MARV

MARINE AUTONOMOUS RECOVERY VEHICLE

JOSHUA PHILLIPS
FINAL REPORT
7 DECEMBER 2009
EEL 5666C: INTELLIGENT MACHINE DESIGN LAB

DR. A ANTONIO ARROYO THOMAS VERMEER
DR. ERIC M SCHWARTZ MIKE PRIDGEN

TABLE OF CONTENTS:

l
N
l

Title Page

Table of Contents

Abstract

Executive Summary
Introduction

Integrated Systems

Mobile Platform

Actuation

Sensors

Behaviors

Experimental Layout and Results
Conclusion

Documentation

Appendix A: Schematics
Appendix B: Motor Library
Appendix C: UART Library
Appendix D: CMUcam1 Library
Appendix E: MARV Code

OO UL WN -

WININRPRRRRRR
N U O N U A KL

ABSTRACT:

MARV (Marine Autonomous Recovery Vehicle) is an amphibious assault and recovery vehicle.
He supplies two main functions: (1) Hostile target removal, and (2) Sensitive cargo recovery.
When not performing these two functions, MARV will remain in his home base. Upon
activations he will leave the base and move toward the designated body of water. After
reaching the shore line, he will locate any hostile installations and remove the threat. After
clearing the area of hostiles MARV will enter the water. He will then locate the sensitive cargo
which will be on the bottom of the lake. After locating the cargo MARV will recover it and
return it to home base, where he will remain until activated again.

l
w
l

EXECUTIVE SUMMARY:

MARV was originally designed to perform in and out of the water. After getting about %
through the semester it was decided to limit focus to the out of water functions. If time
remained underwater functions would be completed. Despite this fact all functions, devices,
and elements added to the robot were designed and/or constructed with underwater
capabilities in mind.

e
NN
¢

An RC tank was purchased and hollowed out to house the electronics and servomotors for
continuous drive capability. The tank was designed to be amphibious and is approximately
watertight unmodified. There are some leaks but they can be easily patched.

The robot contains a central controller: an ATxmegal28 board constructed by PVR robotics.
The board controls the PWM output signals for the motors/servos used for land and
underwater motion, in addition to the gripper arm. In addition the board is used for RS232
serial communication with the CMUcam1 used for tracking and targeting functions. In addition
it would also be used for general I/O function. The I/O ports control the underwater propellers
in addition to several shutdown functions and the gripper arm pushbutton control.

Original specifications called for the use of continuous track driven by the original motors that
came with the chassis. With two weeks remaining in the project it was discovered that the
extra weight from all the intended devices was too much for the original motors driving the
continuous track. If the underwater capabilities had been left off the design this would not
have constituted a problem. Due to the current situation a new motor construct had to be
devised. This was done using ultra high torque servomotors. The ultimate failure of this system
precluded disappointing results for MARV.

The underwater propellers were originally going to be modified servos, but it was discovered
that the RPM of these motors were far too low to drive MARV through the water. Rule 360GPH
bilge pumps were purchased to solve this problem. They were modified and propellers were
attached and they work marvelously in addition to being waterproof.

The main functions of MARV are driven by a set of sensors. These sensors include IR sensors for
line following. This is used during the first stage where MARV makes his way to the water’s
edge. The other main sensor used is the CMUcam1 for color sensing. This system is used in
order to track in the water in addition to locating the on-land target.

When the intended cargo is found there is a gripper arm added in order to pick up the object.
In order to find the object the CMUcam1 mentioned above is used to locate it and a push
button is located between the gripper arm to identify when the target is acquired.

The on-land functions all work, in addition to the underwater functions. The only problems
arise in a broken output shaft for the drive motor late in the process. Due to lack of time
necessary to work on the underwater function this was abandoned and saved for a later date.

INTRODUCTION:

One objective of warfare is the completion of tasks with minimal loss of friendly and civilian
lives. One excellent way of doing this is by having intelligent machines perform tasks such as
hostile removal, reconnaissance, and cargo removal. Currently this sort of function is
performed by military departments such as the United States Naval Explosive Ordinance
Disposal unit.

l
vl
l

The purpose of MARV is to provide a functional way of locating and recovering underwater
cargo for return to friendly base. It is assumed MARV will encounter hostiles along the way and
in order to complete his task he will have to remove the hostile installations.

MARV’s platform is constructed of an RC tank platform. The tank was gutted and servomotors
were added to replace the insufficiently powered original motors. He will be equipped with
propellers for underwater propulsion and continuous track for above ground motion.

Underwater propulsion units will be powered by modified bilge pump motors. These motors
will be arranged in order to provide MARV will full 3-D motion while underwater. The
continuous track is powered by continuous motion servos.

Sensors are a tricky thing on underwater vehicles. Many things that work above ground work
differently or not at all when submerged in water. The main sensor used on MARV will be an
CMUcam1 for color detection. The color detection is used for navigation and targeting
activities. In addition IR sensors are used for line following to get MARV from the starting point
to the water’s edge.

INTEGRATED SYSTEMS:

At the heart of the system is a PVR board, designed and constructed by PVR. This board
contains an ATXMEGA128. This board provides all the necessary controller functions for the
board including: servo control, UART for the webcam, ADC for the sensors, and 1/O functions
such as for the artillery. The following is a system level block diagram:

Propeller Motor Continuous Track Camera Control
Control Servo Control

CONTROLLER

Bump Switch For
Gripper Arm

Automatic Airsoft Gripper Hand
Rifle

Figure 1: System Block Diagram

One nice feature of this set up is that all the features are directly controlled by hardware. All
data is retrieved from the devices and interpreted by the XMEGA controller and instructions are
sent out to the peripherals. This arrangement allows for redundancy and maintains system
stability in case of contradictory sensory output.

MARV’s platform was constructed from an
RC tank purchased online from
XenonProject.com. This tank was chosen
because it was light weight, small, and was
an amphibious tank and already contained
the necessary property of being watertight.
A picture of the tank prior to modification
can be seen to the right in figure 2.

Figure 2: RC Panzer Amphibious tank

The top part of the robot containing the fake artillery and the camouflage is removed and the
inside of the housing is gutted, removing any excess plastic to make the mounting of electronics
inside the robot easier. Some pictures of the robot are shown below in figures 3 and 4:

Figure 3: MARV main chassis exterior

Figure 4: MARV interior of main chassis

Above this main chassis two electrical conduit boxes were added to hold the motor drive

Figure 5: Conduit boxes above main chassis

transistors for the propeller system in addition to the
main battery line terminals, to supply battery voltage
to any system that requires it, rather than the 5V or
3.3V regulated lines from the PVR board. The conduit
boxes can be seen in figure 5 to the right. Above these
conduit boxes is a platform constructed out of 8x12
piece of Plexiglass. The platform is very flimsy so two
aluminum rods are added for support underneath the
platform. This construct can be seen in later figures.

This chassis is the 2" one constructed. The first one
was scrapped due to balancing issues. The front of MARV was far too heavy. The battery has

~8~

significant weight and was shifted far to the front while the camera was mounted in the middle
causing the whole robot to shift forward. Eventually this idea was scrapped in favor of the
current design. This design is not without it’s flaws though. Rather than being front heavy this
new design became too back heavy. To account for this a makeshift caster was constructed out
of a flexible piece of copper and acts somewhat like a sled blade. The flexibility of the caster is
nice as it maintains proper traction from the tank treads.

In addition to the weight issues the platform has other problems:

e Plexiglass for instance works really well, but if done again more rigid Plexiglass should be
used for better structuring.

e As can be seen in figure 5 the platform level is held up by nylon spacers. These don’t
work very well and strip easily with some pressure applied to them. Metal spacers
should have been used for this, but none were available at the time and never ordered.

e As seen in figure 4 there is not a lot of room for extra electronics and wiring inside the
chassis, if done again it would be wise to choose a main chassis with more room for
electronics. A larger chassis would also likely solve a lot of the balance issues.

In order to account for these shortcomings several things were done. For better structure
aluminum rods were added along the length of the robot to make the platform more rigid. To
make up for not having enough room for electronics expansion space was made in the way of
conduit boxes pictured in figure 5. The nylon spacers never posed enough of a problem to
worry about, though they were glued together late in the process just in case.

ACTUATION:

As stated in the introduction, MARV has both under water and dry land behaviors. As such an
actuation method for both locations is necessary. A continuous track method is used above
ground and a propeller propulsion method is used underwater.

Continuous track works by keeping as large of a flat surface continually on the ground as
possible. An example of a configuration used is located
to the left in Figure 1 For the purpose of MARV it was
decided that the continuous track would make it easier
to get out of the water due to the higher amount of
surface area on the ramp. | “
The continuous track

motion will be driven by
two independent hacked
Hi-Tec HS 645MG servos.
Originally the motors and
gears that came with the
chassis were going to be Figure 7: HS-645 High Torque Servo
used but they didn’t provide sufficient torque to move the tank so they were replaced with the
aforementioned servos which provide 133 oz-in torque at 6V. The hack for these motors was
particularly hard due to their metal gears. The pin that limits the rotation was particularly
difficult to remove and had to be grinded off with a Dremel paying special care not to damage
the gear.

Figure : 60 Patton, example of continuous track

Underwater motion will be controlled by propellers. They will be driven by 360 GPH bilge
pumps hacked for the motor. The pump can be seen in figure 8. To
hack the pump the encasings below the red part at the top were
removed exposing the motor output shaft and the impeller. The
impeller was removed and a propeller was added. If done properly the
motor is still waterproof.

This motor runs most efficiently at 12 V but runs as low as 4V. In MARV

the pump will be run at 8V. At this voltage the continuous current draw

is 1.1A per pump with spikes in the 2.5A range during start and stop.

Figure 8: Rule 360 GPH Bilge Pump These motors will be driven by TIP120 Darlington Pair transistors rated
at 5A purchased from RadioShack for convenience. The circuit board for the transistors is
located in the conduit boxes pictured in figure 5.

The gripper hand is powered by a servomotor as well. The servo in this case is the Traxxas 2065
waterproof servo. Two servos were used to construct the gripper hand.

The airsoft rifle is also powered by a DC motor which similarly to the bilge pumps are controlled
by a darlington pair switching transistor circuit.

~10 ~

Like the mobile platform portion of the robot, the actuation devices presented considerable
difficulty and were likely the most expensive devices, as a result the most costly mistakes. The
following difficulties were encountered with the actuation system:

¢ Not enough torque for the tank tread motors originally used

e Motors in the water must rotate very quickly and servomotors only have around
50RPM, while RPM needs to be more like 500 in the water for proper propulsion to take
place

The torque issue was not recognized until very late in the process. The motors lasted through
the addition of all the items except the camera housing. When the camera housing was
mounted it was noticed that one of the tank motors didn’t have enough torque to pull the tank
anymore while the other one barely did. This was after switching the motors off the 5V PVR
board supply to the 8V battery supply. It still didn’t make enough of a difference. These
motors were then stripped out of the chassis and high torque servomotors purchased at
HobbytownUSA. These servos have plenty of torque to push the tank as mentioned above with
well over 1300z-in of torque.

Unfortunately due to the late acquisition of these motors, proper output shaft attachments
were not acquirable and makeshift shafts were constructed. The rightward tank motor
attachments works, while the leftward one worked temporarily before breaking. If given more
time to work on this it would be an easy fix and significantly improve the performance of
MARV.

The issue of RPM for the underwater motors was an easy fix, though very costly as the original
servos cost about $120 and the new motors cost about $75, resulting in a cost of nearly $200
for this system. The motors used were from Rule 360GPH bilge pumps mentioned previously in
this section.

One other noteworthy issue is that the additional weight of these motors over the servos
originally set to be used is likely what caused the unexpected heavy weight of the robot leading
to the inability of the main motors to perform their function.

~11 ~

Three kinds of sensors were used in this project: (1) Infrared Proximity Sensor (2) Push Button
Bump Switch (3) CMUcam1 for color tracking.

The Infrared Proximity Sensor is a simple voltage divider circuit. The circuit is arranged as in
figure 9 below.

From uF Erom ub

R1
S0

= AN
wosLED PHOTOTRANSISTOR 3 L/‘

-

R2 woltage Out
=1ma to uP ADC

Figure 9: IR Emitter/Receiver Pair Connections

Though Sharp IR sensors are more accurate they are also more expensive and take up more
space. The housing for these sensors needs to be watertight as it will be outside the chassis. As
such a housing was constructed out of clear rubber tubing sealed to the chassis with epoxy and
the IR emitter/receiver are sealed with epoxy where they exit the tube, to keep from putting
the water’s resistance in parallel across the LED/phototransistor terminals. In actuality this
would likely not damage the robot, but just to be safe this precaution was taken. The full
arrangement of the IR sensor can be seen in figure 10 and 11 below. Figure 11 shows the
mount structure that the IR housing is placed in to direct them at the ground for line following.

Figure 10: IR Housing Figure 11: IR Mounts

~12 ~

The next system which there currently is no picture for is the pus button switch used for the
gripper hand. It is used to indicate the presence of the cargo to be recovered to notify the
gripper hand when to close in order to capture the cargo. It is a simple SPDT switch, with the
normally closed input connected to ground, the normally high input connected to +3.3V, and
the common output connected to an input port on the microcontroller through a 2.5kQ
resistor.

The final system and the most important system on MARV is the CMUcam1. The CMUcam is a
CMOS IR camera designed by Carnegie Mellon University and distributed via Seattle Robotics.
It comes fully constructed and ready to go out of the box. It can be interfaced with either a
microcontroller via level shifted or TTL serial communication. In addition for purposes of
debugging and testing it comes with the ability to interface with standard terminal programs
such as Hyperterminal in addition to its own JAVA GUI. The JAVA GUI is buggy but is very useful
in learning how the CMUcam1 works.

The CMUcam1 has the following properties:
e Tracks user defined color blobs at 17fps
e Finds centroid data, mean colors, and deviation
e Can be used to track RGB data or YCrCB
e 80x 143 resolution
e Ability to control a pan servo directly for tracking colors
e 115200, 38400, 19200 and 9600 baud serial communication rates via hardware jumper

Below in figure 12 is a Diagram of the CMUCam1 control board

Propramning Switch

Tower LED' Track LD 18" Mannting Holse
Ml l |
- v
- Fr g
o 8o ()
Lewsl Shifted o o0 0 CO0O =
cerizt o =P (OO o '”o oc’o Q @ O
33 [f - |5+ 399
o o
L =
'8 Q o O o_q
SX-Key Port ollo +ollo 5
-* "8 Ao w010~ 5 o figg)
o Ly
(&) _:E“I!? g ¢ o o g o (09 fmm Camera Bus
TTL Serial - -FI"O o E o g & g (Bacl Maunted)
— LR o o st et — —
. o ae® = 2o ¢ (0O
Tumper 3 m— doer O N[O
" Q) mr @ W20 o (0O
Q) o Nl e o (0O
Tumper: m— '@ —HI:D [+ o5 o (0O
TouF O o
(o) o o (© O
Turmper] m— .@ B @) i
+olo- -qQlo-+
_ @ 100uF 100uF (—_H
© OO LM2340

T—

Power Switch Servo Pork

Figure 12: CMUcam1 control board schematic

~13 ~

By default the board is set up to run at 115kbps. A lot of errors occur at this speed due to the
incompatibility of the XMEGA’s USART system to run at a frequency within 2kbps of the
required frequency, so it was reduced to 9.6kbps to positive results.

Color tracking is the main function of this device. It was found that depending on the
environment that the colors vary wildly due to the nature of the camera to shift to red in heavy
light, especially outside. Due to this the color range had to be selected overly wide, and the
auto white balance and auto gain had to be adjusted. In this case the white balance was turned
off and the auto gain was allowed to set on initialization before being turned off to prevent
problems. All UART and CMUcam1 code is listed in the appendix.

Pictures of the CMUcam1 setup are shown in the figure13(a-d) below.

Figure 13: (a) top left is the airsoft gun with the camera attached below it (b) top right is the camera attached below the gun from the front
(c) bottom left is the servo mount for the camera housing (d) bottom right is the camera housing itself fully sealed and ready to go.

As can be seen in the pictures above the CMUcaml1 is directly attached to the airsoft rifle to
make the targeting system more accurate as the camera will rotate and point directly at the
same spot as the airsoft rifle. This rotation results from the servo in figure 13(c) which is
directly controlled by the camera’s controller board.

~14 ~

BEHAVIORS:

MARYV will have two main phases. The first is above ground and involves leaving the base,
moving down a path, stopping at the waters edge and removing hostile installations using an
airsoft gun or other artillery. The second behavior involves entering the water, locating cargo,
capturing it in some manner, and returning it to the home base (out of the water).

The ground phase dubbed “Hostile Removal” involves the need for MARV to be activated by a
friendly troop in some manner. This will be accomplished using the bump switch also used by
the gripper arm to indicate presence of cargo in the gripper hand. After leaving the base MARV
is charged with the duty of following a predefined line on top of a bridge structure. In addition
to following the line, MARV will require some sort of edge detection to make sure he doesn’t
fall off the bridge on his way to the lake, though this will not be implemented at this time.
Upon arriving at the lake MARV will make about 90 degree scan of his surroundings for hostiles
and take them out one by one. The hostiles will be designated a specific color, in this case red.
By default, MARV will continue firing until all installations can be verifiably destroyed. After
completion of this task the
hostile removal phase is
complete and MARV will
continue down the ramp
and into the water.

The cargo recovery phase
begins directly after the Hostile Removal
hostile removal phase. It
will start with the behavior
of MARV to detect that he is
in the water and turn off the
land actuation devices and
use strictly his water
propulsion systems. Due to
the nature of his buoyancy Figure 5: Proposed course and behaviors

structure, MARV simply needs to wait till he arrives at the bottom, without the necessity of
propulsion to get to the bottom. Once at the bottom he will proceed to do another scan for the
cargo which will be designated by a different color from the path followed as well as the hostile
targets. Using the color target for navigation direction MARV will proceed to move toward the
cargo. MARV will use a robotic claw to grasp the object. He will proceed to turn around and
locate the ramp, still designated by the same color used earlier. Upon arrival at the ramp,
MARYV will continue to run his underwater propulsion system until completely out of the water.
During this time the dry land propulsion system will start running to assist in moving out of the
water, and continue after the underwater propulsion cuts off. MARV will then follow the line
back to his home base.

Cargo Recove

~15 ~

EXPERIMENTAL LAYOUT AND RESULTS:

IR Sensor Data:

2.5 -

15 == \/oltage Output(white)
==\ oltage Output(Black)

The sensor data above was for the IR used for the line following behavior between MARV’s
outpost and the edge of the water. As can be seen the output voltage for a black line would be
far different from the output voltage from a white patch. Therefore it is possible to discern
between these two high contrast colors using IR. In this case the sensors are arranged about 2
inches apart and are used to follow a one inch wide line. The sensors are used to detect the
presence of the white space. If the white space is detected the motor on that side stays on, if it
is not present (or alternatively the black line is present) that motor turns off allowing MARV to
turn and correct himself. This particular function works flawlessly. If the motor output shaft
had not broken there is no doubt that this particular function of MARV would work without any
problems.

~16 ~

CONCLUSIONS:

The project accomplished many of the goals set out at the beginning such as:
e Line following procedure worked very well
e Underwater propulsion systems work despite inability to put robot in water
e Targeting and overall gun system worked well, except it wasn’t entirely accurately,
mostly due to the deficiencies of the CMUcam1 itself
e Propeller control tracking system using the CMUcam1 worked well
e Gripper hand activates and holds well enough to carry an object back

On the other hand there were some disappointments such as:

e |nability to get to a point where MARV could be placed in the water all the way and his
underwater functions tested there

e Insufficient torque in motors resulting in new motor system too late to purchase proper
mounts and output components

e Balancing issues due to lack of proper mechanical training

e Inability to have time to implement the original idea of starting MARV with voice
activation

Despite the flaws | consider MARV to be a success as a work in progress. If given a bit more
time | believe all of MARV’s flaws could be reasonably worked out. That being said, MARV is
not perfect and there are many things | would change if | could do things over such as:
e Either construct my own chassis using easily obtainable tank tread parts and USE
PROPER CONNECTORS AND COMPONENTS or use a much larger base
e Select proper DC motors and gear box for the heavy load of MARV (~ 8-10 Ibs)
e Construct everything out of more rigid materials (i.e. no plexiglass/plastic)
e Attach everything with screws, no glue
e Use only servos with easy to find servo horns, parts, and components such as Futaba or
Hi-Tec rather than harder to find brands such as Traxxas which make servos for specific
functions and specific vehicles
e Construct my own controller board devised specifically for what | need
e Getting PCBs made on campus was very difficult for this class, and not of terribly good
guality, anything that needs to be milled should be shipped off even if it costs
e Don’t cut corners get quality parts, in the end cheap stuff might end up costing more

It goes without saying that this project was overly ambitious. On the other hand, isn’t that
what college is for, testing your limits and seeing what you can do. | think anyone can slap on a
few IR and SONAR to follow a line or avoid a wall given enough time. Designing a complex
system like | attempted to do this semester pushed me to the limit, and even though | didn’t
accomplish all | hoped to, | think I’'m a better engineer for trying and | encourage other people
to do the same.

~17 ~

DOCUMENTATION:

[1] "Actuators: How to Modify a Servo," societyofrobots.com, 2005. [Online]. Available:
http://www.societyofrobots.com/actuators_modifyservo.shtml. [Accessed: Sept. 12,
2009].

[2] “The CMUCam1 Vision Sensor,” 2001. [Online]. Available:
http://www.cs.cmu.edu/~cmucam/home.html. [Accessed: Sept 28, 2009].

[3] "Instrucutables: Underwater ROV," insructables.com, 2009. [Online]. Available:
http://www.instructables.com/id/Underwater_ROV/. [Accessed: Sept. 8, 2009].

[4] "Homebuilt ROV’s," 2009. [Online]. Available: http://www.homebuiltrovs.com.
[Accessed: Sept. 8, 2009].

[5] "Robot Airsoft," 2009. [Online]. Available: http://robotairsoft.com. [Accessed: Sept.
20, 2009].

~18 ~

APPENDICES:

Appendices include all schematics and code used in the design of MARV

APPENDIX A: SCHEMATICS

Vee_3_3 Vee 3 3
IR_LED_RESISTOR_RIGHT IR_LED_RESISTOR_LEFT
1000 1000
1 5
Q|R_LED_RIGHT Q|R_LED_LEFT
y RAEDR R
GND GND .
Vbatt
- S1
Ve 3.3 Vee 3.3 (MOTOR
IR_DET_RESISTOR_RIGHT IR_DET_RESISTOR_LEFT 17
MQ MO
pFoRS 4 AIRSOFT
MJ122
IR_DETECTOR RIGHT IR_DETECTOR LEFT 1kQ
PHOTOTRANSISTOR PHOTOTRANSISTOR\,
0
GND GND =i
V_battery V_battery V_battery V_battery
FORWARD_PROP_LEFT FORWARD_PROP_RIGHT VERTICAL_PROP_LEFT VERTICAL_PROP_RIGHT
MOTOR MOTOR MOTOR MOTOR
8
R1 Q3 Q7 Q6 Q4
c MJ122 © MJ122 ‘ mMJ122 ¢ MJ122

Appendix B: Motor Function Code

/*****************

* Motor Library *

*****************/

~19 ~

/***

* Code written by Joshua Phillips for DC Motor operation
* during Fall 2009 session at the University of Florida for

* Intelligent Machine Design Lab. The code is written
* specifically for Atmel's XMEGA128,

*

* Included are the following functions:

*

¥ OX X ¥ X ¥ X X ¥ X ¥ X ¥ ¥ %

tanklinit() - Initialize PWM ports for tank motors
tankL(value) - left tread forward at speed 0-8
tankR(value) - right tread forward at speed 0-8

tankStop() - stops all tank tread motion

Proplnit() - Initializes Propeller Functions

Prop(L,R)_ForwardOn() - Turns on L or R forward prop
Prop(L,R)_ForwardOff() - Turns off L or R forward prop
Prop(L,R)_UpwardOn() - Turns on L or R upward prop
Prop(L,R)_UpwardOff() - Turns off L or R upward prop
PropForwardOn() - Turns both forward motion props on
PropForwardOff() - Turns both forward motion props off

PropUpOn() - Turns both rise props on
PropUpOff() - Turns both rise props off
Gunlnit() - Initializes Airsoft Port
GunFire() - Fires gun for 500ms

£

* % ¥ F o4 X x % % ¥ % ¥ ¥ ¥ ¥ x % % *%

***/

/**************

* INCLUDES *

*************/

#include <avr/io.h>
#include "Motor.h"
#include "xmega.h"

/*************

* DEFINES *

*************/

#define PropControl PORTH_OUT

#define PropControlDir PORTH_DIR

*
*
*
*

#define ProplLeftFwdOn
#define ProplLeftUpOn
#define PropRightFwdOn
#define PropRightUpOn
#define PropLeftFwdOff
#define PropLeftUpOff
#define PropRightFwdOff
#define PropRightUpOff
#define GunControl
#define GunControlDir
#define GunOn

#define GunOff

/*********

* TANK *

*********/

void tanklnit(void)

& D5)

{
TCDO_CTRLA = 0x05;
TCDO_CTRLB = OxF3;

TCDO_PER = 10000;
TCD1_CTRLA = 0x05;
TCD1_CTRLB = 0x33;

TCD1_PER = 10000;
PORTD_DIR = Ox3F;
TCDO_CCA = 0;
TCDO_CCB = 0;
TCDO_CCC = 638;
TCDO_CCD = 813;
TCD1_CCA = 0;
TCD1_CCB =0;
}

void tankR(int value)
{
if (value > 100)
value = 100;
else if (value < -100)
value =-100;

~20~

0x01
0x02
0x04
0x08
OxFE
OxFD
OxFB
OxF7
PORTF_OUT
PORTF_DIR
1
0

//Initialize motor set up motor with PWM (Servo lines D4

//set TCCO_CLK to CLK/64

//Enable OCA, B, C, and D. Set to Single Slope PWM
//0CnX =1 from Bottom to CCx and 0 from CCx to Top
//20ms / (1/(32MHz/64)) = 10000. PER = Top

//set TCC1_CLK to CLK/64

//Enable OC A and B. Set to Single Slope PWM
//OCnX =1 from Bottom to CCx and O from CCx to Top
//20ms / (1/(32MHz/64)) = 10000. PER =Top

//set PORTC5:0 to output

//PWMDO off

//PWMD1 off

//PWMD?2 off

//PWMD3 off

//PWMDA4 off

//PWMDS5 off

//define left motor speed range

//cap at +/- 100
// -100 => 1ms
// 0 =>1.5ms
// 100 =>2ms

value *=-5;
value /= 2;
TCD1_CCA = (750 + value);
}
void tankL(int value)
{
if (value > 100)
value = 100;
else if (value < -100)
value =-100;
value *=5;
value /= 2;
TCD1_CCB = (750 + value);
}
void tankStop(void)
{
TCD1 _CCA=0;
TCD1_CCB =0;
}
/*************
* PROPELLER *
*************/

void Proplnit(void)
{
PropControlDir = OxOF;

PropControl = 0x00;
}

void ProplL_ForwardOn(void)

{

PropControl |= PropLeftFwdOn;

}

void PropL_ForwardOff(void)
{

PropControl &= PropLeftFwdOff;

}

void PropR_ForwardOn(void)
{

PropControl |= PropRightFwdOn;

~21 ~

//multiply value by 2.5
// new range +/- 250
//Generate PWM.

//cap at +/- 100

// -100 =>1ms

// 0 =>1.5ms

// 100 =>2ms
//multiply value by 2.5
// new range +/- 250
//Generate PWM.

}

void PropR_ForwardOff(void)

{

PropControl &= PropRightFwdOff;
}
void PropL_UpwardOn(void)
{

PropControl |= PropLeftUpOn;
}
void PropL_UpwardOff(void)
{

PropControl &= PropLeftUpOff;
}

void PropR_UpwardOn(void)

{
PropControl |= PropRightUpOn;

}

void PropR_UpwardOff(void)

{
PropControl &= PropRightUpOff;
}
void PropForwardOn(void)
{
PropR_ForwardOn();
PropL_ForwardOn();
}
void PropForwardOff(void)
{
PropR_ForwardOff();
PropL_ForwardOff();
}

void PropUpOn(void)

{
PropR_UpwardOn();
PropL_UpwardOn();

void PropUpOff(void)

{
PropR_UpwardOff();
PropL_UpwardOff();

}

/***************

* Airsoft Gun *
***************/

void Gunlnit(void)

{
GunControlDir = 0x01;
GunControl = 0;

}

void GunFire(void)

{
GunControl = GunOn;
delay_ms(1000);
GunControl = GunOff;

}

/************

* CLAW *

************/

void ClawR(int angle)

{
if (angle > 94)
angle = 94;
else if (angle < -45)
angle = -45;
angle *=5;
angle /=2;
TCDO_CCC = (750 + angle);
}
void ClawL(int angle)
{
if (angle > 25)
angle = 25;

else if (angle <-94)
angle =-94;

~23 ~

//cap at +/- 100
// -100 => 1ms
// 0 =>1.5ms
// 100 =>2ms
//multiply value by 2.5
// new range +/- 250
//Generate PWM.

//cap at +/- 100

// -100 => 1ms
// 0 =>1.5ms

// 100 =>2ms

~ 24 ~

angle *=5; //multiply value by 2.5
angle /= 2; // new range +/- 250
TCDO_CCD = (750 + angle); //Generate PWM.
}
void ClawClose(void)
{
ClawlL(-100);
ClawR(100);
}
void ClawOpen(void)
{
ClawL(100);
ClawR(-100);

~ 25 ~

APPENDIX C:
[A A A

* UART Library *

****************/

/**

* Code written by Joshua Phillips for CMUcam operation
* during Fall 2009 session at the University of Florida

* for Intelligent Machine Design Lab. The code is

* written specifically for Atmel's XMEGA128,

*

* Included are the following functions:

* uart_init() - Inititializes USART for 8N1 with no
parity at a frequency of 115.2 kbps.

uart_getchar() - returns an unsigned character

uart_sendchar() - sends an unsigned character

uart_getsring() - returns a character array

uart_sendstring() - sends a character array *
***/

¥ OX X ¥ X ¥ ¥ ¥ ¥ *

¥ ¥ ¥ ¥ %
*

/**************

* INCLUDES *

*************/

#include <avr/io.h>
#tinclude "uart.h"

/***************

* FUNCTIONS *

***************/

void uart_init(void)

{
PORTE_DIR =PIN3_bm; //set TX pin as output
PORTE_OUT =PIN3_bm;

USARTEO_CTRLC = 0x03; // set 8N1 asynchronous serial tx/rx
USARTEO_BAUDCTRLA = OxCF; // set to BSEL = OxCF, BSCALE = 0x00
USARTEO_BAUDCTRLB = 0x00; // fbaud = 9615.4 bps
USARTEO_CTRLB |= 0x08; // turn on TX system
USARTEO_CTRLB |= 0x10; // turn on RX system

~26~

unsigned char uart_getchar(void)

{

}

static char rx_char; // initialize received character buffer
while ((USARTEO_STATUS & (1<<USART_RXCIF_bp))); // wait for RXCIF to be set
rx_char = USARTEO_DATA; // data register in variable rx_char
return rx_char; // return value from data register

void uart_sendchar(unsigned char tx_char)

{

}

while (/(USARTEO_STATUS & (1<<USART_DREIF_bp))); // check if data register is empty
USARTEQO_DATA = tx_char; // store data in tx_char
while ((USARTEQ_STATUS & (1<<USART_TXCIF_bp))); // wait for RXCIF to be set

void uart_sendstring(unsigned char *tx_string)

{

}

int CR=0; // initialize CR check value to zero
unsigned char *string = tx_string; // store tx_string into pointer variable string
unsigned char tx_char;

tx_char = *string++; // tx_char saves character pointed to by string
// and increments the string pointer
while (!CR) // while not line return continue sending serial string
{
uart_sendchar(tx_char); // while tx_char isn't carriage return send tx_char to
tx_char = *string++; // serial line then increment string pointer
if(tx_char=="\r") // if tx_char is carriage return exit function
{
CR=1;

uart_sendchar(tx_char);

unsigned char uart_getstring(void)

{

static char *rx_string; //define pointer to array rx_string of unknown length
inti=0;
int CR=0;

while(0)
{

}

~27 ~

rx_string[i] = uart_getchar(); //continue receiving string from peripheral till

if ((rx_string[0] !="")) //check for colon and ignore it
{ if(rx_string[i] =="\r') //wait for carriage return signifying end of string
{ rx_string[i] = '\0'; //change end of string character to null character
return rx_string; //return the string value
i}++; //increment i for while loop

}
}

return (rx_string);

unsigned int uart_getbyte(void)

{

unsigned int rx_byte; // initialize received integer buffer

while (I(USARTEQ_STATUS & (1<<USART_RXCIF_bp))); // wait for RXCIF to be set
rx_byte = USARTEO_DATA; // data register in variable rx_byte
return rx_byte; // return value from data register

APPENDIX D: CMUCAM1 LIBRARY

/******************

* CMUcam Library *

******************/

~ 28~

/**

* Code written by Joshua Phillips for

CMUcam operation

* during Fall 2009 session at the University of Florida for
* Intelligent Machine Design Lab. The code is written

* specifically for Atmel's XMEGA128,

*

* Included are the following functions:

* CMUcamlnit() - Initialize CMUcam Registers. Set delay.

* Toggle the light for debug. Start poll
* mode. Start Raw mode and suppress ACK/NCK

%

pan start value.

¥ %X ¥ ¥ %

***/

/**************

* INCLUDES *
**************/
#include <avr/io.h>
#include "uart.h"
#include "cmucam.h"
#include "xmega.h"
#include "lcd.h"

/*************

* DEFINES *

*************/

/** COMMAND STRINGS **/

#define RESET

#define POLLMODE_ON
#define POLLMODE_OFF
#define RAW_MODE
#define AUTOGAIN_OFF

CMUcamServo(char *value) - takes three byte char and

sends to CMUcam for servo

CMUcamTC_active_color() - Starts active color tracking

of color specified.

CMUcamTC_passive_color() - Starts passive color tracking.

of color specified.

"RS\r"
"PM 1\r"
"PM O\r"
"RM 3\r"
"CR 19 32\r"

¥ ¥ ox ¥ ¥ % ox ¥ 5 ox *

¥ ¥ ¥ ¥

~29 ~

#define MIDMASS_ON_N "MM 10\r"
#define MIDMASS _ON_M "MM 2\r"
#define MIDMASS_NOSERVO "MM 1\r"
#define NOISEFILTER_OFF "NF O\r"
#define NOISEFILTER_ON "NF 1\r"

/** DEBUG/TRACKING LIGHT **/

#define LIGHT_OFF "L10O\r"
#define LIGHT_ON "L1 1\r"
#define LIGHT_TRACK "L1 2\r"

/** COLOR TRACKING STRINGS **/

#define TRACK_RED "TC 140 255 0 80 0 80\r"
#define TRACK_GREEN "TC 70 140 70 110 50 90\r"
#define TRACK_BLUE "TC 50 98 40 80 60 100\r"

/** LCD COMMANDS **/

#define CLR 0x01

/***************

* FUNCTIONS *

***************/

void CMUcamlnit(void)

for(i=0;i<5;i++) //toggling the light to make sure serial working

{
inti;
uart_sendstring(RESET) ; //reset camera
IcdData(CLR); //send LCD feedback
lcdString("Resetting the Camera");
lcdGoto(1,0);
{
lcdChar(".");

uart_sendstring(LIGHT_ON);
delay_ms(500);

lcdChar(".");
uart_sendstring(LIGHT_OFF);
delay_ms(500);

}

~ 30 ~

uart_sendstring(NOISEFILTER_ON); //Turn off noise filtering and AUTOGAIN
delay_ms(50);

uart_sendstring(AUTOGAIN_OFF);

delay_ms(50);

uart_sendstring(LIGHT_TRACK); //put light back in normal tracking mode
delay_ms(50);

uart_sendstring(POLLMODE_OFF); //put camera into poll mode
delay_ms(50);

uart_sendstring(RAW_MODE); //put camera into raw transfer mode
delay_ms(50); //and suppresses ACK/NCK responses

uart_sendstring(MIDMASS_ON_N); //putin middle mass mode and return N-Packet
delay_ms(50); //also in auto-track servo mode

IcdData(CLR);

lcdString("CMUcam Init Complete");
delay_ms(2000);

IcdData(CLR);

void CMUcamTC_active_red(void)

{

}

uart_sendstring(MIDMASS_ON_N);
delay_ms(20);
uart_sendstring(TRACK_RED);

void CMUcamTC_passive_red(void)

{

}

uart_sendstring(MIDMASS_NOSERVO);
delay_ms(200);
uart_sendstring(TRACK_RED);

int GetServoPos(void)

{

int i=0; // redundant loop variable initialization
int BUFFER = 0;

~31~

unsigned int CAMERA _NDATA[12];

while(BUFFER!=255)

{
BUFFER=uart_getbyte();

}

while(i<10)

{
CAMERA_NDATA[i]=uart_getbyte();
i++;

}

return CAMERA_NDATA[1];
}

int GetConfidence(void)

{
int i=0; // redundant loop variable initialization
int BUFFER = 0;
unsigned int CAMERA_NDATA[12];

while(BUFFER!=255)

{
BUFFER=uart_getbyte();

}

while(i<10)

{
CAMERA_NDATA[i]=uart_getbyte();
i++;

}

return CAMERA_NDATA[9];

~32 ~

APPENDIX E: MARV CODE

/********

* MARV *

********/

/**

* MARYV is an autonomous multi-terrain vehicle that can move *

* in the water as well as on land. These are his codes. *
**/

/************

* INCLUDES *

************/

#include <avr/io.h> // standard AVR 10 functions
#include "xmega.h" // XMEGA, DELAY, SERVO, ADC
#include "uart.h" // UART library

#include "cmucam.h" // CMUcam Functions
#include "lcd.h" // LCD output library
#include "Motor.h" // Tank, Airsoft, Propeller Functions
/*************

* DEFINES *

*************/

#define YES 1

#define NO 0

#define PWM_FORWARD 100

#define PWML_NEUTRAL -12

#define PWMR_NEUTRAL 15

#define CLR 0x01

#define HALF_SEC 500

#define ONE_SEC 1000

#define TWO_SEC 2000

#define THREE_SEC 3000

#define FOUR_SEC 4000

#define FIVE_SEC 5000

#define TWENTY_ms 20

#define FIFTY_ms 50

#define DEBUG_LIGHT 0x01

#define DEBUG_TRUE 1

#define DEBUG_FALSE 0

#define IR_R_CHECK_VALUE 1000

~ 33 ~

#define IR_L_CHECK_VALUE 1000

ttdefine N 78
#define BUMP PORTIJ_IN;
/*************

* MAIN code *

*************/

int main(void)

{
/*** Function Initializations ***/
xmegalnit(); //initialize XMEGA
delaylnit(); //initialize delay capabilities
[cdInit(); //initialize LCD display
tanklnit(); //initialize tank motor function

PORTJ_DIR = 0x00;
IcdData(CLR);
lcdString("MARV");
lcdGoto(1,0);

lcdString(" --Josh Phillips");
delay_ms(2000);

while (YPORTJ_IN & 0x01)

{
//

}
uart_init(); //initialize USARTEO
CMUcamlnit(); //initialize CMUcam functionality
Proplnit(); //initialize propeller function
Gunlnit(); //initialize gun function
ADClInit(); //initialize PortA ADC functions

/** PORT Declarations **/
PORTQ_DIR = DEBUG_LIGHT;
PORTQ_OUT = DEBUG_FALSE;
PORTJ_DIR = 0x00;

/** Variable Declarations **/
int IR_Right=0; //ADC value for right IR

int IR_Left=0; //ADC value for left IR
inti; //loop variable 1

~ 34~

int LineFollow = 0; //test variable for LineFollow procedure
int TargetPractice = 0; //test variable for Target Practice procedure
int H20 = 0; //test variable for water procedure

int SERVO_POS; //Servo Position

int CONFIDENCE; //Confidence

int varl,var2,var3; //temporary holders

unsigned char ServoPosition[7] = {'S','1',32, 0, 0, O, 13}; //initialize servo position
string
int LOOP=1;

/****************

** Pre-Demo **
****************/

IcdData(CLR);
lcdString("Front Props");
PropL_ForwardOn();
PropR_ForwardOn();
delay_ms(1500);
PropL_ForwardOff();
PropR_ForwardOff();

IcdData(CLR);
lcdString("Upward Props");
PropL_UpwardOn();
PropR_UpwardOn();
delay_ms(1500);
PropL_UpwardOff();
PropR_UpwardOff();

IcdData(CLR);
IcdString("The Chomper");
ClawClose();
delay_ms(1000);
ClawOpen();
delay_ms(1000);
ClawClose();
delay_ms(1000);
ClawOpen();
delay_ms(100);

~ 35 ~

/**************************

** LineFollow Procedure **
**************************/

delay_ms(TWO_SEC);
IcdData(CLR);

lcdGoto(0,0);
lcdString("Left/Right Motors");

while(LineFollow == 0)

{

IR_Right = 0; //re-initialize IR values for each loop

IR_Left =0;

i=0;

for(i=0;i<10;i++) //10th order running average filter for better accuracy
{

IR_Right += ADC6();
IR_Left += ADC7();
}

IR_Right = IR_Right/10;
IR_Left = IR_Left/10;

if ((IR_Right <= IR_R_CHECK_VALUE) & (IR_Left <= IR_L_CHECK_VALUE))
{

PropR_UpwardOn();
PropL_UpwardOn();
lcdGoto(1,0);
lcdString("FF");

}

else if ((IR_Right <= IR_R_CHECK_VALUE) & (IR_Left > IR_L_CHECK_VALUE))
{

PropR_UpwardOn();
PropL_UpwardOff();
lcdGoto(1,0);
lcdString("SF");

}

else if (IR_Right > IR_R_CHECK_VALUE) & (IR_Left <= IR_L_CHECK_VALUE))

~ 36~

{
PropR_UpwardOff();
PropL_UpwardOn();
lcdGoto(1,0);
lcdString("FS");

}

else

{
PropR_UpwardOff();
PropL_UpwardOff();
LineFollow = 1;
lcdGoto(1,0);
lcdString("SS");

}

delay_ms(TWENTY_ms);

IcdData(CLR);

lcdGoto(0,0);

IcdString("Coast Line Aquired");
delay_ms(FIVE_SEC);

/***********************

** TARGET PRACTICE **

***********************/

while(TargetPractice == 0) // until target taken out continue servo rotation

{

IcdData(CLR); //clear display and announce beginning of sequence
lcdString("Target Practice");

if(LOOP==1)

{
uart_sendstring("S1 20\r"); // starting position for Gun process

~ 37 ~

delay_ms(FIFTY_ms);

lcdGoto(1,0);

IcdString("Rightwtard Track");

CMUcamTC_active_red(); // activate gun tracking

}
else if(LOOP==2)
{
uart_sendstring("S1 64\r"); // Second (neutral) position for Gun process
delay_ms(FIFTY_ms);
lcdGoto(1,0);
lcdString("Neutral Track");
CMUcamTC_active_red(); // active gun tracking
}
else if(LOOP==3)
{
TargetPractice = 1; // Third position for Gun Process
uart_sendstring("S1 115\r"); // final process, set to exit loop on end
delay_ms(FIFTY_ms);
lcdGoto(1,0);
lcdString("Lefward Track");
CMUcamTC_active_red(); // active gun tracking
}
else
{
TargetPractice=1;
}
delay_ms(1500); // delay for CMUcam to track value
LOOP++; // increment loop counter

SERVO_POS = GetServoPos(); //Save Servo Position and Confidence Level
CONFIDENCE = GetConfidence();

lcdGoto(1,0); //Display Servo Position and Confidence Level
lcdString(" ");

lcdGoto(1,0);

lcdString("SERVO: ");

lcdInt(SERVO_POS);

lcdString(" CONF:");

lcdInt(CONFIDENCE);

~ 38 ~

delay_ms(ONE_SEC);

uart_sendstring('\r');
delay_ms(FIFTY_ms);

if(CONFIDENCE >=10) //if confident calculate angle correction and fire weapon
{
SERVO_POS+=5;

if(SERVO_POS>= 100)

{
varl=SERVO_P0S/100;
var2=- (SERVO_POS - 100) / 10;
var3=SERVO_P0S-10*var2-100;
}
else if((SERVO_POS >=10) & (SERVO_POS < 100))
{
varl=0;
var2=SERVO_P0OS/10;
var3=SERVO_POS-(var2*10);
}
else if(SERVO_POS < 10)
{
varl=0;
var2=0;
var3=SERVO_POS;
}
else
{
varl=0;
var2=0;
var3=0;
}
varl+=48;
var2+=48;
var3+=48§;
ServoPosition[3] = varl; //set up new servo string

ServoPosition[4] = var2;

~39 ~

ServoPosition[5] = var3;

uart_sendstring(ServoPosition);//make angle correction to CMUcam
servo

delay_ms(50);

uart_sendstring("GM\r");

delay_ms(ONE_SEC);

uart_sendstring('\r');
delay_ms(FIFTY_ms);

IcdData(CLR);
lcdString("Target Locked");

delay_ms(ONE_SEC);

IcdData(CLR);
lcdString("BANG!!");
GunFire(); // Fire weapon
delay_ms(ONE_SEC);
}
}
IcdData(CLR);

lcdString("The Coast is Clear");
delay_ms(5000);

/*******************

** WATER ENTRY **

*******************/

// insert test for water's presence goes here

/***********************

** WATER FUNCTIONS **

***********************/

IcdData(CLR);
lcdString("Cargo Recovery");
delay_ms(500);

LOOP=1;

while(H20 == 0)

~ 40 ~

if(LOOP==1)

{

}

uart_sendstring("S1 20\r");
delay_ms(50);

lcdGoto(1,0);
lcdString("Rightward ");

if(PORTJ_IN & 0x01)
{

ClawClose();
H20=1;

else if(LOOP==2)

{

else

uart_sendstring("S1 64\r");
delay_ms(50);

lcdGoto(1,0);
IcdString("Neutral ");

if(PORTJ_IN & 0x01)
{

ClawClose();
H20=1;

uart_sendstring("S1 105\r");
delay_ms(50);

lcdGoto(1,0);
lcdString("Leftward ");

if(PORTJ_IN & 0x01)
{

ClawClose();
H20=1;

~41 ~

}

LOOP++;

if(LOOP>=4)

{
LOOP = 1;

}

CMUcamTC_active_red();
delay_ms(1200);

SERVO_POS = GetServoPos(); //Save Servo Position and Confidence Level
CONFIDENCE = GetConfidence();

lcdGoto(1,0); //Display Servo Position and
Confidence Level
lcdString("Tracking ");

delay_ms(100);

if(CONFIDENCE >=4)

{
while(CONFIDENCE >=4)
{

SERVO_POS = GetServoPos();

if(SERVO_P0OS<54)

{
LOOP =1;
PropR_ForwardOn();
PropL_ForwardOff();

}

else if(SERVO_P0S>74)

{
LOOP = 3;
PropR_ForwardOff();
PropL_ForwardOn();

}

else

~42 ~

LOOP = 2;
PropL_ForwardOn();
PropR_ForwardOn();

}
if(PORTJ_IN & 0x01)
{
ClawClose();
H20=1;
}
CONFIDENCE = GetConfidence();
}
}
else
{
PropR_ForwardOff();
PropL_ForwardOff();
}

uart_sendstring('\r');
delay_ms(50);

if(H20==1)

{
PropR_ForwardOff();
PropL_ForwardOff();

}

/**********************

** RETURN TO BASE **

**********************/

IcdData(CLR);

lcdString("On our way home");
lcdGoto(1,0);

lcdString("Good Job MARV");
delay_ms(2000);

ClawOpen();

delay_ms(3000);

