Sound Robot
By: Alan Liou

[image:]

University of Florida

Department of Electrical and Computer Engineering

EEL 4665 - IMDL - Written Report 2

Instructors: A. Antonio Arroyo, Eric M. Schwartz

TAs: Andy Gray, Nick Cox
Contents
Abstract	3
Integrated System	3
Mobile Platform	3
Actuation	4
Sensors	4
Behaviors	5
Conclusion	7
Documentation	7
Appendices	8

[bookmark: _Toc405840053]Abstract
Sound bot is a mobile, obstacle avoiding robot that can recognize three different frequencies and perform different functions based on the respective frequency. The first frequency will put the robot into “Stop Mode”, which disables the motors, turns off the sonars, and turn on the red LEDS as indicators. The second frequency will make the robot go into “Autonomous Mode”. “Autonomous Mode” is when the robot will perform the obstacle avoiding task. While in “Autonomous” mode the robot is constantly listening for the third frequency which will put it into “Tracking Mode”. This mode navigates towards the sound source of this frequency and stops in mere inches from the sound source.
Sound Bot will be constructed out of acrylic sheet, driven by two stepper motors, and controlled by an Arduino Uno and an Arduino Due microprocessor. Sound Bot will also utilize two sonar sensors to avoid obstacles and three microphones perform sound-based tasks.
[bookmark: _Toc405840054][image:]Integrated System
The robot will be controlled by an Arduino Uno and an Arduino Due microcontroller. There will be no need for an external computer or another processor for computational power.
To the right are the actions determined by the two microprocessors.

[bookmark: _Toc405840055]Mobile Platform
Sound Bot will first be built with balsa wood during its prototype phase. Ideally the final product will be completely constructed out of acrylic sheet. As time crunched I was unable to make a prototype and went straight towards the acrylic sheet to make the platform. The stepper motors will be located near the front of the robot allowing Sound Bot to be front wheel driven. The sonar sensors will be located right above the two stepper motors. The microphone will be positioned just behind the sonar sensors so that the sonar sensors will not be obstructed.
[bookmark: _Toc405840056]Actuation
Two stepper motors will be driving Sound Bot as the left and right wheels of the robot. Since stepper motors are incredibly precise and easily controlled. There will be no need for dc brushless motors or encoders to make this project easier. I have already purchased NEMA 17 stepper motors which are widely used and have even been used by a previous robot in Intelligence Machine Design Lab.
·
4 | Page

· [image: https://ultimachine.com/sites/default/files/imagecache/product_full/Nema17_StepperMotor_1.jpg]Nema 17

· [image: http://a.pololu-files.com/picture/0J5806.150.jpg?c8b077547880443247671b2d4d534ef4]Stepper Motor Drivers DRV8825
[bookmark: _Toc405840057]Sensors
In order to detect obstacles 2 sonar sensors are implemented to avoid objects. The Electret Microphone Breakout will be used to hear audio and, with the MSGEQ7 IC chip, detect specified frequencies.
· Ping Ultrasonic Range Finder (2)
· [image: http://www.rsrelectronics.com/test/ping.jpg]Sonar sensors emit out a sound and returns a digital value based on the delay it detects from the echo pin.
· Two sonar sensors will be used to help Sound Bot avoid obstacles. One sonar will be place to the top right and left corner of the robot to detect obstacle from the left or right. Both sonars will trigger to detect an obstacle in front of the robot.
· Electret Microphone Breakout (3)
· Microphones detect sound waves and outputs a digital wave based on the frequency and amplitude of the sound.
· For this microphone it filters out frequencies above 10 kHz. In addition, to its external limitations there is also an op amp and band pass filter from 13 Hz to 13 kHz to insure audible frequency is only heard.
[image: https://cdn.sparkfun.com/assets/parts/4/0/9/7/09964-01.jpg][image:]
· Graphic Equalizer Display Filter - MSGEQ7 (1)
· [image: Graphic Equalizer Display Filter - MSGEQ7]A seven band graphic equalizer IC that divides the audio spectrum into seven bands
· The seven frequencies are peak detected and multiplexed to the output to provide a DC representation of the amplitude of each band.

[bookmark: _Toc405840058]Behaviors
The robot will be designed to accomplish the following ask:
· Drive forward avoiding obstacle from the left or right.
· As it approaches a corner, it will back up for a few seconds and randomly turn left or right
· The microphone will be constantly listening for signals. Once it has detected a specified frequency, the other two microphones to the left and right of the robot will listen the amplitude of the frequency and determine which direction to turn and whether or not to drive forward.
· As soon as the robot is activated, it begins in “Stop Mode” until a 1,000 Hz is detected which will trigger “Autonomous Mode”.
· Until the robot detects 6,000 Hz of 2,500 Hz it will continue in “Autonomous Mode”.
· When 2,500 Hz is detected in “Autonomous Mode” the robot will change into “Stop Mode” until 1,000 Hz is detected.
· When 6,000 Hz is detected in “Autonomous Mode” the robot will change into “Tracking Mode.”
Experiment Layout and Results
Numerous experiments were conducted to increase the efficiency of the robot, test new ideas, decrease the amount of hardware needed, and ensure the robot performs its designated task.
· Due to a short budget trashed acrylic sheet was found in the Machine Intelligence Lab and recycled to help build to platform of Sound Bot

· The stepper motors were tested at various speeds and different degrees of precision to ensure straightforward movement and control of the robot. The weight of the motors itself provided enough friction for the wheels turn in most environments (tile, carpet, grass, and concrete).

· One caster wheel was placed at the back of the robot to provide stability and height for the battery on the bottom of the robot, no further testing was needed.

· Two sonar sensors are placed in front of the robot. At first three sonars were used to each detect obstacles to the left, right, and in front of the robot. However two sonars were able to detect all three obstacles based on my coding method and this design was installed to save GPIO pins on the Arduino Uno.

· The special sensor system is based on the three electret breakout microphones from Sparkfun. When installed it can detect frequencies from 10 Hz to around 10,000 Hz. The input values fluctuated from around 700 to 1023, values around 700 indicated silence. However we needed to implement a filter to recognize different frequencies as the microphone only detected amplitude.

· An analog filter was attempted by designing a band pass filter for a specified frequency. However due to wiring issues and lack of parts for different band pass filters, I sought a different approach.

· A Fast Fourier Transformation was attempted on the Arduino Due. To recognize difference frequencies the sampling rate had to be twice the max frequency. As a result, my target sampling rate was 20,000 Hz because the mic could only detect sound lower than 10,000 Hz based on the schematics. After implementing the sampling rate I soon discovered the MSGEQ7 IC chip and immediately went towards this route.
· [image:]After installing the chip, I was immediately able to recognize different frequencies by the peaked DC value on each band.

· I then soon tried to have all three mics being filtered to the one IC chip using a 4 to 1 multiplexer IC from my Digital Logic class. Unfortunately I was unable to implement it as voltages below 1.60 V would output out of the multiplexer which is unusable for analog to digital conversion.

· [image:]Styrofoam bowls were later added on to increase the amplitude and gave direction for the microphones

· I coded with the practice of interfacing my hardware the least amount possible. I would compute any information and before accessing my I/O pins and I kept my code under control using while loops to help make it more regulated.
[bookmark: _Toc405840059]Conclusion
In the end, Sound Bot was able to achieve its directives performed great during demo day. It was able to recognize different frequencies and perform different tasks based on those respective frequencies. Sound localization proved to be a daunting task. It is currently able to navigate towards the origin of a sound but there are many ways to improve its design. For example, I hoped to add another filter chip to both the left and right microphones to only detect the amplitude of the indicated frequency. But due to lack of time, balancing other classes, and a tight budget I was unable to implement these ideas to Sound Bot at the end of the semester.
[bookmark: _Toc405840060]Documentation
[1] No Author, “Breakout Board for Electret Mircophones.” Sparkfun. Available at
 https://www.sparkfun.com/products/9964
[2] No Author, “Graphic Equalizer Display Filter – MSGEQ7.” Sparkfun. Available at
 https://www.sparkfun.com/products/10468
[3] No Author, “DRV8825 Stepper Motor Driver Carrier, High Current.” Pololu Robotics
 Electronics. Available at http://www.pololu.com/product/2133

[bookmark: _Toc405840061]Appendices
Arduino Uno Code – Demo Day
#include "TimerOne.h"
#include <NewPing.h>
#include "E_Bot_Sonar.h"

#define THRESHOLD 20
#define LEFT_DIR_PIN 8
#define LEFT_STEP_PIN 9

#define RIGHT_STEP_PIN 10
#define RIGHT_DIR_PIN 11

#define ENABLE_LEFT_MOTOR 7
#define ENABLE_RIGHT_MOTOR 6

#define LEFT_TRIGGER_PIN 4
#define LEFT_ECHO_PIN 4

#define RIGHT_TRIGGER_PIN 5
#define RIGHT_ECHO_PIN 5

#define STOP_PIN 3
#define TRACK_PIN 2

#define MAX_DISTANCE 200

#define DRIVE_FORWARD 0
#define DRIVE_LEFT 1
#define DRIVE_RIGHT 2
#define ESCAPE 4
#define STOP 3

#define SIGNAL_LEFT 13
#define SIGNAL_RIGHT 12
NewPing leftSonar(LEFT_TRIGGER_PIN, LEFT_ECHO_PIN, MAX_DISTANCE);
NewPing rightSonar(RIGHT_TRIGGER_PIN, RIGHT_ECHO_PIN, MAX_DISTANCE);

int previousDriveMode, driveMode, leftDistance, rightDistance, rightMicrophone, leftMicrophone;

void setup()
{
 Serial.begin(115200);

 //ENABLE OUTPUT PINS
 pinMode(LEFT_STEP_PIN, OUTPUT);
 pinMode(LEFT_DIR_PIN, OUTPUT);
 pinMode(RIGHT_STEP_PIN, OUTPUT);
 pinMode(RIGHT_DIR_PIN, OUTPUT);
 pinMode(ENABLE_LEFT_MOTOR, OUTPUT);
 pinMode(ENABLE_RIGHT_MOTOR, OUTPUT);

 //ENABLE INPUT PINS
 pinMode(STOP_PIN, INPUT);
 pinMode(TRACK_PIN, INPUT);
 pinMode(SIGNAL_LEFT, INPUT); //signal left
 pinMode(SIGNAL_RIGHT, INPUT);

 //STARTS MOTORS AS OFF
 digitalWrite(ENABLE_RIGHT_MOTOR, HIGH);
 digitalWrite(ENABLE_LEFT_MOTOR, HIGH);

 //STARTS IN STOP MODE
 driveMode = DRIVE_FORWARD;

 //SETUP PWM FOR STEPPER MOTOR
 Timer1.initialize(500000);
 Timer1.pwm(LEFT_STEP_PIN, 512, 1500);
 Timer1.pwm(RIGHT_STEP_PIN, 512, 1500);

 //Wait for Arduino DUE to start up
 delay(2000);
}

void drive()
{
 if(driveMode==DRIVE_FORWARD)
 {
 Serial.println("drive forward");
 digitalWrite(RIGHT_DIR_PIN, LOW);
 digitalWrite(LEFT_DIR_PIN, HIGH);
 }
 if(driveMode==DRIVE_RIGHT)
 {
 Serial.println("drive right");
 digitalWrite(LEFT_DIR_PIN, HIGH);
 digitalWrite(RIGHT_DIR_PIN, HIGH);
 }
 if(driveMode==DRIVE_LEFT)
 {
 Serial.println("drive left");
 digitalWrite(LEFT_DIR_PIN, LOW);
 digitalWrite(RIGHT_DIR_PIN, LOW);
 }
 if(driveMode==ESCAPE)
 {
 Serial.println("escape");
 //DRIVE BACK
 digitalWrite(RIGHT_DIR_PIN, HIGH);
 digitalWrite(LEFT_DIR_PIN, LOW);
 delay(2500);
 if(rand()%10<5) {
 //drive left
 digitalWrite(LEFT_DIR_PIN, LOW);
 digitalWrite(RIGHT_DIR_PIN, LOW);
 delay(2500);
 }
 else{
 //drive right
 digitalWrite(LEFT_DIR_PIN, HIGH);
 digitalWrite(RIGHT_DIR_PIN, HIGH);
 delay(2500);
 }
 }
}
///
void getDriveMode()
{
 previousDriveMode = driveMode;
 //DRIVE FORWARD
 if(leftDistance>THRESHOLD && rightDistance>THRESHOLD)
 {
 Serial.println("forward");
 driveMode = DRIVE_FORWARD;
 }
 //DRIVE RIGHT
 if(leftDistance<THRESHOLD && rightDistance>THRESHOLD)
 {
 Serial.println("right");
 driveMode = DRIVE_RIGHT;
 }
 //DRIVE LEFT
 if(leftDistance>THRESHOLD && rightDistance<THRESHOLD)
 {
 Serial.println("left");
 driveMode = DRIVE_LEFT;
 }
 //ESCAPE
 if(leftDistance<THRESHOLD && rightDistance<THRESHOLD) driveMode = ESCAPE;
}
///
void loop()
{
 //ENTER STOP MODE
 if(digitalRead(STOP_PIN)==HIGH)
 {
 Serial.println("Stop Mode");
 digitalWrite(ENABLE_RIGHT_MOTOR, HIGH);
 digitalWrite(ENABLE_LEFT_MOTOR, HIGH);
 while(1) if(digitalRead(STOP_PIN)==LOW) break;
 delay(100);
 }
 else
 {///
 digitalWrite(ENABLE_RIGHT_MOTOR, LOW);
 digitalWrite(ENABLE_LEFT_MOTOR, LOW);

 if(digitalRead(TRACK_PIN)==HIGH)
 {//
 //ENTER TRACKING MODE
 while(1)
 {
 Serial.println("Tracking Mode");
 if(digitalRead(TRACK_PIN)==LOW) break;

 previousDriveMode = driveMode;

 if(digitalRead(SIGNAL_LEFT)==HIGH)
 {

 driveMode = DRIVE_LEFT;
 Serial.print("Drive Left fuck ");
 }
 if (digitalRead(SIGNAL_RIGHT)==HIGH)
 {
 driveMode = DRIVE_RIGHT;
 Serial.print("Drive Right ");
 }
 if(digitalRead(SIGNAL_LEFT)==LOW && digitalRead(SIGNAL_RIGHT)==LOW)
 {
 driveMode = DRIVE_FORWARD;
 Serial.print("Drive Forward ");
 }
 //reset distance
 rightDistance = 0;
 leftDistance = 0;
 for(int i = 0; i< 20; i++)
 {
 leftDistance += (int)leftSonar.ping()/US_ROUNDTRIP_CM;
 }
 leftDistance = leftDistance/20;
 for(int i =0; i<20; i++)
 {
 rightDistance += (int)rightSonar.ping()/US_ROUNDTRIP_CM;
 }
 rightDistance = rightDistance/20;
 Serial.print("Left Distance: ");
 Serial.print(leftDistance);
 Serial.print(" Right Distance: ");
 Serial.println(rightDistance);
 if(rightDistance < 20 && leftDistance < 20)
 {
 //stop robot
 Serial.println("Stop");
 digitalWrite(ENABLE_RIGHT_MOTOR, HIGH);
 digitalWrite(ENABLE_LEFT_MOTOR, HIGH);
 while(1)
 {
 if(digitalRead(TRACK_PIN)==LOW) break;
 // if((int)leftSonar.ping()/US_ROUNDTRIP_CM > 20 && (int)rightSonar.ping()/US_ROUNDTRIP_CM > 20) break;
 }
 }
 else
 {
 digitalWrite(ENABLE_RIGHT_MOTOR, LOW);
 digitalWrite(ENABLE_LEFT_MOTOR, LOW);
 if(driveMode!=previousDriveMode) drive();
 }
 }
 }//
 else
 {//
 //ENTER AUTONOMOUS MODE
 while(1)
 {
 Serial.println("Auto Mode");
 //BREAK AUTO. MODE
 if(digitalRead(TRACK_PIN)==HIGH || digitalRead(STOP_PIN)==HIGH) break;

 //GET SENSORS
 leftDistance = 0;
 for(int i = 0; i< 20; i++)
 {
 leftDistance += (int)leftSonar.ping()/US_ROUNDTRIP_CM;
 }
 leftDistance = leftDistance/20;
 Serial.print("left Distance: ");
 Serial.print(leftDistance);
 Serial.print(" ");
 //delay(100);

 rightDistance = 0;
 for(int i = 0; i<20; i++)
 {
 rightDistance += (int)rightSonar.ping()/US_ROUNDTRIP_CM;
 }
 rightDistance = rightDistance/20;
 Serial.print("right Distance: ");
 Serial.println(rightDistance);

 getDriveMode();

 if(driveMode!=previousDriveMode) drive();
 //delay(500);
 }

 }//

 }///
}

Arduino Due Code – Demo Day
int analogPin = 0; // read from multiplexer using analog input 0
int strobePin = 2; // strobe is attached to digital pin 2
int resetPin = 3; // reset is attached to digital pin 3
int spectrumValue[7]; // to hold a2d values
int dir = 0; // 0=forward, 1=left, 2=right
#define FORWARD 0
#define LEFT 1
#define RIGHT 2
double nowRightLoud, lowRightLoud, nowLeftLoud, lowLeftLoud, highRightLoud, highLeftLoud;
#define SAMPLESIZE 1500
//pins for behavior
#define STOP_PIN 4 //wire to pin 3
#define TRACK_PIN 5 //wire to pin 2
#define AUTO 1
#define STOP 2
#define TRACK 3
#define RED_LED 7
#define GREEN_LED 6
bool ON;
/*
 Possible combinations
 13-H 12-L signal left
 13-L 12-H signal right
 13-L 12-L signal forward
*/
#define SIGNAL_LEFT 13 //SAME PIN for UNO
#define SIGNAL_RIGHT 12 //SAME pin for UNO
bool gotFrequency;
int frequency;
void setup()
{
 Serial.begin(9600);
 pinMode(analogPin, INPUT);
 pinMode(strobePin, OUTPUT);
 pinMode(resetPin, OUTPUT);
 pinMode(RED_LED, OUTPUT);
 pinMode(GREEN_LED, OUTPUT);
 // analogReference(DEFAULT);
 pinMode(STOP_PIN, OUTPUT);
 pinMode(TRACK_PIN, OUTPUT);
 pinMode(SIGNAL_LEFT, OUTPUT);
 pinMode(SIGNAL_RIGHT, OUTPUT);
 //START ROBOT IN STOP MODE
 digitalWrite(STOP_PIN, HIGH);
 digitalWrite(TRACK_PIN, LOW);
 digitalWrite(RED_LED, HIGH);
 digitalWrite(GREEN_LED, LOW);
 ON = false;
 gotFrequency = false;
 frequency = STOP;
 digitalWrite(resetPin, LOW);
 digitalWrite(strobePin, HIGH);
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT,LOW);

}
void getFrequency()
{
 //
 // 2.5 KHZ FREQUENCY | STOP MODE
 if (spectrumValue[0] < 1000 &&
 spectrumValue[1] < 1000 &&
 spectrumValue[2] < 1000 &&
 spectrumValue[3] < 1000 &&
 spectrumValue[4] > 1000 && // 2.5 KHZ FREQUENCY
 spectrumValue[5] < 1000)
 {
 gotFrequency = true;
 frequency = STOP;
 ON = false;
 Serial.println("2.5 kHz Frequency");
 //digitalWrite(TRACK_PIN, LOW);
 //digitalWrite(STOP_PIN, HIGH);
 }

 //
 // 1 KHZ FREQUENCY | AUTONOMOUS MODE | ENABLE
 else if (spectrumValue[0] < 1000 &&
 spectrumValue[1] < 1000 &&
 spectrumValue[2] < 800 &&
 spectrumValue[3] > 1000 && // 1 KHZ FREQUENCY
 spectrumValue[4] < 800 &&
 spectrumValue[5] < 1000)
 {
 gotFrequency = true;
 frequency = AUTO;
 ON = true;
 Serial.println("1 kHz Frequency or 8.8 Hz");
 //digitalWrite(TRACK_PIN, LOW);
 //digitalWrite(STOP_PIN, LOW);
 }
 if (ON == true)
 {
 ///
 // 6 KHZ FREQUENCY | TRACKING MODE
 if (spectrumValue[0] < 1000 &&
 spectrumValue[1] < 1000 &&
 spectrumValue[2] < 1000 &&
 spectrumValue[3] < 1000 &&
 spectrumValue[4] < 1000 &&
 spectrumValue[5] > 1000) // 6 KHZ FREQUENCY
 {
 gotFrequency = true;
 frequency = TRACK;
 getDirection();
 Serial.println("6 kHz Frequency");
 // digitalWrite(TRACK_PIN, HIGH);
 // digitalWrite(STOP_PIN, LOW);
 }
 //
 else if ((spectrumValue[0] < 1000 &&
 spectrumValue[1] < 1000 &&
 spectrumValue[2] < 1000 &&
 spectrumValue[3] > 1000 &&
 spectrumValue[4] > 1000 &&
 spectrumValue[5] > 1000) ||
 (spectrumValue[0] < 1000 &&
 spectrumValue[1] < 1000 &&
 spectrumValue[2] > 1000 &&
 spectrumValue[3] > 1000 &&
 spectrumValue[4] > 1000 &&
 spectrumValue[5] > 1000)) // WHISTLE
 {
 gotFrequency = true;
 frequency = TRACK;
 getDirection();
 Serial.println("Whistle");
 // digitalWrite(TRACK_PIN, HIGH);
 // digitalWrite(STOP_PIN, LOW);
 }
 else
 {
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT, LOW);
 frequency = AUTO;
 digitalWrite(TRACK_PIN, LOW);
 }
 }

}

void getDirection()
{
 for (int i = 0; i < 100; i++)
 {
 nowRightLoud = analogRead(3);
 nowLeftLoud = analogRead(2);

 if (i == 0) {
 lowRightLoud = nowRightLoud;
 lowLeftLoud = nowRightLoud;
 highRightLoud = nowRightLoud;
 highLeftLoud = nowLeftLoud;
 }

 if (nowLeftLoud < lowLeftLoud) lowLeftLoud = nowLeftLoud;

 if (nowRightLoud < lowRightLoud) lowRightLoud = nowRightLoud;

 if (nowLeftLoud > highLeftLoud) highLeftLoud = nowLeftLoud;

 if (nowRightLoud > highRightLoud) highRightLoud = nowRightLoud;
 }
 double leftVolume = highLeftLoud - lowLeftLoud;
 double rightVolume = highRightLoud - lowRightLoud;

 Serial.print("Left: ");
 Serial.print(leftVolume);
 Serial.print(" Right: ");
 Serial.println(rightVolume);
 //SWITCHED MICS
 double difference = leftVolume - rightVolume;
 double x = abs(difference);
 //Serial.println(x);
 if (x < 120)
 {
 Serial.println(" FORWARD");
 dir = FORWARD;
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT, LOW);
 }
 else {
 if (difference < 0)
 {
 Serial.println(" RIGHT");
 dir = RIGHT;
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT, HIGH);
 }
 else //if (difference > 0)
 {
 Serial.println(" LEFT");
 dir = LEFT;
 digitalWrite(SIGNAL_LEFT, HIGH); //test
 digitalWrite(SIGNAL_RIGHT, LOW);
 }
 delay(300);
 }
}

///
void loop()
{
 //reset value in array
 for (int i = 0; i < 7; i++) spectrumValue[i] = 0;
 // while(1);
 //SAMPLING FREQUENCY
 for (int j = 0; j < SAMPLESIZE; j++)
 {
 digitalWrite(resetPin, HIGH);
 digitalWrite(resetPin, LOW);

 for (int i = 0; i < 7; i++)
 {
 digitalWrite(strobePin, LOW);
 delayMicroseconds(30); // to allow the output to settle
 spectrumValue[i] = spectrumValue[i] + analogRead(analogPin);

 digitalWrite(strobePin, HIGH);
 }
 //Serial.println();
 }

 //AVERAGES SAMPLE DATA
 for (int i = 0; i < 7; i++)
 {
 spectrumValue[i] = spectrumValue[i] / SAMPLESIZE;
 Serial.print(spectrumValue[i]);
 Serial.print(" ");

 }
 Serial.println();
 Serial.print("Frequency");
 Serial.println(frequency);

 getFrequency();
 /*
 ONLY CHANGE MODES WHEN IT DETECTS A FREQUENCY
 */
[bookmark: _GoBack]
 if (gotFrequency == true)
 {
 Serial.println("CHANGING MODES");
 //
 if (frequency == AUTO)
 {
 Serial.println("Auto mode");
 digitalWrite(GREEN_LED, LOW);
 digitalWrite(RED_LED, LOW);
 digitalWrite(TRACK_PIN, LOW);
 digitalWrite(STOP_PIN, LOW);
 }
 //
 if (frequency == STOP)
 {
 Serial.println("Stop mode");
 digitalWrite(RED_LED, HIGH);
 digitalWrite(GREEN_LED, LOW);
 digitalWrite(TRACK_PIN, LOW);
 digitalWrite(STOP_PIN, HIGH);
 }
 //
 if (frequency == TRACK)
 {
 Serial.println("Track mode");
 digitalWrite(RED_LED, LOW);
 digitalWrite(GREEN_LED, HIGH);
 digitalWrite(TRACK_PIN, HIGH);
 digitalWrite(STOP_PIN, LOW);
 /*
 if (dir == FORWARD)
 {
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT, LOW);
 }
 else if (dir == LEFT)
 {
 digitalWrite(SIGNAL_LEFT, HIGH);
 digitalWrite(SIGNAL_RIGHT, LOW);
 }
 else if (dir == RIGHT)
 {
 digitalWrite(SIGNAL_LEFT, LOW);
 digitalWrite(SIGNAL_RIGHT, HIGH);
 }
 */
 }
 Serial.println(frequency);
 //RESET gotFrequency
 gotFrequency = false;
 }
 //
 //DELAY FOR DEBUGGING PURPOSES
 //delay(100);
}

image3.jpeg

image4.jpeg

image5.jpeg
www.paralax.com ®

%]

| PRIAXE™

image6.jpeg

image7.png

image8.jpeg

image9.png

image10.png

image1.png

image2.png
—> StopMode

No
1000 Hz ?

v

‘Autonomous Mode

2500 Hz 2

No

No
6000 Hz 2

Yes

v

“Turn Towards Noise

v

Approach Noise

