. Code used to test IR Sensors:

#include <avr/io.h>

#include "PVR.h"

void main(void)

{

 xmegaInit(); //setup XMega

 delayInit(); //setup delay functions

 ServoCInit(); //setup PORTC Servos

 ServoDInit(); //setup PORTD Servos

 ADCAInit(); //setup PORTA analog readings

 lcdInit(); //setup LCD on PORTK

 lcdString("IR Value "); //display "IR Value" on top line (Line 0) of LCD

 int IR;

 while(1)

 {

 IR = ADCA0(); //call IR value

 lcdGoto(1,0); //move LCD cursor to Line 1 of LCD

 lcdInt(IR); //display IR Value on second line

 lcdString(" "); //ensures value displays correctly

 }

}

2. Code use to test SONAR:

#include <avr/io.h>

Page 24 of 75

#include "PVR.h"

void main(void)

{

 xmegaInit(); //setup XMega

 delayInit(); //setup delay functions

 ServoCInit(); //setup PORTC Servos

 ServoDInit(); //setup PORTD Servos

 ADCAInit(); //setup PORTA analong readings

 lcdInit(); //setup LCD on PORTK

 lcdString("SONAR Value"); //display "SONAR Value" on top line (Line 0) of LCD

 int SONAR; //SONAR value

 delay_ms(350); //Delay needed for SONAR to startup and self-calibrate

 while(1)

 {

 SONAR = ADCA0(); //call Left SONAR value

 lcdGoto(1,0); //move LCD cursor to the second line (Line 1) of LCD

 lcdInt(SONAR); //display SONAR Value on second line

 lcdString(" "); //spaces to ensure value displays correctly

 delay_ms(200); //delay 200ms needed between value calls

 }

}

3. Modified uart.h header file, original provided by Joshua Phillips

#ifndef __uart_h__

#define __uart_h__

#include <avr/io.h>

#include "uart.h"

void uart_init0(void); //Initiates the E0 USART

unsigned char uart_getchar0(void); //All functions ending in 0 correspond to E0

unsigned int uart_getint0(void);

void uart_sendchar0(unsigned char tx_char);

void uart_sendstring0(unsigned char tx_string[]);

unsigned char uart_getstring0(void);

void uart_init1(void); //Initiates the E1 USART

unsigned char uart_getchar1(void); //All functions ending in 1 correspond to E1

unsigned int uart_getint1(void);

void uart_sendchar1(unsigned char tx_char);

void uart_sendstring1(unsigned char tx_string[]);

unsigned char uart_getstring1(void);

#endif

4. Modified uart.c source file, original provided by Joshua Phillips

#include <avr/io.h>

Page 25 of 75

#include "uart.h"

void uart_init0(void) //E0 will be used to connect to the CMUcam

{

 PORTE_DIR = PIN3_bm; //Pin 3 is used to transmit. This is part of

 PORTE_OUT = PIN3_bm; //the required setup in the XMEGA datasheet.

 PORTE.DIRCLR = PIN2_bm; //Pin 2 is used to receive data.

 USARTE0_CTRLC = 0x03; // set 8N1 asynchronous serial tx/rx

 USARTE0_BAUDCTRLA = 0xF5; // The spreadsheet provided gives the values

// of BSEL and BSCALE to establish various baud

//rates and the associated errors. The values written

USARTE0_BAUDCTRLB = 0xCC; // in this case establishes 9600 baud and < 0.01%

//error.

 USARTE0_CTRLB |= 0x08; // turn on TX system

 USARTE0_CTRLB |= 0x10; // turn on RX system

}

unsigned char uart_getchar0(void)

{

 unsigned char rx_char; // initialize received character buffer

 while (!(USARTE0_STATUS & (1<<USART_RXCIF_bp))); // wait for RXCIF to be set

 rx_char = USARTE0_DATA; // rx_char set to equal E0 DATA value

return rx_char; //returns character.

}

unsigned int uart_getint0(void)

{

 unsigned int rx_int; // initialize received int buffer

 while (!(USARTE0_STATUS & (1<<USART_RXCIF_bp))); // wait for RXCIF to be set

 rx_int = USARTE0_DATA; // rx_int set to equal E0 DATA value

 return rx_int; //rx_int is returned

}

void uart_sendchar0(unsigned char tx_char)

{

 while (!(USARTE0_STATUS & (1<<USART_DREIF_bp))); // check if data register is empty

 USARTE0_DATA = tx_char; // store data in tx_char

 while (!(USARTE0_STATUS & (1<<USART_TXCIF_bp))); // wait for TXCIF to be set (data sent)

}

void uart_sendstring0(unsigned char tx_string[])

{

 int i = 0;

 while (tx_string[i] != '\0') //while not at the null character (string terminator)

// continue sending serial string

 {

 uart_sendchar0(tx_string[i++]); //call to uart character sending function

 } //loop through sequence of i until finished

}

unsigned char uart_getstring0(void)

Page 26 of 75

{

 static char *rx_string; //define pointer to array rx_string of unknown length

 int i = 0;

 do

 {

 rx_string[i] = uart_getchar0(); //continue receiving string from peripheral till

 //it returns the line return sequence

 } while (rx_string[i++] != '\r'); //eliminate the carriage return sent by CMUcam

return rx_string; //return the character array

}

void uart_init1(void) //All E1 functions are identical to the E0 functions

{ //Except that they use the E1 USART.

 PORTE_DIR = PIN7_bm; //The E1 USART will be used to communicate with

 PORTE_OUT = PIN7_bm; //the Arduino and Wave Shield

 PORTE.DIRCLR = PIN6_bm;

 USARTE1_CTRLC = 0x03;

 USARTE1_BAUDCTRLA = 0xF5;

 USARTE1_BAUDCTRLB = 0xCC;

 USARTE1_CTRLB |= 0x08;

 USARTE1_CTRLB |= 0x10;

}

unsigned char uart_getchar1(void)

{

 unsigned char rx_char;

 while (!(USARTE1_STATUS & (1<<USART_RXCIF_bp)));

rx_char = USARTE1_DATA;

 return rx_char;

}

unsigned int uart_getint1(void)

{

 unsigned int rx_int;

 while (!(USARTE1_STATUS & (1<<USART_RXCIF_bp)));

 rx_int = USARTE1_DATA;

 return rx_int;

}

void uart_sendchar1(unsigned char tx_char)

{

 while (!(USARTE1_STATUS & (1<<USART_DREIF_bp)));

USARTE1_DATA = tx_char;

 while (!(USARTE1_STATUS & (1<<USART_TXCIF_bp)));

Page 27 of 75

}

void uart_sendstring1(unsigned char tx_string[])

{

 int i = 0;

 while (tx_string[i] != '\0')

 {

 uart_sendchar1(tx_string[i++]);

 }

}

unsigned char uart_getstring1(void)

{

 static char *rx_string;

 int i = 0;

 do

 {

 rx_string[i] = uart_getchar1();

 } while (rx_string[i++] != '\0');

return rx_string;

}

5. Code to turn the CMUcam track light on and off

#include <stdlib.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include "uart.h"

#include "PVR.h"

int main(void)

{

 xmegaInit(); //setup XMega

 delayInit(); //setup delay functions

 ServoCInit(); //setup PORTC Servos

 ServoDInit(); //setup PORTD Servos

 ADCAInit(); //setup PORTA analong readings

 lcdInit(); //setup LCD on PORTK

 uart_init0(); //Initalizes E0 USART

 uint8_t receivedData; //Establishes1byte variable

 while (1)

 {

 uart_sendstring0("L1 1\r"); //Sends code to turn light on

 do { //Gets and displays ACK

 receivedData = uart_getchar0(); //returned from CMUcam

 lcdChar(receivedData); //and the „:‟ sent when cam

 } while (receivedData != ':'); //is ready for the next command

 lcdInt(1); //Displays 1 when command to

//turn the light on is sent.

 lcdGoto (0,0);

Page 28 of 75

 PVRdelay_ms(1000); //1 second delay

 uart_sendstring0("L1 0\r"); //Send command to turn light off

 do { //Used to get ACK as above

 receivedData = uart_getchar0();

 lcdChar(receivedData);

 } while (receivedData != ':');

 lcdInt(2); //Displays 2 when command to

 //turn light off is sent.

 lcdGoto (0,0);

 PVRdelay_ms(1000);

 }

return 0;

}

6. Code used to get S packet from CMUcam

#include <stdlib.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include "uart.h"

#include "PVR.h"

int main(void)

{

 xmegaInit(); //setup XMega

 delayInit(); //setup delay functions

 ServoCInit(); //setup PORTC Servos

 ServoDInit(); //setup PORTD Servos

 ADCAInit(); //setup PORTA analong readings

 lcdInit(); //setup LCD on PORTK

 uart_init0(); //Initializes usart E0 at 9600 baud

 //8 bits, 1 stop bit, no parity

 uint8_t receivedData; //Used to clear received data

 int data[7]; //Int array to get data

/*******************************Initialize Cam************************************/

 lcdString("Initializing Cam"); //LCD display while initializing cam settings

 uart_sendstring0("RS \r"); //Resets the cam

 do { //Clears out the receive buffer

 receivedData = uart_getchar0();

Page 29 of 75

 } while (receivedData != ':');

 lcdInt(1);

 uart_sendstring0("SW 1 1 40 143\r"); //Uses the entire window for color mean analysis

 do { //Clears out the receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 lcdInt(0);

 uart_sendstring0("CR 18 44\r"); //Adjusts for incandescent lighting/sunlight

 /*uart_sendstring0("CR 45 7 18 44\r");*/ //Adjusts for fluorescent lighting

 do { //Clears out receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 lcdInt(1);

 PVRdelay_ms(2000); //Delay to allow lighting adjustment

 uart_sendstring0("PM 1\r"); //Establishes Polling Mode

 do {

 receivedData = uart_getchar0(); //Clears out receive buffer

 } while (receivedData != ':');

 lcdInt(2);

 uart_sendstring0("RM 3\r"); //Raw Mode - gets rid of ACK returns,

 //Camera sends data in raw mode

 //Instead of ASCII characters, data is sent in integers

 //The data start byte will be 255, followed by packet

// type, and then color values and deviations

 do {

 receivedData = uart_getchar0(); //Clears out receive buffer

 } while (receivedData != ':');

 lcdInt(3);

 PVRdelay_ms(1000); //Delay to allow initialization to complete

 lcdGoto (0,0); //Clears first line

 lcdString(" ");

 int i;

/******************************Data Loop**/

 while(1)

 {

 uart_sendstring0("GM\r"); //Requests S Packet

 i=0;

 while(i <8) //Read in data

 {

Page 30 of 75

 data[i] = uart_getint0();

 i++;

 }

 lcdGoto(0,0); //Displays packet type, 83 = "S"

 lcdString("Packet Type");

 if(data[1]==83)

 {

 lcdGoto(1, 0);

 lcdString("S Type");

 }

 else //In case of transmission error

 {

 lcdGoto(1, 0);

 lcdString("Unknown");

 }

 PVRdelay_ms(700);

 lcdGoto(0,0); //Displaye Red Mean

 lcdString("Red Mean ");

 lcdGoto(1,0);

 lcdInt(data[2]);

 lcdString(" ");

 PVRdelay_ms(700);

 lcdGoto(0,0); //Displays Blue Mean

lcdString("Blue Mean ");

 lcdGoto(1,0);

 lcdInt(data[3]);

 lcdString(" ");

 PVRdelay_ms(700);

 lcdGoto(0,0); //Displays Green Mean

 lcdString("Green Mean ");

 lcdGoto(1,0);

 lcdInt(data[4]);

 lcdString(" ");

 PVRdelay_ms(700);

 lcdGoto(0,0); //Displays Red Deviation

 lcdString("Red Dev ");

 lcdGoto(1,0);

 lcdInt(data[5]);

 lcdString(" ");

 PVRdelay_ms(700);

 lcdGoto(0,0); //Displays Blue Deviation

Page 31 of 75

 lcdString("Blue Dev ");

 lcdGoto(1,0);

 lcdInt(data[6]);

 lcdString(" ");

 PVRdelay_ms(500);

 lcdGoto(0,0);

 lcdString("Green Dev "); //Displays Green Deviation

 lcdGoto(1,0);

 lcdInt(data[7]);

 lcdString(" ");

 PVRdelay_ms(700);

 uart_getchar0(); //Clears the „:‟ sent after the data packet

 }

return 0;

}

B. Appendix B – The Final, Integrated Code:

/***

 *

* FanBot Code *

* *

* by Brian Long *

* *

* (UART originally written by Joshua *

* Phillip's and modified for use in *

* FanBot.) *

* *

***/

/************* Includes *********************/

#include <stdlib.h>

#include <stdbool.h>

#include <avr/io.h>

Page 32 of 75

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include "uart.h"

#include "PVR.h"

/************** Defines **********************/

/* Start and stop .wav files */

#define Chomp_Start 0X70;

#define Chomp_End 0XF0;

#define Fight_Start 0X71;

#define Fight_End 0XF1;

#define Hail_Start 0X72;

#define Hail_End 0XF2;

#define WantSome_Start 0X73;

#define WantSome_End 0XF3;

#define Roll_Start 0X74;

#define Roll_End 0XF4;

#define Systems_Start 0X75;

#define Systems_End 0XF5;

#define Elmo_Start 0X76;

#define Elmo_End 0XF6;

#define Gator_Start 0X77;

#define Gator_End 0XF7;

#define Jaws_Start 0X78;

#define Jaws_End 0XF8;

#define Sniff_Start 0X79;

#define Sniff_End 0XF9;

Page 33 of 75

#define Territorial_Start 0X7A;

#define Territorial_End 0XFA;

#define Stupidity_Start 0X7B;

#define Stupidity_End 0XFB;

/* Motor Control */

#define All_Off 0X00;

#define Right_Fwd 0X01;

#define Right_Rev 0X02;

#define Left_Fwd 0X04;

#define Left_Rev 0X08;

#define Legs_Fwd 0X10;

#define Legs_Rev 0X20;

#define Fwd 0X05;

#define Rev 0X0A;

#define Hard_Right 0X06;

#define Hard_Left 0X09;

#define Fwd_With_Legs 0X15;

#define Rev_With_Legs 0X2A;

#define Hard_Left_Legs_Fwd 0X16;

#define Hard_Left_Legs_Rev 0X26;

#define Hard_Right_Legs_Fwd 0X19;

#define Hard_Right_Legs_Rev 0X29;

/*********** Function Prototypes *************/

void Initialize (void);

void JawUp(void);

Page 34 of 75

void JawDown(void);

void HeadLeft(void);

void HeadRight(void);

void HeadCenter(void);

void Head(int);

void TailLeft(void);

void TailRight(void);

void TailCenter(void);

void LeftMotors(int);

void LegMotors(int);

void RightMotors(int);

void LCD_Clear(void);

void Cam_Initialize(void);

float SonarRead(void);

float LeftIR_Read(void);

float LeftFwdIR_Read(void);

float CenterIR_Read(void);

float UnderIR_Read(void);

float RightFwdIR_Read(void);

float RightIR_Read(void);

float RearIR_Read(void);

void RightTurnFwd(void);

void LeftTurnFwd(void);

void SmallLeftTurnFwd(void);

void HardRightTurnFwd(void);

void HardLeftTurnFwd(void);

void GoFwd(void);

void GoRev(void);

Page 35 of 75

void RightTurnRev(void);

void LeftTurnRev(void);

void StopMoving(void);

void GatorSearch(void);

void BamaSearch(void);

void BamaTargetCheck(void);

void GatorTargetCheck(void);

void Obstacle(void);

void BamaApproach(void);

void GatorApproach(void);

/****************** Global Variables **********************/

uint8_t middle_x, middle_y, lcx, lcy, rcx, rcy, pix, conf;

bool GotTarget = false; //Used to determine if object detected

float LeftIR; //Left IR value

float RightIR; //Right IR value

float LeftFwdIR; //Left Fwd IR value

float RightFwdIR; //Right Fwd IR value

float CenterIR; //Center IR value

float UnderIR; //Under IR value

float RearIR; //Rear IR value

int Side_greater_avg; //Figures out whether

int Fwd_greater_avg; //left or side averages are larger

/****************** Main **********************/

Page 36 of 75

int main ()

{

/* Variables */

bool going = false; //A bool to ensure the robot does not move until both

 //IR sernsors are covered.

float Sonar; //Sonar value

uint8_t receivedData; //Used to clear received data

int data[10]; //Int array to get data

int GoCheck;

/* Inititialize */

Initialize();

PORTH_OUT = Systems_Start; //All Systems Go played

PVRdelay_ms(500);

PORTH_OUT = Systems_End;

/* Holding Loop */

while(!going) //Until both IR sensors are covered,

 //it stays in this loop and waitis.

 {

 LeftIR = LeftIR_Read();

 RightIR = RightIR_Read();

 LeftFwdIR = LeftFwdIR_Read();

 RightFwdIR = RightFwdIR_Read();

 CenterIR = CenterIR_Read();

 UnderIR = UnderIR_Read();

 RearIR = RearIR_Read();

 if((RightFwdIR >=3300) || (LeftFwdIR >=3300) || (CenterIR >=3300))

 {

Page 37 of 75

 PORTH_OUT = Gator_Start; //Territorial played

 PVRdelay_ms(500);

 PORTH_OUT = Gator_End;

 }

 if ((RightIR >= 3400) && (LeftIR >=3400)) //Until the sensors are covered (IR values >= 3500), do

nothing.

 {

 lcdGoto(0,0);

 lcdString("Wakey Wakey");

 going = true; //Sets going bool to true to break out of the loop

 }

 else going = false;

 }

/* Clears LCD */

PVRdelay_ms(1000);

lcdGoto(0,0);

LCD_Clear();

/* Play Elmo */

PORTH_OUT = Elmo_Start;

PVRdelay_ms(200);

PORTH_OUT = Elmo_End;

PORTJ_OUT = All_Off;

PVRdelay_ms(800);

 do

 {

 for(int i =0; i<6; i++)

 {

 HeadLeft();

Page 38 of 75

 JawDown();

 PVRdelay_ms(400);

 HeadCenter();

 JawUp();

 PVRdelay_ms(400);

 HeadRight();

 JawDown();

 HeadCenter();

 TailCenter();

 JawUp();

 }

 }while(PORTF_IN == 0X6F);

while(going)

 {

 BamaSearch();

 BamaTargetCheck();

 while (GotTarget == true)

 {

 BamaApproach();

 }

 Obstacle();

 GatorSearch();

 GatorTargetCheck();

 while (GotTarget == true)

 {

 GatorApproach();

 }

 Obstacle();

Page 39 of 75

 }

return 0;

}

/************* Functions *********************/

/* Initialize */

void Initialize () //Initializes PVR board

{

xmegaInit(); //setup XMega

delayInit(); //setup delay functions

ServoCInit(); //setup PORTC Servos

ServoDInit(); //setup PORTD Servos

ADCAInit(); //setup PORTA analog readings

lcdInit(); //setup LCD on PORTK

lcdString("Initializing");

PORTJ_DIR |= 0xFF; //Sets up Port J as an output port

 //to control motor direction.

PORTJ_OUT = 0XFF; //All motors are off intially.

Page 40 of 75

PORTH_DIR |= 0xFF; //Sets up Port H as an output port

PORTH_OUT = 0XFF; //to allow comms with the Arduino board.

PORTF_DIR |= 0X6F; //Sets up Port F as an input port

 //for comms with Arduino board

PORTF_OUT = 0X6F;

uart_init0(); //Initializes USART E0 at 9600 baud

 //8 bits, 1 stop bit, no parity

Cam_Initialize(); //Initailizes CMU Cam

lcdGoto(0,0); //Clears LCD.

LCD_Clear();

}

/* Servos */

#define Tail_Left 27;

#define Tail_Right -5;

#define Tail_Center 9;

#define Head_Left1 33;

#define Head_Right -33;

#define Head_Center 2;

void JawUp (void)

 {

 ServoD2(90);

 }

void JawDown (void)

 {

Page 41 of 75

 ServoD2(-100);

 }

void TailLeft (void)

 {

 ServoC5(60);

 }

void TailCenter (void)

 {

 ServoC5(28);

 }

void TailRight (void)

 {

 ServoC5(0);

 }

void HeadLeft (void)

 {

 ServoD1(-33);

 }

void HeadCenter (void)

 {

 ServoD1(0);

 }

void HeadRight (void)

 {

 ServoD1(33);

 }

void Head (int value)

Page 42 of 75

 {

 ServoD1(value);

 }

/* Motors */

void LeftMotors(int value)

{

 if ((value > 0 && value < 30) || (value < 0)) value = 30;

 value *= 100;

 TCC0_CCA = (value); //Generate PWM.

}

void RightMotors(int value)

{

 if ((value > 0 && value < 30) || (value < 0)) value = 30;

 value *= 100;

 TCC0_CCB = (value); //Generate PWM.

}

void LegMotors(int value)

{

 if ((value > 0 && value < 30) || (value < 0)) value = 30;

 value *= 100;

 TCC0_CCC = (value); //Generate PWM.

}

/* Cam Initialize */

Page 43 of 75

void Cam_Initialize()

{

 uint8_t receivedData; //Used to clear received data

 lcdGoto(0,0); //Clears LCD.

 lcdString("Initializing Cam"); //LCD display while initializing cam settings

 uart_sendstring0("RS \r"); //Resets the cam

 do { //Clears out the receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 lcdInt(1);

 uart_sendstring0("SW 1 1 40 143\r"); //Uses the entire window for color mean analysis

 do { //Clears out the receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 lcdInt(0);

 uart_sendstring0("CR 17 10 18 44\r"); //Turns on white balance. Changes clock speed.

 do { //Clears out receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 for(int j=0; j<10; j++) { //It takes 5 seconds to adjust to lighting conditions. Leaving the auto

 PVRdelay_ms(500); //gain and auto white balance on could impact the ability to track.

 } //See CMU Cam manual for explanation.

 uart_sendstring0("CR 18 40 19 32\r"); //Turn off auto gain and auto white balance

Page 44 of 75

 do { //Clears out receive buffer

 receivedData = uart_getchar0();

 } while (receivedData != ':');

 lcdInt(1);

 PVRdelay_ms(2000); //Delay to allow lighting adjustment

 uart_sendstring0("PM 1\r"); //Establishes Polling Mode

 do {

 receivedData = uart_getchar0(); //Clears out receive buffer

 } while (receivedData != ':');

 lcdInt(2);

 uart_sendstring0("MM 1\r"); //Establishes Middle Mass Mode

 do {

 receivedData = uart_getchar0(); //Clears out receive buffer

 } while (receivedData != ':');

 lcdInt(2);

 uart_sendstring0("RM 3\r"); //Raw Mode - gets rid of ACK returns, sends data in raw mode

 //Instead of ASCII characters, data is sent in integers

 //The data start byte will be 255, followed by packet type, and data

 do {

 receivedData = uart_getchar0(); //Clears out receive buffer

Page 45 of 75

 } while (receivedData != ':');

 lcdInt(3);

 PVRdelay_ms(1000); //Delay to allow initialization to complete

}

/* LCD Clear */

void LCD_Clear()

{

lcdString(" ");

}

/* SONAR */

float SonarRead()

{

float SonarValue;

float SonarSum =0;

float SonarAvg;

for (int i = 0; i<20; i++)

 {

 SonarValue = ADCA3(); //Call SONAR value

 SonarSum += SonarValue; //Adds readings for average;

 PVRdelay_ms(50); //50 msec delay required between

 } //readings.

Page 46 of 75

SonarAvg = SonarSum/20;

return SonarAvg;

}

/* IR Read */

float LeftIR_Read(void)

{

float value;

float avg;

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA0();

sum = sum + value;

}

avg = sum/16;

Page 47 of 75

return avg;

}

float LeftFwdIR_Read(void)

{

float value;

float avg;

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA1();

sum = sum + value;

}

avg = sum/16;

return avg;

}

Page 48 of 75

float CenterIR_Read(void)

{

float value;

float avg;

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA2();

sum = sum + value;

}

avg = sum/16;

return avg;

}

Page 49 of 75

float UnderIR_Read(void)

{

float value;

float avg;

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA4();

sum = sum + value;

}

avg = sum/16;

return avg;

}

float RearIR_Read(void)

{

float value;

Page 50 of 75

float avg;

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA5();

sum = sum + value;

}

avg = sum/16;

return avg;

}

float RightFwdIR_Read(void)

{

float value;

float avg;

Page 51 of 75

float sum =0;

int i;

for (i=0; i< 16; i++)

{

value = ADCA6();

sum = sum + value;

}

avg = sum/16;

return avg;

}

float RightIR_Read(void)

{

float value;

float avg;

float sum =0;

int i;

Page 52 of 75

for (i=0; i< 16; i++)

{

value = ADCA7();

sum = sum + value;

}

avg = sum/16;

return avg;

}

/******************* Movement ****************************/

void RightTurnFwd(void)

{

lcdGoto(0,0);

lcdString("Right Turn! ");

PORTJ_OUT = Fwd;

HeadRight();

TailRight();

LeftMotors(70);

Page 53 of 75

RightMotors(0);

PVRdelay_ms(500);

RightMotors(50);

}

void HardRightTurnFwd(void)

{

lcdGoto(0,0);

lcdString("Hard Right Turn! ");

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

PORTJ_OUT = Hard_Right;

HeadRight();

TailRight();

LeftMotors(40);

RightMotors(40);

PVRdelay_ms(300);

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

}

void SmallLeftTurnFwd(void)

Page 54 of 75

{

lcdGoto(0,0);

lcdString("Left Turn! ");

PORTJ_OUT = Fwd;

HeadLeft();

TailLeft();

RightMotors(80);

LeftMotors(0);

PVRdelay_ms(325);

RightMotors(40);

LeftMotors(40);

}

void LeftTurnFwd(void)

{

lcdGoto(0,0);

lcdString("Left Turn! ");

PORTJ_OUT = Fwd;

HeadLeft();

TailLeft();

RightMotors(85);

LeftMotors(0);

PVRdelay_ms(620);

RightMotors(50);

LeftMotors(50);

Page 55 of 75

}

void HardLeftTurnFwd(void)

{

lcdGoto(0,0);

lcdString("Hard Left Turn! ");

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

PORTJ_OUT = Hard_Left;

HeadLeft();

TailLeft();

LeftMotors(40);

RightMotors(40);

PVRdelay_ms(300);

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

}

void GoFwd(void)

{

lcdGoto(0,0);

Page 56 of 75

lcdString("Time to go! ");

PORTJ_OUT = Fwd;

HeadCenter();

TailCenter();

LeftMotors(50);

RightMotors(50);

}

void GoRev(void)

{

lcdGoto(0,0);

lcdString("Back Up! ");

HeadCenter();

TailCenter();

LeftMotors(0);

RightMotors(0);

PORTJ_OUT = Rev;

PVRdelay_ms(200);

LeftMotors(40);

RightMotors(40);

PVRdelay_ms(400);

Page 57 of 75

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

}

void RightTurnRev(void)

{

lcdGoto(0,0);

lcdString("Back Right! ");

HeadRight();

TailRight();

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

PORTJ_OUT = Hard_Left;

LeftMotors(40);

RightMotors(40);

PVRdelay_ms(300);

LeftMotors(0);

Page 58 of 75

RightMotors(0);

PVRdelay_ms(200);

}

void LeftTurnRev(void)

{

lcdGoto(0,0);

lcdString("Back Left! ");

HeadLeft();

TailLeft();

LeftMotors(0);

RightMotors(0);

PVRdelay_ms(200);

PORTJ_OUT = Hard_Right;

LeftMotors(40);

RightMotors(40);

PVRdelay_ms(300);

LeftMotors(0);

RightMotors(0);

Page 59 of 75

PVRdelay_ms(200);

}

void StopMoving(void)

{

LeftMotors(0);

RightMotors(0);

}

/************** Searches *******************/

void BamaSearch(void)

{

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

lcdString("Color - Tide?");

PORTH_OUT = Sniff_Start;

PVRdelay_ms(200);

PORTH_OUT = Sniff_End;

middle_x = 0;

middle_y = 0;

pix = 0;

Page 60 of 75

conf= 0;

int data[10];

int i =0;

uart_sendstring0("TC 135 255 0 80 0 80\r");

while(i <10)

 {

 data[i] = uart_getint0();

 i++;

 }

middle_x = data[2];

middle_y = data[3];

pix = data[8];

conf= data[9];

uart_getchar0();

}

void GatorSearch(void)

{

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

Page 61 of 75

lcdString("Color - Gator?");

PORTH_OUT = Sniff_Start;

PVRdelay_ms(200);

PORTH_OUT = Sniff_End;

middle_x = 0;

middle_y = 0;

pix = 0;

conf= 0;

int data[10];

int i =0;

uart_sendstring0("TC 0 110 60 200 0 80\r");

while(i <10)

 {

 data[i] = uart_getint0();

 i++;

 }

middle_x = data[2];

middle_y = data[3];

pix = data[8];

conf= data[9];

uart_getchar0();

Page 62 of 75

}

void BamaTargetCheck(void)

{

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

lcdString("Tide? ");

PVRdelay_ms(400);

int count = 0;

if (conf < 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("No Tide");

 PVRdelay_ms(800);

 GotTarget = false;

 }

else if (conf >= 35)

 {

 lcdGoto(0,0);

Page 63 of 75

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Got Tide! ");

 PVRdelay_ms(800);

 GotTarget = true;

 PORTH_OUT = Jaws_Start;

 StopMoving();

 PVRdelay_ms(200);

 PORTH_OUT = Jaws_End;

 PVRdelay_ms(5000);

 }

GoFwd();

PVRdelay_ms(500);

while(GotTarget == false)

 {

 BamaSearch();

 StopMoving();

 PVRdelay_ms(1000);

 if (conf < 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("No Tide");

 PVRdelay_ms(800);

 GotTarget = false;

 SmallLeftTurnFwd();

 HeadCenter();

 TailCenter();

Page 64 of 75

 }

 if (conf >= 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Got Tide! ");

 PVRdelay_ms(800);

 GotTarget = true;

 PORTH_OUT = Jaws_Start;

 StopMoving();

 PVRdelay_ms(200);

 PORTH_OUT = Jaws_End;

 PVRdelay_ms(8000);

 HeadCenter();

 TailCenter();

 break;

 }

 }

}

void GatorTargetCheck(void)

{

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

lcdString("Gator? ");

Page 65 of 75

PVRdelay_ms(400);

int count = 0;

if (conf < 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("No Gator");

 PVRdelay_ms(800);

 GotTarget = false;

 }

else if (conf >= 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Got Gator! ");

 PVRdelay_ms(800);

 GotTarget = true;

 PORTH_OUT = Hail_Start;

 StopMoving();

 PVRdelay_ms(200);

 PORTH_OUT = Hail_End;

 PVRdelay_ms(5000);

 }

Page 66 of 75

GoFwd();

PVRdelay_ms(500);

while(GotTarget == false)

 {

 GatorSearch();

 StopMoving();

 PVRdelay_ms(1000);

 if (conf < 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("No Gator");

 PVRdelay_ms(800);

 GotTarget = false;

 SmallLeftTurnFwd();

 HeadCenter();

 TailCenter();

 }

 if (conf >= 35)

 {

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Got Gator! ");

 PVRdelay_ms(800);

 GotTarget = true;

 PORTH_OUT = Hail_Start;

Page 67 of 75

 StopMoving();

 PVRdelay_ms(200);

 PORTH_OUT = Hail_End;

 PVRdelay_ms(8000);

 HeadCenter();

 TailCenter();

 break;

 }

 }

}

void Obstacle(void)

{

int count = 0;

PORTJ_OUT = Fwd;

LeftMotors(40);

RightMotors(40);

while (count < 2)

 {

 LeftIR = LeftIR_Read();

 RightIR = RightIR_Read();

 LeftFwdIR = LeftFwdIR_Read();

 RightFwdIR = RightFwdIR_Read();

 CenterIR = CenterIR_Read();

 RearIR = RearIR_Read();

Page 68 of 75

 if(LeftIR >= RightIR) //Checks to see which reading is greater, in

case a decsion has to be made.

 {

 Side_greater_avg = 2;

 }

 else Side_greater_avg = 1;

 if(LeftFwdIR >= RightFwdIR) //Checks to see which reading is

greater, in case a decsion has to be made.

 {

 Fwd_greater_avg = 2;

 }

 else Fwd_greater_avg = 1;

 if (CenterIR >= 3150)

 {

 StopMoving();

 PVRdelay_ms(200);

 if(Fwd_greater_avg == 1)

 {

 GoRev();

 RightTurnRev();

 }

 else

 {

Page 69 of 75

 GoRev();

 LeftTurnRev();

 }

 }

 else if (RearIR >= 3000)

 {

 StopMoving();

 }

 else if ((LeftFwdIR >=3100) && (Fwd_greater_avg == 2))

 {

 HardRightTurnFwd();

 }

 else if ((RightFwdIR >= 3100) && (Fwd_greater_avg == 1))

 {

 HardLeftTurnFwd();

 }

 else if ((LeftFwdIR >= 2800) && (Fwd_greater_avg == 2))

 {

 RightTurnFwd();

 }

 else if ((RightFwdIR >=2800) && (Fwd_greater_avg == 1))

 {

 LeftTurnFwd();

 }

Page 70 of 75

 else if ((LeftIR >=3100) && (Side_greater_avg == 2))

 {

 RightTurnFwd();

 }

 else if ((RightIR >=3000) && (Side_greater_avg == 1))

 {

 LeftTurnFwd();

 }

 else

 {

 GoFwd();

 }

 count ++;

 }

}

void BamaApproach(void)

{

float IR1, IR2, IR3;

GoFwd();

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

lcdString("Approaching");

PVRdelay_ms(2000);

Page 71 of 75

while(1)

 {

 PVRdelay_ms(200);

 BamaSearch();

 IR1 = CenterIR_Read();

 IR2 = RightFwdIR_Read();

 IR3 = LeftFwdIR_Read();

 if(IR1 < 3000 && IR2 < 3200 && IR3 < 3200)

 {

 while (IR1 < 3000 && IR2 < 3200 && IR3 < 3200)

 {

 BamaSearch();

 if (middle_x > 55)

 {

 RightTurnFwd();

 HeadCenter();

 TailCenter();

 }

 else if (middle_x < 25)

 {

 LeftTurnFwd();

 HeadCenter();

 TailCenter();

Page 72 of 75

 }

 else

 {

 GoFwd();

 PVRdelay_ms(100);

 }

 IR1 = CenterIR_Read();

 IR2 = RightFwdIR_Read();

 IR3 = LeftFwdIR_Read();

 }

 }

 else

 {

 StopMoving();

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Attack!!!");

 PVRdelay_ms(4000);

 for(int q =0; q< 4; q++)

 {

 PORTH_OUT = Chomp_Start;

 PVRdelay_ms(300);

 PORTH_OUT = Chomp_End;

 do

 {

 JawDown();

 PVRdelay_ms(200);

Page 73 of 75

 JawUp();

 }while(PORTF_IN == 0X6F);

 PVRdelay_ms(1000);

 }

 PVRdelay_ms(2000);

 PORTH_OUT = Roll_Start;

 PVRdelay_ms(200);

 PORTH_OUT = Roll_End;

 PVRdelay_ms(2000);

 GotTarget = false;

 break;

 }

 }

}

void GatorApproach(void)

{

float IR1, IR2, IR3;

GoFwd();

lcdGoto(0,0);

LCD_Clear();

lcdGoto(0,0);

lcdString("Approaching");

PVRdelay_ms(2000);

while(1)

 {

 PVRdelay_ms(200);

 GatorSearch();

Page 74 of 75

 IR1 = CenterIR_Read();

 IR2 = RightFwdIR_Read();

 IR3 = LeftFwdIR_Read();

 if(IR1 < 3000 && IR2 < 3200 && IR3 < 3200)

 {

 while (IR1 < 3000 && IR2 < 3200 && IR3 < 3200)

 {

 GatorSearch();

 if (middle_x > 55)

 {

 RightTurnFwd();

 HeadCenter();

 TailCenter();

 }

 else if (middle_x < 25)

 {

 LeftTurnFwd();

 HeadCenter();

 TailCenter();

 }

 else

 {

 GoFwd();

 PVRdelay_ms(100);

 }

 IR1 = CenterIR_Read();

 IR2 = RightFwdIR_Read();

Page 75 of 75

 IR3 = LeftFwdIR_Read();

 }

 }

 else

 {

 StopMoving();

 lcdGoto(0,0);

 LCD_Clear();

 lcdGoto(0,0);

 lcdString("Go Gators!!!");

 PVRdelay_ms(4000);

 PORTH_OUT = Fight_Start;

 PVRdelay_ms(200);

 PORTH_OUT = Fight_End;

 PVRdelay_ms(2000);

 GotTarget = false;

 break;

 }

 }

}

