UNIVERSITY OF FLORIDA

Final Report

Bob

Patrick Neal
12/9/2015

Intelligent Machine Design Lab

EEL5666C
Email: neap@ufl.edu
TAs: Andy Gray

Jake Easterling
Instructors:  Dr. A. Antonio Arroyo
Dr. Eric M. Schwartz


mailto:neap@ufl.edu

Table of Contents

A 01 - Uod PSSR 3
LYoo [0 o1 1 o] OSSPSR PR PTTPTPRRPRPRON 4
INEEOIALEA SYSLEIMS. ....eeitee etttk b bbbt h bbb R bt e bt b e b et et e bt e bt e bt et b b e nn e e e e eneere s 5
IMIODIIE SYSTEIM.....ec et b b s bbb h bbb e Rt Rt b e e et e bt e bt e bbbt n e n e e e e et ere s 6
BOTEOM LEVEL. ...ttt bbbtk b bbb bRt e Rt b e e bbb b b et n e 7
YT Lo L I T OSSR 7
LI O I SRS 8
AN od 0 =LA o] PSSR 9
LT 4o £ OO TS SO P TR PP PR 10
2= 0T T SRR 12
Experimental Layout aNd RESUILS...........ciiiieiiiecie ettt sttt s te e be e e b e be e b e sbe e st e sbesaeeeesteeneenras 13
IR QULPUL VEISUS GISTANCE TEST. ...ttt b bbbttt eb et bbb et 13
Preliminary ilIUMINGtEd OFD tESE: ... ..o e st re et e s be et e sbeetaesbesre e e e 14
L0 0] 1] o oSSR 16
[ o Tol g T=T g1 v LA T o OSSPSR 16
F N o] 1=] 1o 0T OSSOSO P TP TP TP PPPRP 17
L0011 0 T0 0 1=] 0 £ SRR PRSP 17
LOW LEVEI CONIOIIET ...t ettt ettt s bt e b st et et e s e e neeneans 19
TOP LEVEL CONTIOIIEI ...ttt b bbbt e bbb bbb e b et e e eneere s 38
Y T (0T | -4 RSSO 43
(0] 0T O - T3S 45
REMOLE CONIIOI COUE:. ...ttt et et et et n et e et e s e e Rt et e e b e besb et et e neeneeneereans 48
POWET CIFCUITIY DIAGIAMIS. ...ttt sttt bbbt b ekttt b e bbb e e bt bt bbbt n et ne e 51
Complete SENSOr WIFING GHAGIAIM: .......oiieiiiecie et st e st e e e s be et e e besbe e b e sbeeseesbesteesbesbeereesbesreenreses 52

2|Page



Abstract

This report is about Bob; a robot that picks up blocks and move them to specific locations based on their color
codes. Bob is able to specifically place the blocks by localizing from color code beacons. Bob uses one Pixy
CMUcamb5 to detect blocks on the ground and one Pixy on a pan/tilt mechanism to localize, .Bob localizes using
the generalized geometric triangulation algorithm. At this time Bob is pretty much just remote controlled.

3|Page



Introduction

My objective for this robot, Bob, is for it to be able to identify and collect objects and sort them by their identifier.
The robot will work within a ~25 sq.-ft. arena with corners marked with beacons. A CAD model rendering of a
beacon can be seen in Figure 1. Within this arena it will seek these objects and grab them with a claw like gripper.
After it has picked up the object it will localize itself with respect to the beacons and deliver the object to the

appropriate area. Figure 2 shows the beacons relative positions.
This paper will discuss how the components will interface with each other and what role they play in the system.

Figure 1 on the left shows the proposed beacon design. The right image shows a finished beacon. These are old pictures of before |
decided to use color codes to track instead of balls. The balls that were to be used are ~3.25 inches in diameter which makes the
total height of the beacon ~13 inches tall.

Figure 2 shows the space that Bob will complete its task. The multi-colored object is what Bob will collect and drop off.

4|Page



Integrated Systems

(Incomplete) The Odroid C1 will receive the visual data from the pan/tilt Pixy camera, the forward facing Pixy
camera through the Arduino Uno, and the Arduino Mega. The data is then used to control the behaviors of the
robot. The Arduino Mega will interface with all other sensors and provide PWM signals for all motors. Figure 3
shows a diagram of the connections between the processors and sensors. The Arduino Mega will read the encoder
data and keep track of Bob’s estimated position since last update using dead reckoning. When the robot localizes
from the beacons the Odroid C1 will reset the state changes on the Arduino Mega.

The obstacle avoidance behavior will be located on the Arduino Mega to allow the robot to do basic functions
without the need for the Odroid C1. To obstacle avoidance behavior will always override any movement
commands that are sent by the Odroid C1. This will ensure that Odroid C1 does not drive the robot into an object
it does not know about.

Raspberry Pi 2 .
Arduino Uno

Bump Sensor IR Sensor

Magnetic Encoder

Figure 3 shows the sensors used and an overview of how they interface with the other hardware. The Raspberry Pi 2 was replaced
with an Odroid.

The Pixy CMUcamb5 is the camera | choose to originally perform stereo vision with. But | chose not to do stereo
vision because of problems with the Pixy library. The built in ability to identify colored objects and report their
centroids eliminated made them ideal because of time constraints. Teaching the Pixy a color only requires
pressing the button on the top or the use of their program Pixymon. After it has learned a color they perform color
clustering techniques to determine objects. The Pixy outputs the calculated centroid coordinates for all objects
that meet the desired color sets. The forward facing Pixy connected to the Arduino is used to track specific color
codes corresponding to the objects to pick up and the pan/tilt Pixy is used to find the beacons.

5|Page



Mobile System

The mobile system was designed with three levels: the first level is the basic mobile platform and it will hold the
Arduino, battery, and related electronics, the second level will hold the Odroid C1 and related power electronics,
the third level is where the vision sensors are mounted along with an Arduino Uno to read one of them. Figure 4
shows a picture of the completed Mobile System. In assembling the mobile system | made liberal use of 3M dual
lock to attach most of the components to the chassis. This allowed to easy dissembling if | need to change

anything.

Figure 4 shows the finished mobile system. All gray structure is 3D printed with ABS plastic except the top level. The top level is
two sheets of wood stacked on each over. The bump switches can be seen mounted under the front of Bob.

Figure 5 shows the front of the robot and a 12 inch ruler for scale.

6|Page



Bottom Level

The mobile platform of the robot utilizes differential steering. There are two driven wheels near the front of the
platform and a single caster wheel in the rear. There is also a Robot Geek gripper attached between the IR sensors.
The gripper will be used to manipulate the colored objects. Most of the power electronics is located on this level.
This includes: a 3S 5000maH Venom LiPo battery, a 30 amp circuit breaker, a 30 amp toggle switch, a 5 circuit

terminal block, and a DROK buck converter.

Figure 6 shows the bottom level of Bob. There is a Pololu VNH5019 motor driver and buck converter under the proto board on the
left side of image.

Middle Level

Middle level is just to hold the Odroid C1 and be close to the top level. Also holds the buck converter for power
the Odroid C1. | left a decent amount of space for the excess wires from the USB connections. The shorted USB

A to USB B | could find were three feet.

7|Page



Top Level

The top level will hold both Pixy cameras used. One is attached to a pan and tilt mechanism to see the beacons
while the other is rigidly fixed facing down in front of Bob to see the objects. For some reason the orientation of
the servo motors in the pan/tilt mechanism causes them to interfere with one another when both are being used. |
decided to only use the pan because of this. The forward facing Pixy is connected to the Odroid C1 through the
Arduino Uno because of problems with serial communications between multiple Pixys using the Pixy library.

Pan/Tilt Pixy
CMUcam 5

Forward Facing
Pixy CMUcam5

Figure 7 shows the components on the top level of Bob. Under the proto board there is a buck converter that supplies 6V to the
pan/tilt servo motors.

8|Page



Actuation

The actuation for my robot is fairly simple. It consists of two 6 VV DC gearmotors; two of them are for movement.
The motors should be able to provide enough torque at slow speeds. These motors will be controlled by Pololu
motor driver board connected directly to the battery. I will also use three hobby servo motors. One of them will be
responsible for panning the camera system while the other two will be used for the mechanism to grip the object.

Name: 98.78:1 Metal Gearmotor 25Dx54L mm HP
Purpose: Main drive motors for robot locomotion.
Specs:

o 6V
o No load RPM of 100 with 450mA draw
o 160 oz.-in drawing 6.5A at stall

Supplier: Pololu Robotics & Electronics

Controller: A PD controller is used to control the velocity of each wheel.
This allows Bob to move in relatively straight lines and pivot about the point centered between the wheels.

Name: FS90OMG Servo Motor
Purpose: Used to open and close the gripper.

Specs:
e No-load Speed: 0.10sec/60°
o Stall Torque: 25.04 0z.-in
e Operating angle:180°
e Weight: 149
e Size: 0.913x0.492x0.866 in

Supplier: Trossen Robotics

Name: Robot Geek RG-SRV180 Servo Motor
Purpose: Used to raise and lower the gripper

Specs:
e No-load Speed: 0.23sec/60°, 43 RPM
e Stall Torque: 118.2 0z.-in
e Operating angle: 180°
e Weight: 60g
e Size:1.18x1.77x2.01in

Supplier: Trossen Robotics

9|Page



Sensors

The task was to avoid objects while searching for certain colored Lego brick stacks and to localize from colored
beacons. To accomplish the obstacle avoidance tasks | choose to use IR sensors and bump switches. The two IR
sensors are forward facing recessed about an inch into the chassis. The IR sensors will detect most objects in front
of the robot and the bump sensors will detect if Bob has hit something that is located outside of the IRs. I also use
current measurements to determine if Bob has hit something it did not catch with IR and bump sensors.

To localize I will used angles measurements obtained finding beacons with the Pixy and recording the servo
position. Doing this measurement for three beacons Bob can triangulate its position.

Name: Sharp Analog Distance Sensor

Purpose: Used to avoidance obstacles located in front of
Bob.

Specs:

4-30 cm range

Operating voltage of 4.5-5.5 V

Output voltage differential over range: 2.3V]
o Update period of 16.5 £4 ms

Model Number: GP2Y0A41SKOF

Supplier: Pololu Robotics & Electronics

O O O

Name: KW8-Series Micro Switch (Old Picture)

Purpose: Last ditch attempt at obstacle avoidance. When the switch is pressed it
means that Bob has hit something on the left or right front.

Specs:
Supplier: Amazon

10|Page



Name: Hall effect magnetic encoder

Purpose: Used to measures shaft rotations to estimate the robots position and also
the direction the cameras are looking

Specs:

o 48CPR
o 5V operating voltage

Supplier: Pololu Robotics & Electronics
Dead Reckoning Equation:

These equations assume only point and shoot motion no complex paths. Variables denoted by an s are the distance
traveled by each wheel.

_ SR + St
)
Turns are performed first. b is the distance between wheels.

S

SR —SL
b

Or+1 = O +

Then the straight distance is calculated.
Xp+1 = X + 5 * cos(6y)

Yi+1 = Yk + 5 * sin(6y)

Name: Pixy CMUcam5
Purpose: Used in the proposed stereo vision system
Specs:

o Video resolution of 640x400

o Colored object detection at 50 fps

o Lots more technical specs at:
http://www.cmucam.org/projects/cmucam5/wiki/Introduction_and Backg
round

Supplier: Amazon - Charmed Labs

11|Page


http://www.cmucam.org/projects/cmucam5/wiki/Introduction_and_Background
http://www.cmucam.org/projects/cmucam5/wiki/Introduction_and_Background

Behaviors

= Ready

» Bobis ready to start
= Search/Wander

» Bob is moving around looking for objects
= Align with object/Pickup

* Bob lowers gripper and aligns with the object in order to pick up. Then approaches the object and
grabs it

= Localize
» Bob searches for the beacons to determine its position within the arena
= Seek & Deposit

* Bob maneuvers to desired position and drops the object.

There is nothing particularly special about most of these behaviors. | will go into more detail on the method used
to localize though. The method of localizing uses the Generalized Geometric Triangulation Algorithm. This
algorithm was developed by [1] and it uses three beacons with known absolute locations to triangulate the
position of the thing taking measurements. The measurements consist of the angles from the orientation of the
object to each of the beacons. They discuss more in the paper the benefits of using their algorithm versus other
geometric triangulation algorithms.

y d
1 ,/’ xt Angle Ranges
. e
Vi e e e e e e ——————————— :::: y :::_::__ ¢
0°< A< 360°
0°< A, < 360°
T Z
Y: |---@<F o 0°< Ay < 360°
1
| I .
: 0° < hypo < 360°
: 0° < ;\.33 < 360°
Vap====4 [ R R 0°< Ag < 360°
| L, |
! ! -180° < < 180°
E i -180°< g < 180°
1
. i i -180° < T < 180°
Yap---- t i
1 1
i i -180° < B < 180°
X, X, X

Figure 8 is figure from [1] that shows the different angles that are measured/calculated in order to complete the algorithm. One
benefit the mention is the paper is that the beacons do not need to be in a specified order.

12|Page



Experimental Layout and Results

IR output versus distance test.

This test was performed in order to obtain a mapping between the ADC output on the Arduino and the real
distance. The distance was measured using a measuring tape and a piece of white cardstock to block the IR
sensors. The lighting was indoors under florescent lights. Data closer than 3 inches was not collected because
distance measurement become indeterminate (they become two to one mappings). The IR sensors are also
recessed into the chassis to minimize objects being detected within this region. Tables Table I and Table 11 show
the numbers used to determine the mapping and Figure 9 and Figure 10 are just graphs of this data along with the
fitted equation.

Table I shows the numerical values recorded during the test for the left IR sensor.

Analog Input Mapping 304 195 130 100 80 90

Distance (inches) 3 5 7 9 11 13

16

14 . y =573.01x70-909

.. R?=0.9918
— 12
3 ‘®
S 10
= ‘@
g °
g 6 e
e o
Q 4\ e
....... b
2
0
0 50 100 150 200 250 300 350
ADC Output

Figure 9 shows the mapping between the ADC output and distance. Data on the other side of the *"Hill"* for IR sensor was not
recorded. The equation resulting from a power fit is shown in the upper right.

Table 11 shows the numerical values recorded during the test for the right IR sensor.

Analog Input Mapping 307 195 140 110 105 80
Distance (inches) 3 5 7 9 11 13

16

y =1768.2x 1114

14
Y R?=0.9901

12
10

Distance (inches)
(o]

0 50 100 150 200 250 300 350
ADC Output

Figure 10 shows the mapping between the ADC output and distance. Data on the other side of the ""Hill** for IR sensor was not
recorded. The equation resulting from a power fit is shown in the upper right.

13|Page



Preliminary illuminated orb test:

For this experiment | wanted to see investigate using illuminated objects for color detection. | wanted to see if this
was a way to get good object detection while minimizing the ambient noise. | performed this test by placing a
ping pong ball on top of a LED flashlight. The lighting conditions were standard for florescent bulbs. Then | took
a screenshot at 7, 13 and 30 inches. Figure 11 shows the experimental setup.

BORAA O AL D M A, S e s s o .

Figure 11 shows my experimental setup for this test. On the left you can see the flashlight with a green ping pong resting on top of
it. To the right in the yellow stand is the Pixy camera used for this test. | used a brightness of 25.

Table 3 shows the Pixy tuning parameters | used to achieve the results from the images below. I did not do much tuning with these.

Orange | Green | Pink
Pixy Tuning Parameter | 3.78 7.4 3.96

Figure 12, Figure 13, and Figure 14 below show the tracking achieved using a ping pong ball with a diameter of
1.5”. The tuning parameters are shown in Table 3.

Figure 12 shows the tracking of the orange ping pong at distances 7, 13, 30 inches respectively. You can see the camera picking up
spots from my neon orange shirt in the middle image.

14|Page



Figure 13 shows the tracking of the lime green ping pong at distances 7, 13, 30 inches respectively.

Figure 14 shows the tracking of the lime green ping pong at distances 7, 13, 30 inches respectively.

This experiment yielded some positive results. The Pixy mostly did not pick up background objects even when
the tracking thresholds were turned up. The bad part of this experiment was that the light was coming from
beneath the object. This caused a non-uniform color over the ball with the bottom being closer to white.

From this experiment | decided to purchase 3.25” Diameter illuminated orb, shown in Figure 15, to use on the
beacons. I chose 30 inches to test the ping pong because the ball’s diameter is about half of these larger orbs. So I
should be able to get about a 5 feet range from these new orbs.

Figure 15 shows examples of the orbs | plan on using for the beacons. They are self-contained with internal light and batteries.

15|Page



Update: Turns out these orbs were too dim to be useful in normal lighting conditions.

Conclusions

At the time of this report Bob is basically only remote controlled with an incomplete obstacle avoidance and
incomplete dead reckoning. | severely under estimated the time to code all the little things for Bob (serial
communication, logic required to use dead reckoning, etc.). | spent too much time on the mechanical/electrical
design of the robot. | should have spent more time early on working with serial communications. Also | had two
Raspberry Pi 2 fail because of power problems. | do not think they should be used for these battery powered
applications. They are also a lot less efficient computationally than the stated processor speeds. | would choose a
processor more meant for robots/battery powered operation. | was looking into the Intel Edison which destroys
both the Odroid C1 and R pi 2 in most benchmarks done by sparkfun besides graphics. It loses the graphics
because it does not video output capabilities. It also can be integrated into an Arduino breakout board and can be
used as an Arduino along with a full Linux OS.

Documentation

[1] Jodo Sena Esteves, Adriano Carvalho, Carlos Couto, “Generalized Geometric Triangulation Algorithm for
Mobile Robot Absolute Self-Localization”, not sure where they published it

16|Page



Appendices

Components:
Name: Odroid C1

Purpose: Used to do the high level control and decision making of Bob.
Also used to perform localization algorithm.

Specs:

1.5 GHz quad-core ARM Cortex-A7 CPU
1GB DDR3 SDRAM

4 USB ports

o 40 GPIO pins

More detailed specifications on AmeriDroid page.

O O O

Supplier: AmeriDroid

Name: Arduino Mega 2560

Purpose: Used to do the high level control and decision making of
Bob

Specs:

Microcontroller: ATmega2560 "16 MHz Clock
Operating Voltage: 5V

Input Voltage: 7-12V

54 Digital 1/O Pins(15 of which are PWM)

o 16 Analog Inputs

O O O O

More detailed specifications on Arduino page.

Supplier: Arduino

Name: Arduino Uno Rev 3

Purpose: Possible to be used to control the Pan and tilt camera and read
inputs from a Pixy to determine bricks

Specs:

Microcontroller: ATmega328P 16 MHz Clock
Operating Voltage: 5V

Input VVoltage: 7-12V

14 Digital I1/O Pins(6 of which are PWM)
o 6 Analog Inputs

o O O O

More detailed specifications on Arduino page.

Supplier: Arduino

17|Page



Name: Dual Motor Driver Shield for Arduino
Purpose: Used to power the gear motors and measure current draw from

Specs:

O
O

o

O
O

the motors

Operates from 5.5-24V
continuous 12 A (30 A peak) per motor, or 24 A (60 A peak) to a

single motor
Inputs compatible with both 5V and 3.3V systems (logic high BB e %o o 1 [ O18] s
thl’eSh0|d |S 21 V) wwwpolucon B OSSO REE Sse0s e

PWM operation up to 20 kHz, which is ultrasonic and allows for quieter motor operation
Current sense voltage output proportional to motor current (approx. 140 mV/A)

More detailed specifications on Pololu site.
Model Number: VNH5019 Revision
Supplier: Pololu

Name:
Purpose: Used to supply 5V to servo motors and to power the Odroid

Specs:

O
O

O
O
O

DC Buck Converter

Input Voltage: DC 5-35V

Output Voltage: 0-33V (continuously adjustable, the input

voltage must be 1V higher than the output voltage) Change
voltage output by push buttons

Output Power: 30W max.

Output Current: 1.5A, Max. 3A, above 1.5a please adding heatsink
Output Voltage Setting Resolution: 0.1V

More detailed specifications on the Amazon page.
Model Number: LM2596 NC
Supplier: Amazon - DROK

Name: Venom LiPo Battery
Purpose: Used to power all electronics on Bob.

Specs:

O O O

o

Model Number: 1582
Supplier: Amazon — Venom RC

3Cells11.1V

5000mAh capacity/55.5 Watt hours
20C discharge rating, 1C charge rating
Universal Plug System




Name: SPST Oval Rocker Switch
Purpose: Used to turn power on and off to all electronics.
Specs:

o Rated for 30 amps at 12 V DC
o Button lights up when On

Supplier: RadioShack

Name: Sea-Dog 420853-1 Resettable Circuit Breaker with Cover
Purpose: Used to hopefully protect electronics if large current draw from the

battery happens
Specs:
o Rated for 30 Amps
o Can beusedin 12 or 24 V systems
o Resettable if breaker is thrown.

o Has easy to use screw terminals

Supplier: Amazon — Sea Dog Line

Name: Generic 5 Circuit Terminal Block

Purpose: Used to distribute power form the battery to the various
electronic components.

Specs:
o Jumpers can be used to create shared terminals

Not the correct picture.
Supplier: Found in the CIMAR lab.

Low Level Controller:

/[-==---- Include Libraries

#include <Servo.h>

#include <DualVNH5019MotorDriver.h> // For use with the Dual motor drivers from Pololu
#include <Encoder.h>

#include <PID_v1.h>

#include <Messenger.h>

]---==-- Define variables here

// Behavior Variable

19|Page



int activeBehavior = 0;

/[ ---PWM Pin Setting---

/I PWM pins for the two drive motors
const int PWMDrivePin_Left =11; // Timer 1 16-bit
const int PWMDrivePin_Right =12; // Timer 1 16-bit

/I Additional PWM Pins for Manipulator. May not be used
const int PWMWristPin = 7;
const int PWMGraspPin = 6;

/I ---Pololu Motor Pins---

const int Drive_INA1=22; // Left Drive Motor
const int Drive_INB1=23; // Left Drive Motor
const int Drive_EN1DIAG1=24; // Left Drive Motor

const int Drive_INA2=26; // Right Drive Motor
const int Drive_INB2=27; // Right Drive Motor
const int Drive_EN2DIAG2=25; // Right Drive Motor

Il ---Sensor Pins---

// Bump Sensors

const int leftBumpPin = 2; // Digital Pin 2, 0 interrupt pin for Mega 2560
const int rightBumpPin = 3; // Digital Pin 3, 1 interrupt pin for MEga 2560
/I Encoder Input

const int leftEncoderAPin = 21; // Digital Pin 21, 2 interrupt pin for Mega 2560

const int leftEncoderBPin = 20; // Digital Pin 20, 3 interrupt pin for Mega 2560

const int rightEncoderAPin = 19; // Digital Pin 19, 4 interrupt pin for Mega 2560
const int rightEncoderBPin = 18; // Digital Pin 18, 5 interrupt pin for Mega 2560

/! IR sensors
const int leftIRPin = 0O; 1/ AO

20|Page



const int rightIRPin = 1; /I Al

/I Current Sensors
const int leftCurrentPin = 2; // A8, CS1
const int rightCurrentPin = 3; // A9, CS2

/I ---Sensor sampling periods---

const unsigned long irPeriod = 100;  // Sampling period for IR Sensors (Ms)

const unsigned long currentPeriod = 100; // Sampling period for current sensor (ms)

const unsigned long encoderPeriod = 50; // Sampling period for encoder sensor (ms)

const unsigned long serialPeriod = 100; // Sampling period for serial read (ms)

const unsigned long stoppedPeriod = 150; // Sampling period for stopped measurement (ms)

/I Used for sensor sampling times

unsigned long currentMillis; /I Stores the current time reading in milliseconds

unsigned long previousMillis_IR=0;  // Stores the previous time the IR sensors were read
unsigned long previousMillis_Current=0; // Stores the previous time the Current sensors were read
unsigned long previousMillis_Encoder=0; // Stores the previous time the encoder were read
unsigned long previousMillis_Serial=0; // Stores the previous time the serial weas read

unsigned long previousMillis_Stopped=0; // Stores the previous time if the robot was stopped

/I ---Constants---

const int eps = 0.75;

/I Encoder Conversion Constant
const double C = (3.54*3.14159)/4741.41,

/I ---Define non-constant variables---

intinByte =0; // Variable that will store incoming byte from serial

int irLeft[4] = {0, 0, 0, 0}; // Stores the past 3 Left IR Readings for use in an average
int irRight[4] = {0, 0, 0, 0}; // Stores the past 3 Right IR Reading for use in an average

int irValue; /I Temporary value to store mesured IR reading
float irLeftAvg; // Used to store left IR average reading
float irRightAvg; // Used to store right IR average reading

21|Page



int currentLeft[4] = {0, 0, 0, O}; // Stores Left Drive Motor Current Reading
int currentRight[4] = {0, 0, 0, 0}; // Stores Right Drive Motor Current Reading

int currentValue; /I For current measurement (amps)
float currentLeftAvg; /I Used to store the average current sensor reading for the left motor
float currentRightAvg; /I Used to store the average current sensor reading for the right motor

/I Encoder Counting Variables
long leftOldPosition;

long rightOldPosition;

long leftNewPosition = 0;
long rightNewPosition = 0;

/I PID input variables
double leftSetpoint, leftinput, leftOutput;
double rightSetpoint, rightlnput, rightOutput;

boolean leftDone = false, rightDone = false;
double leftOffset = 0.50, rightOffset = 1.25; // Distance offsets to account stopping time.

/I PID Tuning Paramters
double IKp = 1.75, IKi = 0, IKd = 1.25;
double rKp = 1.75, rKi = 0, rKd = 1.25;

double K = 1;

// Serial Communications stuff

double temp = 0;

boolean newBehavior = false;

boolean newDistance = false; // Signifies if a new command has been recieved
boolean newWristGraspCmd = false; // Signifies if a new command has been recieved
boolean newRequest = false;

boolean newRobotSpeed = false;

boolean OAoff = false; /I To turn obstacle avoidance on or off

boolean gripOff = false; /[ To turn gripper motion off

22|Page



Messenger piMessage = Messenger(":");

int wristCmd = 160, graspCmd = 130;

int leftDistance = 0, rightDistance = 0;

int requestState = 0, requestComplete = 0, oaState = 0;
boolean oaOverride = false;

boolean isStopped = true;

double robotSpeed = 5;

/I State Update Variables

float dx = 0, dy = 0, dtheta = 0;

int motionDirection = 0, oldMotionDirection = 0;
double leftStartPoint, rightStartPoint;

/I Sensor Flags

boolean irFlag =false; I Will be set true if an IR condition is met

int irRecomnd = 0; /I Recommendation will be set depending on specific combintaion of IR readings
boolean currentFlag = false; /I Will be set true if Current sense condition is met

int currentRecomnd = 0; /I Will be set depending of specific combinations

volatile boolean bumpFlag = false; // Will be set true if a bump sensor is triggered

volatile int bumpRecomnd = 0; // Will indicate whether left or right sensor was triggered

I Arbiter Variables

boolean actionLock = false;
boolean actionOverride = false;
unsigned long timerLockout = 750;
unsigned long actionTimer =O0;
boolean Reverse = false;

boolean Turn = false;

//----Define Objects-----

23|Page



/I Define drive motor object

DualVNH5019MotorDriver driveMotors(Drive_INAL,Drive_INB1,PWMDrivePin_Left,\

Drive_ EN1DIAGL, leftCurrentPin,Drive_INA2,Drive_INB2,PWMDrivePin_Right,Drive_ EN2DIAG2,\
rightCurrentPin, 1);

/I Define encoder object
Encoder leftEncoder(leftEncoderAPin, leftEncoderBPin);
Encoder rightEncoder(rightEncoderBPin, rightEncoderBPin);

/* Define PID object

* PID will take the velocity as an input. So the derivative will be calculated be calling the PID function
*/

PID leftPID(&leftinput, &leftOutput, &leftSetpoint, IKp, IKi, IKd, DIRECT);

PID rightPID(&rightInput, &rightOutput, &rightSetpoint, rKp, rKi, rKd, DIRECT);

/I Define servo objects
Servo Wrist;
Servo Grasp;

I/ Test Variables
const String leftString = "Left IR Reading: ";

const String rightString = "Right IR Reading: ";

boolean readyBypass = false;

/ S— Message parsing function

void messageParse(){
/I This will set the variables that need to be changed
// from the message
if (piMessage.available()){
activeBehavior = piMessage.readint();
if (activeBehavior 1= 9){ newBehavior = true;}

leftDistance = piMessage.readDouble();

24|Page



rightDistance = piMessage.readDouble();
if (leftDistance != 99 | rightDistance != 99){ newDistance = true; }

wristCmd = piMessage.readInt();
graspCmd = piMessage.readint();
if (wristCmd =999 || graspCmd != 999){ newWristGraspCmd = true;}

temp = piMessage.readDouble();
if (temp != 99 && (temp >= 0 && temp < 15)){ robotSpeed = temp; }

requestState = piMessage.readint();
if (requestState '=9) { newRequest = true;}

/I Repurpose this for some other information
oaState = piMessage.readInt();
if (oaState == 0 ) {OAoff = true;}

------- Setup Function

void setup() // Needs to stay in setup until all necessary communications can be verified

{
/I Attach the servo objects to pins
Wrist.attach(PWMWristPin);

Grasp.attach(PWMGraspPin);

Wrist.write(wristCmd);
Grasp.write(graspCmd);

/I Initialize drive motor object
driveMotors.init();

//---- Bump Switches----

25|Page



/I Set interrupt pins to input
pinMode(leftBumpPin,INPUT);
pinMode(rightBumpPin,INPUT);

/I Turn on pullup resistors
digitalWrite(leftBumpPin, HIGH);
digitalWrite(rightBumpPin, HIGH);

/I Attached Interrupt pins
attachinterrupt(0, bumpLeft, RISING);
attachlnterrupt(1, bumpRight, RISING);

/---- PID Settings ----
leftPID.SetSampleTime(50);
rightPID.SetSampleTime(50);

leftPID.SetOutputLimits(-100,100);
rightPID.SetOutputLimits(-100,100);

leftP1D.SetMode(AUTOMATIC);
rightPID.SetMode(AUTOMATIC);

/I Digital Pin 2
// Digital Pin 3

rightPID.SetControllerDirection(REVERSE);

/I Initiliaze serial communications

Serial.begin(9600); I/ set up Serial library at 9600 bps boolean readyBypass = true;

piMessage.attach(messageParse);

while(1){

/I Set readyBypass to true to skip waiting for Odroid confirmation and button switch confimation

if (readyBypass){break;}

if (Serial.available() > 0){ inByte = Serial.read();}

if (inByte == 115){

26|Page



Serial.printin('g");
break;

Serial.printIn(’r");

delay(100);

[f-==----- Main Loop----

void loop()
{

currentMillis = millis(); // Program run time in milliseconds.

/I Read serial and call parser

if (currentMillis - previousMillis_Serial > serialPeriod){
previousMillis_Serial = currentMillis;
while( Serial.available() ) piMessage.process(Serial.read());

}

/I Act of behavior here like locking certain commands or something
if( newBehavior){
if(activeBehavior == 0){
/I Robot should be inactive
/I Obstacle avoidance should be off and the robot should not move.

Il Gripper should not move also

OAOff = true;
gripOff = true;
}

else if(activeBehavior == 1){
/I Search/Wander Behavior

/I Obstacle avoidance should be on, should recieve commands from Odroid
OAoff = false;

27|Page



gripOff = false;
}
else if(activeBehavior == 2){
I/l Align and Pickup behavior
/I Obstacle avoidance should be off, should recieve commands fro Odroid
OAOff = true;
gripOff = false;
}
else if(activeBehavior == 3){
/I Deposit behavior
/I Obstacle avoidance should be on, robot should recieve commands from Odroid
OAoff = true;
gripOff = false;
}
else if(activeBehavior == 4){
/I Localize bahvior
// Robot should stop moving, Obstacle avoidance should be turned off
I/ Gripper should not be moving also
OAoff = true;
gripOff = true;

if('gripOff){
if (newWristGraspCmd){

¥
k

currentMillis = millis(); // Program run time in milliseconds. Used for sensor sampling.

/I Makes sure desired angles are acceptable

if((wristCmd >= 40 && wristCmd <= 170) && wristCmd !=999){
Wrist.write(wristCmd);

}

if((graspCmd >= 45 && graspCmd <= 135) && graspCmd !=999){
Grasp.write(graspCmd);

}

newWristGraspCmd = false;

28|Page



//---- Distance Measurement IR Smart Sensor ----
if (currentMillis - previousMillis_IR >= irPeriod){
previousMillis_IR = currentMillis;

// Read in the left IR voltage and put into a buffer
irValue = analogRead(leftIRPin);

irLeft[0] = irLeft[1];

irLeft[1] = irLeft[2];

irLeft[2] = irLeft[3];

irLeft[3] = irValue;

delay(1);

/I Read in the right IR voltage and put into a buffer

irValue = analogRead(rightIRPin);
irRight[0] = irRight[1];

irRight[1] = irRight[2];

irRight[2] = irRight[3];

irRight[3] = irValue;

/I Calculate the average input

irLeftAvg = (float(irLeft[0]) + float(irLeft[1]) + float(irLeft[2]) + float(irLeft[3]))/4;
irRightAvg = (float(irRight[0]) + float(irRight[1]) + float(irRight[2]) + float(irRight[3]))/4;

/I Convert voltage reading to units of inches.

irLeftAvg = 573.01 * pow(float(irLeftAvg),-0.909);
irRightAvg = 1768.2* pow(float(irRightAvg), -1.114);

// Obstacle Avoidance Logic
if (irLeftAvg < 3.5 && irRightAvg >= 3.5){
/I reverse and turn right
bumpRecomnd = 3;
bumpFlag = true;
}
else if (irLeftAvg >= 3.5 && irRightAvg < 3.5){
/l reverse and turn left

29|Page



bumpRecomnd = 4;
bumpFlag = true;
}
else if (irLeftAvg < 3.5 && irRightAvg < 3.5){
/I reverse and turn left or right
if(random(0,9)/5 == 1){
bumpRecomnd = 3;
}
else{
bumpRecomnd = 4;
}
bumpFlag = true;
}
else if((irRightAvg-irLeftAvg)< eps && (irLeftAvg >= 3.5 && irLeftAvg < 5.5)\
&& (irRightAvg >= 3.5 && irRightAvg < 5.5)) {
/l Turn left or right
if(random(0,9)/5 == 1){
irRecomnd = 1;
}
else{
irRecomnd = 2;
}

}
else if(irLeftAvg >= 3.5 && irLeftAvg < 5.5 && irRightAvg > 5.5){

irRecomnd = 1; // Turn right some random amount

}

else if(irRightAvg >= 3.5 && irRightAvg < 5.5 && irLeftAvg > 5.5){
irRecomnd = 2; // Turn left some random amount

}

else{
irRecomnd = 0;

¥

I If the IR recommends something then set the flag to true
if(irRecomnd = 0){
irFlag = true;

30|Page



}

else{
irFlag = false;

}

/I Debugging outputs
/I Serial.print(leftString + String(irLeftAvg) +" ");
/I Serial.printIn(rightString + String(irRightAvg));

/]-----
//---- Amperage Measurement Smart Sensor ----

if (currentMillis - previousMillis_Current >= currentPeriod){
previousMillis_Current = currentMillis;

currentValue = driveMotors.getM1CurrentMilliamps();
currentLeft[0] = currentLeft[1];

currentLeft[1] = currentLeft[2];

currentLeft[2] = currentLeft[3];

currentLeft[3] = currentValue;

delay(1);

currentValue = driveMotors.getM2CurrentMilliamps();
currentRight[0] = currentRight[1];
currentRight[1] = currentRight[2];
currentRight[2] = currentRight[3];

currentRight[3] = currentValue;

/Il Calculate average current reading over three samples to try to not in spikes.

currentLeftAvg = (float(currentLeft[0]) + float(currentLeft[1]) + float(currentLeft[2]) +
float(currentLeft[3]))/4;

currentRightAvg = (float(currentRight[0]) + float(currentRight[1]) + float(currentRight[2]) +
float(currentRight[3]))/4;

/I Convert to real units (amps)
currentLeftAvg = 0.034 * currentLeftAvg;
currentRightAvg = 0.034 * currentRightAvg;

31|Page



/I Tune this value
if(currentLeftAvg >= 4 || currentRightAvg >= 4) {

currentRecomnd = 1; // Arbitraty number for now just to trigger the flag.

}
else{
currentRecomnd = 0;

}

/I If the current sensor recommends something then set the flag to true

if(currentRecomnd != 0){
currentFlag = true;
actionOverride = true;

}

else{
currentFlag = false;

¥

/I Debug variable declaration

/lcurrentFlag = false;

/* Debugging Outputs
Serial.print("Left Current: " + String(currentLeftAvg) + " ");
Serial.printIn("Right Current: " + String(currentRightAvg));
*/

if(10A0ff){
/I Any sensor flag will trigger alternative behavior
if (currentFlag || bumpFlag || irFlag) {
oaOverride = true;
if (currentRecomnd ==1) {
/[ Stop motion, robot could be stuck.
Reverse = false;

Turn = false;

32|Page



motionDirection = 0;
currentFlag = false;
}
else if(bumpRecomnd == 3){
// Reverse and right turn motion
Reverse = true;
Turn = true;
motionDirection = 4;
bumpFlag = false;
}
else if(bumpRecomnd == 4){
/I Reverse and left turn motion
Reverse = true;
Turn = true;
motionDirection= 3;
bumpFlag = false;
J*
if(lactionLock){
actionLock = true;
driveMotors.setM1Speed(-75);
driveMotors.setM2Speed(75);
actionTimer = currentMillis;
bumpRecomnd = 0;
}
*/
}
else if(irRecomnd == 1){
/l Turn Right
Reverse = false;
Turn = true;
motionDirection = 4;
}
else if(irRecomnd == 2){
/[ Turn left
Reverse = false;

Turn = true;

33|Page



motionDirection = 3;
}

¥
¥

//---- Obstacle Avoidance Action ----

if(Reverse && isStopped){
/Il perform action
motionDirection = 2;

}

if(Turn && 'Reverse && isStopped){
I/ Perform Turn

/ Which way to turn?
if(motionDirection == 3){
// Turn Left

Turn = false;
motionDirection = 0;
oaOverride = false;
}
else if(motionDirection == 4){
/l Turn Right

motionDirection = 0;

}

//---- Commanded Robot Move ----
if(newDistance && !oaOverride){
if( leftDistance < 0 && rightDistance > 0){
/[Forward motion
motionDirection = 1;

¥

34|Page



else if(leftDistance > 0 && rightDistance < 0){
/I Reverse Motion
motionDirection = 2;

}

else if(leftDistance > 0 && rightDistance > 0){
// Turning Left
motionDirection = 3;

}

else if(leftDistance < 0 && rightDistance < 0){
/[ Turning Right
motionDirection = 4;

}

else{
//Stop
motionDirection = 0;

}

}

if((motionDirection != oldMotionDirection || motionDirection == 0) && !isStopped){
// Now doing a different motion
oldMotionDirection = motionDirection;
if(tisStopped){
leftSetpoint = 0;
rightSetpoint = 0;

if(abs(currentMillis - previousMillis_Stopped) > stoppedPeriod){

if(abs(leftStartPoint - leftEncoder.read()*C) < 0.00001 && abs(rightStartPoint - rightEncoder.read()*C) <
0.00001){

isStopped = true;
}
leftStartPoint = leftinput;
rightStartPoint = rightinput;
}
}
}

if(newDistance || oaOverride){

3B|Page



if(isStopped && motionDirection == 1){
// Forward Motion
leftStartPoint = leftEncoder.read()*C;
rightStartPoint = rightEncoder.read()*C;
leftSetpoint = robotSpeed;
rightSetpoint = robotSpeed;

}

else if(isStopped && motionDirection == 2){
/I Reverse Motion
leftStartPoint = leftEncoder.read()*C;
rightStartPoint = rightEncoder.read()*C;
leftSetpoint = -robotSpeed,;
rightSetpoint = -robotSpeed:;

}

else if(isStopped && motionDirection == 3){
/l Left Turn
leftStartPoint = leftEncoder.read()*C;
rightStartPoint = rightEncoder.read()*C;
leftSetpoint = -robotSpeed,;
rightSetpoint = robotSpeed;

}

else if(isStopped && motionDirection == 4){
/I Right Turn
leftStartPoint = leftEncoder.read()*C;
rightStartPoint = rightEncoder.read()*C;
leftSetpoint = robotSpeed;
rightSetpoint = -robotSpeed;

36|Page



/*

if((leftinput - leftStartPoint)>(leftDistance-leftOffset) && abs(rightinput)>(rightDistance-rightOffset) &&

rightSetpoint != 0){
leftSetpoint = 0;
rightSetpoint = 0;

}
*/

// PD controller

/I Need to convert to actual position measurements.
leftinput = leftEncoder.read()*C;

leftDone = leftPID.Compute();

rightinput = rightEncoder.read()*C;
rightDone = rightPID.Compute();

if(leftDone && rightDone){
/I Set the speeds together

driveMotors.setSpeeds(K*leftOutput, K*rightOutput);

leftDone = false;
rightDone = false;
}

}
-

/I ---Extra Error Function---

// This function is used by the Pololu motor drivers to handle errors in operation

void stoplfFault()

{
if (driveMotors.getM1Fault())

{
//Serial.printin(*M1 fault:");
while(1);
}
if (driveMotors.getM2Fault())
{
/[Serial.printin("M2 fault:");
while(1);

37|Page



/I ---Left Bump Sensor Interrupt Function---
void bumpLeft()
{

bumpFlag = true;

actionOverride = true;

bumpRecomnd = 3;

}
/I ---Right Bump Sensor Interrupt Function---

void bumpRight()

{
bumpFlag = true;
actionOverride = true;
bumpRecomnd = 4;

}

}

Top Level Controller:

/* Patrick Header Here

*

*/

/I Tilt servo should cyle through 60-140 with 140 facing down and 60 facing up
/I Pan servo should be cycled through 0-180 with 0 facing right

#include <Servo.h>
#include <Pixy.h>

#include <SPI.h>

#include <Messenger.h>
/f#include <LiquidCrystal.h>

//----- Variable Declarations -----

/! Servomotor Pins

38|Page



const int panPWM = 6;
const int titPWM = 5;

// Button Pin

const int startPin = 7;
int buttonState = HIGH,;
int button;

int previousButton = LOW;

/[---- Timing Variables ----

unsigned long currentMillis;

unsigned long debouncePeriod = 200;

/I Binary true/false array to store if the object has been recovered yet.
int blocksFound[2] = {0, 0}; // Zero is false

I/ Serial Communications stuff

int inByte;

int activeBehavior = 0;

boolean newBehavior = false;

int panCmd = 90, tiltCmd = 90;

boolean newPanTiltCmd = false; // Signifies if a new command has been recieved

boolean newRequest = false;

boolean startButton = true; // Start button needs to be pressed in order for Bob to start moving
boolean readyBypass = false; //Used to bypass the serial ready check

//----Define Objects----
/I Create a message object

Messenger piMessage = Messenger(":");
/I Define pan tilt servo objects

Servo Pan;
Servo Tilt;

39|Page



/I Define pixy object
Pixy ffPixy; // Forward Facing Pixy

//----Serial Communications Parser----
void messageParse(){
{/l This will set the variables that need to be changed
[l from the message
if (piMessage.available()){
activeBehavior = piMessage.readint();
if (activeBehavior 1= 9){
newBehavior = true;
}
panCmd = piMessage.readInt();
tiltCmd = piMessage.readInt();
if (panCmd =999 || tiltCmd != 999){
newPanTiltCmd = true;
}
}
}

void setup() {

/I Attach servo to specific pins
Pan.attach(panPWM);
Tilt.attach(tiltPWM);

/I Align servos to default locatios
Pan.write(panCmd);
Tilt.write(tiltCmd);

/I Initialize Pixy object
fPixy.init();

/I Start serial and wait for the "Go" command
Serial.begin(9600);

piMessage.attach(messageParse);

40|Page



[/ Stay in a loop until read to move on

while(1){
/I Set readyBypass to true to skip waiting for Odroid confirmation and button switch confimation
if (readyBypass){break;}

/I Serial handshake to start the main program.
if (Serial.available() > 0){inByte = Serial.read();}

if (inByte == 115 && startButton){
Serial.printin('g’);

break;

Serial.printIn(’r");

delay(100);

¥
¥

void loop() {
[l put your main code here, to run repeatedly:
/* This code should be looking for colored blocks that meet certain color codes.
* |t should be able to store whether or not the colored code was moved already

* Once it finds a new color code it should send a command to the Odroid C1 where it will begin the align and
pickup behavior.

* During this behavior the pan and tilt functions will be disabled. Until the localize behavior is started. This
will only take in desired servo angles

* and apply them. SHould include some deadband to stop jittering.
* This will maybe include the code to display the LCD.
*/

while( Serial.available() ) piMessage.process(Serial.read());

if (newPanTiltCmd){
Serial.printIn("Repeat Back " + String(activeBehavior)+ " " + String(panCmd) + " "' + String(tiltCmd));
// Make sure to check inout bounds
if((panCmd >=5 && panCmd <= 172) && panCmd !=999){

41|Page



Pan.write(panCmd);
//Serial.printIn("Repeat Back " + String(panCmd));

¥

if((tiltCmd >= 80 && tiltCmd <= 130) && tiltCmd != 999){

Tilt.write(tiltCmd);

/Serial.printin("Repeat Back " + String(State)+ " " + String(panCmd) +" " String(tiltCmd));

}

newPanTiltCmd = false;

[*
I/ Pixy Read
static inti = 0;
intj;

uintl6_t blocks;
char buf[32];

/I grab blocks!
blocks = ffPixy.getBlocks();

/I If there are detect blocks, print them!
if (blocks)
{

i++;

// do this (print) every 50 frames because printing every
/[ frame would bog down the Arduino
if (1%50==0)
{
sprintf(buf, "Detected %d:\n", blocks);
Serial.print(buf);
for (j=0; j<blocks; j++)
{
sprintf(buf, " block %d: ", j);
Serial.print(buf);
ffPixy.blocks[j].print();

42|Page



Main Program:
__Author = "Patrick Neal"

W

Place intro header here
Name

Purpose

Any inputs or variable descriptions

W

Robot.Robot
Bob = Robot ("Bob", np.array ([

foundBlock =
pickedupBlock
localizeDone =
droppedBlock =
blocksDone =
setupComplete
continuousRun
taskComplete =
arduinoMegaReady =
arduinoUnoReady =

"Waiting for Arduino Setup"

arduinoMegaReady:
messageMega = Bob.arduinoMega.readline ()
messageMega
messageMega == 'r U

Bob.arduinoMega.write('s'")
sleep ( )
Bob.arduinoMega.readline () ==

arduinoMegaReady =
"Mega Done"

arduinoUnoReady:
messageUno = Bob.arduinoUno.readline ()
messagelUno
messagelUno == 'r




Bob.arduinoUno.write('s"')
sleep ( )
Bob.arduinoUno.readline ()

arduinoUnoReady =

"Uno Done"
sleep ( )

arduinoMegaReady arduinoUnoReady:

Bob.arduinoMega.flushInput ()
Bob.arduinoMega.flushOutput ()

Bob.arduinoUno.flushInput ()
Bob.arduinoUno. flushOutput ()

continuousRun:

foundBlock:
Bob.behavior != 1:
Bob.updateBehavior (1)

foundBlock:
Bob.behavior != 2:
Bob.updateBehavior (2)

pickedupBlock:

Bob.behavior != 3:
Bob.updateBehavior (3)

droppedBlock:
blocksDone:
taskComplete
foundBlock =
pickedupBock
droppedBlock =
Bob.behavior ==
Bob.behavior

Bob.behavior

Bob.behavior

Bob.move ("F"

Bob.stateUpdate ()




taskComplete:

Robot Class:

__author = 'Patrick'

math

np
clock, sleep

( robotName, beacons) :
.name = robotName
.behavior =
.state = np.array ([ 1)

.arduinoMega = serial.Serial ( = '/dev/ttyACMO'
= 2)

.arduinoUno = serial.Serial ( = '/dev/ttyACM1l'
= 2)

.arduinoMega.flushInput ()
.arduinoMega. flushOutput ()

.arduinoUno. flushInput ()
.arduinoUno.flushOutput ()

.beaconPos = beacons
stateUpdate ( ) s
.arduinoMega.write ()
sleep ( )
message = .arduinoMega.readline ()
statechange = np.array ([ (message[0]) (message[l]) (message[2]) 1)
.state += statechange
updateBehavior ( behavior) :
.behavior = behavior
.arduinoMega.write ( .behavior)
sleep ( )
.arduinoUno.write ( .behavior)

sleep (

move ( Dir, amount) :




b,
Dir == 'L' Dir == '"1"':
distance = b* (amount) /
.arduinoMega.write('9:"' + "{:.2f}".format (distance)
:.2f}" . format (distance) + ':' +
'999:999:99:9:9: ")
Dir == 'R' Dir == 'r':
distance = b* (amount) /
.arduinoMega.write ('9:' + "{:.2f}".format (-distance)
.2f}".format (-distance) + ':' +
'999:999:99:9:9: ")
Dir == 'F' Dir == 'f':
distance = (amount)
.arduinoMega.write ('9:' + "{:.2f}".format (-distance)
.2f}".format (distance) + ':' +
'999:999:99:9:9: ")
Dir == 'B' Dir == 'b':
distance = ( ())
.arduinoMega.write('9:"' + "{:.2f}".format (distance) 9 :.2f}".format (-
distance) + ':' +
'999:999:99:9:9: ")

readMega (

megaMessage = .arduinoMega.readline ()
messagelistMega = megaMessage.split (":")
messagelistMega

readUno (

unoMessage = .arduinoUno.readline ()
messagelListUno = unoMessage.split(":")
messagelListUno
def collectdata(self):

# This needs to collect data from three out of four beacons.
These beacons should have a identifier so their specific absolute position is know.
Needs to be able to communicate with the Arduino Uno. (Global serial variables?)
Also needs to communicate with a Pixy camera
Pick the first one that is in view. (Object should meet specific geometry

conditions)

# Tell both the Mega and Uno what behavior is now acting (Localize)

# Arduino Mega should stop movements and passive while waiting for more commands.
self.arduinoMega.write ()
self.arduinoUno.write ()

foundBeacons = False

# Decides where to start looking left or right.
if random.randint (0, 9)/5 == 1:

# Start turning left

direction = 'L’
else:

direction = 'R'

lambdaArray = np.array ([0, 0, 0])

# Read the current state of the
self.arduinoUno.read()




not foundBeacons:
Find first beacon ( start randomly looking left or right first find the

Add the beacon ID to a list along with the angle *maybe numpy array)
continue in the same direction to find the next

If at boundary then command the robot to rotate some amount ( with move
command?)
Also rotate the camera back the same amount.
Continue measuring angle between next beacon and place in the list
if beaconCount == 3:

foundBeacons = True

if and direction == 'L' and not foundBeacons:

= self.localize(rl, r2, r3, lambdaArray[0], lambdaArray[l], lambdaArray([2])
# Some error checking maybe
# Should return Data which stores the measured angles

return Data

localize (self):

# Update robot current behavior
self.updateBehavior (4)

# Collect data for localizng
Angles = self.collectData/()

# Perform the calculations

# Convert degrees into radians
lambdal = radians (lambdal)
lambda? = radians (lambda?)
lambda3 = radians (lambda3)

# If less than three beacons return error code
lambdal2 = lambda2 - lambdal
if lambdal > lambda2: lambdal2 += 2*pi

lambda3l = lambdal - lambda3
if lambda3 > lambdal: lambda3l += 2*pi

# Apply check for singularity here

# if lambdal2= 0 or pi or lambda3l = 0 or pi

# Compute L12 from rl, r2
L12 = sgrt(()"2 + ()"2)

# Compute L31 from rl, r3
L31 = sqgrt(()"2 + ()"2)

# Need to calculate phi and sigma




# Calculate gamma angle
gamma = sigma - lambda3l

tau = at 1 (lambdal2) * (L12*sin (lambda3l) -

tan ( (sir
L31*sin (gamma) ) )/ (L31*sin (lambdal?2) *cos (gamma) -L12*cos (lambdal2) *sin (lambda31))

if lambdal2 < pi and tau < 0: tau += pi
if lambdal2 > pi and tau > 0: tau -= pi

if abs(sin(lambdal2))>abs(sin (lambda3l)) :
L1 = (Ll12*sin(taut+lambdal2))/sin (lambdal?2)
else
Ll (L31*sin (taut+sigma-lambda3l) ) /sin (lambda31l)

XR = rl.x - Ll*cos (phi+tau)
yR rl.y - Ll*sin (phi+tau)
thetaR = phi +tau -lambdal
if thetaR <= -pi:

thetaR += 2*pi
elif thetaR>pi:

thetaR -= 2*pi

stateTriang = np.array([xR, yR, thetaR])
self.state = stateTriang

Remote Control Code:

serial

numpy np
time clock, sleep

convertStr(s) :

arduinoMega = serial.Serial ('/dev/ttyACM1'

arduinoUno = serial.Serial ('/dev/ttyACMO'

arduinoMega.flushInput ()
arduinoMega.flushOutput ()

arduinoUno. flushInput ()
arduinoUno. flushOutput ()

arduinoMegaReady =




arduinoUnoReady =

"Waiting for Arduino Setup"

arduinoMegaReady:
messageMega = arduinoMega.readline ()
messageMega
messageMega == 'r '

arduinoMega.write('s"')
sleep ( )
arduinoMega.readline ()

== g
arduinoMegaReady =
"Mega Done"

sleep (

arduinoUnoReady:
messageUno arduinoUno.readline ()
messagelUno
messagelUno == 'r

arduinoUno.write('s"')
sleep ( )
arduinoUno.readline ()
arduinoUnoReady =
"Uno Done"

sleep ( )

arduinoMegaReady arduinoUnoReady:

Loop:

"This is the Main Menu for the Serial Communications Test"
"l. Move a certain amount"
"2. Change gripper wrist/claw position"
"3. Change pan/tilt angles"
"4. Change robot state"
"Q. Quit (Stops all motion)"

choice = ()

choice == "1":

"This is the menu for robot movement"
"1l. Move Forwards"

"2. Move Backwards"

"3. Turn Left"

"4, Turn Right"

"5. Stop"

"Q. GO back"

choice

()

choice == '1"':
"Input desired distan
distance = ( (

"

ce
))

arduinoMega.write ('9:' + "{:.2f}".format (-distance)
"{:.2f}".format (distance) + ':' +

sleep (




arduinoMega.readline ()
choice == '2':
"Input desired distance"
distance = ( ())
arduinoMega.write ('9:' + "{:.2f}".format (distance) + ':' + "{:.2f}".format (-
distance) 8 +
'999:999:99:9:9: ")
sleep ( )
arduinoMega.readline ()
choice == '3':
"Input desired angle"
amount = convertStr ( ())
distance = b* (amount) /
arduinoMega.write ('9:' + "{:.2f}".format (distance)
"{:.2f}".format (distance) + ':' +
'999:999:99:9:9: ")
sleep ( )
arduinoMega.readline ()
choice == '4':
"Input desired angle"
amount = convertStr ( ())
distance = b* (amount) /
arduinoMega.write ('9:' + "{:.2f}".format (-distance) + ':' + "{:.2f}".format (-
distance) g }
'999:999:99:9:9: ")
sleep ( )
arduinoMega.readline ()
choice == '5"':
"Stopped"
distance =
arduinoMega.write ('9:"' + "{:.2f}".format (distance)
"{:.2f}".format (distance) + ':' +
'999:999:99:9:9: ")
sleep ( )
arduinoMega.readline ()
choice == 'q' choice == "'Q':

choice == '2':

"This is the menu for the gripper"
"l. Change wrist angle"
"2. Change claw position"
"Q. GO back"
choice = ()

choice == '1"':
"Input wrist angle in degrees (some limits in place"
wrist = convertStr ( ())
< wrist <
arduinoMega.write ('9:99: : (wrist) + ':999:99:9:9: ")
sleep ( )
arduinoMega.readline ()

"Invalid Input"
choice == '2':
"Input grasp angle in degrees (some limits in place"
grasp = convertStr ( ())
<= grasp < 3
arduinoMega.write ('9:99:99:999:"' + (grasp) + ':99:9:9: ')
sleep ( )
arduinoMega.readline ()
"Invalid Input"
choic




choice == '3"':

"This is the menu for the pan/tilt"
"l. Change pan angle"
"2. Change tilt angle"
"Q. GO back"
choice = ()

choice == '1"':
"Input pan angle in degrees (some limits in place)"
pan = convertStr ( ()
<= pan <=
arduinoUno.write ('9: '+ (pan) + ':999: ")
sleep ( )
arduinoUno.readline ()

"Invalid Input"
choice == '2"':
"Input tilt angle in degrees (some limits in place)"
tilt = convertStr ( ()
< tilt <
arduinoUno.write ('9:999:" + (tilt) + ': ")
sleep ( )
arduinoUno.readline ()
"Invalid Input"
choice == 'q' choice == 'Q':

choice == '4':

"This is the menu for the pan/tilt"
"l. Enter Behavior 1-4"
"Q. GO back"

choice = ()

choice == '1':

"l = Search, 2 = Pickup, 3 = Drop off, = Localize)"
behavior = convertStr ( ())
<= behavior <=
arduinoMega.write ( (behavior) + ':99:99:999:999:99:9:9: ")
sleep ( )
arduinoUno.write ( (behavior) + ':999:999: ')

"

Invalid Input"
choice == 'q' choice == 'Q':

choice == 'q' choice == "'Q':

arduinoMega.write ('9:0:0:180:125:99:9:9: ")
arduinoMega.close ()

arduinoUno.write ('9:90:90: ")
arduinoUno.close ()

Loop =

Power Circuitry Diagrams:




/ Electronics

4 Circuit Terminal Block

Circuit Breaker

Toggle Power Switch

Figure 16 the Odroid C1 2 Model B shown in the image was replaced with a Odroid C1 for the final implementation.

Complete Sensor wiring diagram:

52|Page



