
Skippy
The Fire Fighting

Robot

Final Report
by

Warren L. Thornton, Jr
EEL 5666

April 25, 2000

2

Table of Contents
I. Abstract page 3

II. Executive Summary page 4

III. Introduction page 5

IV. Integrated Systems page 5

V. Mobile Platform page 6

VI. Actuation page 6

VII. Sensors page 7

VIII. Behaviors page 10

IX. Experimental Layout and Results page 12

X. Conclusion page 12

XI. Documentation page 14

XII. Appendix page 15

3

Abstract

Skippy is an autonomous fire fighting agent, with the ability to detect small fires through

IR sensors. Once a fire is detected, Skippy will avoid obstacles to reach the fire. Once

Skippy has located the fire he will proceed to use a fan attached to his back to eliminate

the threat.

4

 Executive Summary

Skippy is an autonomous agent designed to recognize and extinguish flames in his

environment. Skippy uses Infrared emitter, Sharp Cams, Infrared phototransistors, micro

switches, and a fan to accomplish his goal.

In order to successfully fight fires, Skippy must be able to navigate a room without being

hindered by obstacles. To accomplish this, Skippy uses the IR emitters to send out a 40

kHz IR signal that bounces off any objects in his path. The Sharp Cams then detect the

signal and produce a proportional voltage that is sent to the microprocessor. This allows

Skippy to determine the distance of the object and determine whether to turn or not. In

case the obstacle avoidance system fails, the back up obstacle detection system comes into

play. This involves ten micro switches (bump switches) that send a voltage to the

processor if Skippy run into an object. Skippy then turns in another direction and moves

away from the obstacle.

To detect and approach a flame, Skippy uses three IR phototransistors. One is place in

the front center and one on either side approximately 60 degrees from the center. Skippy

sets up threshold values for each on the sensors at initialization and uses these values

along with updated sensor reading to locate the flame. Once the fire is in range Skippy

uses his fan to blow out the fire.

This sensor suite along with a program I wrote in ICC11 allowed Skippy to autonomously

roam a room, recognize flames, and eliminate the threat.

5

Introduction

Background
Home fires continues to be a major problem in our modern world. Yearly they cause

millions of dollars in damage, emotional trauma, and take far too many lives. Often these

fires start small and are quite extinguishable. However, the lack of a proper early warning

system due to slackness of the homeowner often allows the preventable to happen.

Skippy promises to be the solution to this problem.

Scope
Skippy is intended to be a household agent. He will be stationed in a residence, perhaps

making his rounds throughout the night. Once a fire is detected, he will proceed to its

location and attempt to extinguish it. In the final version, Skippy will begin to alert the

household as he searches for the fire. In the unlikely event that our autonomous agent

cannot contain the fire the residents will have ample time to evacuate the home.

To perform the searching function will require infrared sensors and micro switches. Fire

detect will require a second type of infrared detector. Alerting the household residents

will require the use of an alarm system. The Motorola 6811 micro-controller directs the

entire system.

Integrated Systems

Description of System
The key to Skippy is the Motorola 68HC11 micro-controller in conjunction with the

ME11 expansion board. These serve as the brains of the system. The ME11 is a

Mekatronics product which allow access to 32K of RAM and the ability to easily use

6

output ports. The board is fairly small, but with the 32k RAM it should be quite able to

the programming the complex behaviors. The micro-controller also has 8 analog input

ports and the ability to expand this number with another circuit. I chose to simply use the

eight pins, however, future versions of Skippy may need the additional sensory expansion.

Mobile Platform

Scope
I chose to begin the project with the platform design used by Talrik. I chose this design

because I would need a platform large enough to carry all the sensors and also able to the

fire extinguishing system.

Specifications
The Talrik platform seemed to be a logical choice because of it tried and test physical

form. Also its size allows for upgrades and the ability to mount all the required sensors

and fire extinguisher system. I decided to mount the processor on top of the platform

rather than the bottom. This allows better access to the I/O ports and helped to balance

the platform.

Actuation

Scope
Skippy will be required to travel through a household environment. He will need to have

a high degree of freedom. The motors must have enough torque to travel on both carpet

and hard surfaces. Skippy will use two servos that are hacked the way that is taught in

IMDL to serve as dc motors. This involves removing the internal circuitry that limits the

7

amount of current to the servo. The process also involves removing a stopper on the gear

head that constricts the movement from a full 360 degrees.

The two motors and processor are powered by an eight-pack of batteries. I mounted this

pack on the bottom rear of the Talrik platform. This put more weigh on the back half of

the robot where the caster wheel is located. To power the fan that extinguishes fires, I

used a battery four-pack that I also mounted on the back.

Sensors

Scope
Skippy must perform several functions to be an effective weapon against fires. Thus he

uses a wide array of sensors to locate and fight fires. To avoid obstacles he will use

infrared emitters, IR sensors, and micro-switches. To detect fire he was origanlly to use

two types of sensors. First he will us a UV Tron from Hamamatsu to detect flames at a

distance. Next he will use photo transistors to pinpoint the flame in the room and target it

for extinguishing. In the final project, Skippy only used to the photo-transistors for flame

location.

Infrared Sensors and Emitters
In order to fight a fire the robot must be able to get to it with allowing minor obstacles to

get in its way. The infrared emitters are actually LED’s that project light in the direction

the robot is traveling. If an obstacle is in its path, the reflected light will be detect and the

robot will turn to avoid the obstacle.

Four IR LED’s are used in the sensor suite. Two in the front left and two in the front

right. Each group of two are wired in a series combination. Three hacked Sharp Cams

8

are used to detect the IR light reflected off surfaces in the robot’s path. I chose to use a

threshold of 117, so that the IR would not be overly sensitive and cause Skippy to move

away from the candle base.

Micro-Switches
As a backup system for the infrared, the micro-switches will act a bump detectors. They

will be mounted around the perimeter of the robot. If the robot runs into any obstacles the

switches are pressed. The 6811 will read the change in voltage and adjust position.

There are actually 10 micro-switches, five in the front and five in the back. The five front

switches are wired in parallel, making a continuous front bumper. If any one switch is

depressed then its as if all are depressed. The back bumper is constructed in a similar

manner. The front and back bumpers are actually in parallel with each other through

different resistance's, but into the same analog port of the microprocessor. The front

through a 10k resistor and the back through a 22k resistor. Thus the analog port will read

one of four values as seen in the table.

Position of Switches Analog Value

Open Switch 0

Front Depressed 78-79

Back Bumper Depressed 128-129

Both Bumpers Depressed 156

9

Flame Detection
In order to locate the fire, Skippy will use some type of buddy system. Heat detectors

alone will not accomplish the job. The robot may mistake the heat of a human as that of

the fire. Past projects have shown that a photo transistor (an infrared detector of 980 nm)

would detect the unique IR signature of flame. This system and a long range UV sensor

Skippy should quickly locate the flames. Unfortunately, I was not able to incorporate the

UV sensor into the final version of Skippy.

The circuit design I will implement for the photo transistors was created by Scott Jantz.

The anode is tied to 5V through a resistor and the cathode is connected to ground. The

signal is taken from the anode. If no flame is present, the signal read 255. As the flame

get closer, the signal drops. The use of three of these detectors (one in the middle and one

60 degrees off to each side) will allow Skippy to pinpoint a flame in the room. The

illustration below shows the circuit and the graph illustrates the distance from flame versus

signal.

10

The long range UV Tron from Hamamatsu sends a 10ms pulse went it senses a flame.

The frequency of the pulses increase as the flames nears. I was not able to add this sensor

to the final version of Skippy, however, he worked well without it. I do believe that the

UV would enhance Skippy's abilities and allow him to locate fires from further away.

Behaviors

Bumper Sensing/Obstacle Detection
In case of a failure in the infrared sight, Skippy will need to know if he has run into an

object. Therefore, if he runs into a wall, he will back up and take another sensor reading.

He will then turn in the direction that does not have an obstacle in the path and proceed

forward.

Obstacle Avoidance
To avoid obstacles is a basic requirement for an autonomous machine. Skippy will

randomly move about a room checking his sensors. Skippy is programmed with a two

special routines called look left and look right. If he sees an object with his left IR he will

jump to his turn right routine until he no longer sees that object, then he proceed forward

and again start looking for a flame. If he sees an object with his right IR he will jump to

his turn left routine and continue to turn left until he no longer sees an object..

11

Flame Detection

When Skippy is reset he initializes his IR photo-transistors by taking a reading of the

ambient light in a room and making this value his Flame Threshold. As Skippy roams

around he continually takes reading from the IR photo transistors. If this reading deviate

from the threshold by a significant about he will assume their is a flame and start to move

in that general direction.

Flame Search

Once Skippy detects a flame he jumps to a follow the flame routine. This routine

compares the reading from the two side sensors with that of the center. If the reading is

smaller than the threshold and smaller than the center, then Skippy turn into the direction

of the flame and proceeds towards the flame.

Extinguishing Flame

Once the center flame sensor reach a minimum value Skippy knows that he is in

extinguishing range. He then turns 180 degrees, so that his fan faces the fire. Then using

pin 3 of the D port, Skippy sends a signal that turn the fan on for 5 seconds. Then he

sends a signal that turns the fan off and waits for 2 seconds. Finally, Skippy does his

victory dance.

Celebration

Skippy's victory dance is actually a series of turns and wiggles. Skippy start's his dance by

wiggling which alternates turning left and right 5 times. He then turns 90 degrees and

wiggles again. Next, he turns 180 degrees and wiggles again. Finally, he turns 90 degrees

so that his fan faces the fire again, ready to find his next fire.

12

Experimental Layout and Results

After completing the construction of Skippy, I performed several test runs to determine

his capabilities. I discovered two major problems in his performance. First, the sensitivity

of the flame sensors varied with the type of resistor used. Lower values (less than 1k)

picked up the smallest changes in brightness, yet they were extremely flaky. Higher

resistor values (47k and up) gave nominal reading of 255, but it was hard to changes in the

values when Skippy approached a flame. I went with 22k resistors in each of the circuits,

this allowed for adequate sensitivity. I also put black tubing around the sensors to block

out as much ambient light as possible.

The second problem involved bright spots in the room due to sunlight through open

windows. The sunlight would fool Skippy into thinking that the bright spot in the room

was the location of the candle. Fortunately, the sunlight was not bright enough to trigger

the extinguisher system, but it cause Skippy to move in the wrong direction. To correct

this problem, I would initialize Skippy's sensors in the brightest spot in the room. He

would therefore setup thresholds that would not be easily affect by sunlight. Once I

corrected those problems Skippy was able to extinguish multiple fires successfully.

Conclusion

Although it was a challenge in designing and building Skippy, I'm glad that I've had the

experience. I would like to have incorporated the UV Tron sensor, so that Skippy could

detect a flame from across a room. I would have also liked to have used a CO2

13

extinguishing system, so that Skippy could have eliminated larger fires. Perhaps I'll be

able to add those missing pieces in the near future. However, working on Skippy has

taught me how to start a project with simply a goal and to see it to completion. I've also

been able to put together the knowledge I've gleaned from four years at the University of

Florida into and actual working autonomous agent. I would encourage other students to

accept the challenge and take IMDL, it's not an easy course, but it will bring you one step

closer to being a true engineer.

14

Documentation
Megatronic. www.megatronic.com Infrared emitters and detectors; servos, ME11 board, and Talrik
platform.

IMDL. www.mil.ufl.edu/IMDL. Information on servo and Sharp Cam hack.

Radio Shack. IR Photo-Transistors.

15

Appendix

Code for Skippy

/***

*

*Title: Skippy

*Programmer: Warren L. Thornton, Jr

*Date: April 7, 2000

*Version: 1

*

*Description

*

*

*

*Use hyperterm with the following settings:

*

*COM1, 9600 Baud, 8bits, No Parity, 1 Stop Bit, No Flow of control,

*VT100, Wraplines.

*

*

*

16

**

************/

/*************************************INCLUDES************************

*************************/

#include <tjpbase.h>

#include <stdio.h>

#include <motorme.h>

#include <hc11.h>

#include <mil.h>

/********************************End of

Includes***************************************/

/**********************************Constants*****************************

********************/

/*IR emitters */

#define IRE_OUT *(unsigned char*)(0xffb9)

/*Constants for driving all the 40kHz modulated IR emitters on when load ino

IRE_OUT*/

#define IRE_ALL_ON 0xff

17

/*Constants for turning all the 40kHz modulated IR Emitters off when loaded into

IRE_OUT*/

#define IRE_ALL_OFF 0x00

#define F_UPPERLIMIT 80

#define F_LOWERLIMIT 70

#define B_UPPERLIMIT 132

#define B_LOWERLIMIT 125

#define IRThreshold 115

#define Bump 0

#define Right_Eye 2

#define Left_Eye 1

#define Right_Flame 7

18

#define Center_Flame 6

#define Left_Flame 5

#define Maxspeed 100

#define Halfspeed 50

#define QuarterSpeed 25

/********************************End of

Constants*************************************/

int rspeed = 0;

int lspeed = 0;

int flame = 0;

int obstacle = 0;

unsigned int left = 0;

unsigned int right = 0;

int flame_on = 0;

int time = 750;

19

/*************************************Functions**************************

************/

void sensor_read(void);

void right_turn(void);

void left_turn(void);

void check_bumper(void);

void long_check_fire(void);

void follow_flame(void);

void short_check_fire(void);

void look_right(void);

void look_left(void);

void forward(void);

void reverse(void);

void stop(void);

void init_flame(void);

void turn_180(void);

void fan(void);

void turn_90(void);

void search(void);

void setdigport(void);

void leftt(void);

20

void rightt(void);

void shake(void);

void victory_dance(void);

/***********************************End of

Functions*********************************/

int Flame_ThresholdC = 255;

int Flame_ThresholdR = 255;

int Flame_ThresholdL = 255;

int Sensor_Data[8];

int Fire_DataL[10];

int Fire_DataC[10];

int Fire_DataR[10];

void main()

/**MAIN**************************

********/

{

init_analog();

printf("init_analog\n");

init_motorme();

printf("init_motorme\n");

21

init_clocktjp();

printf("init_clock\n");

init_flame();

setdigport();

IRE_OUT = IRE_ALL_ON; /* Turns on all the 40kHz modulated IR emitters */

wait(300); /* Allow IR detectors to reach final values */

/*Start SKIPPY moving forward when back bumper is pressed*/

sensor_read();

while(Sensor_Data[Bump] < B_LOWERLIMIT){

printf("Waiting to start\n");

write("Bumper Value ");

write_int(Sensor_Data[Bump]);

write("Left_Flame: ");

write_int(Sensor_Data[Left_Flame]);

write("Center Flame: ");

write_int(Sensor_Data[Center_Flame]);

write("Right Flame: ");

22

write_int(Sensor_Data[Right_Flame]);

sensor_read();

 }

 forward();

while(1){

check_bumper();

printf("Checking Bumper\n");

look_right();

printf("Looking Right\n");

look_left();

printf("LookingLeft\n");

follow_flame();

forward();

}

/**************************************End of

Main**************************************/

23

}

void sensor_read()

{ int i;

for (i=0; i < 8; i++) {

Sensor_Data[i] = analog(i);

}

}

void check_bumper()

{

sensor_read();

if ((Sensor_Data[Bump] > F_LOWERLIMIT) && (Sensor_Data[Bump] <

F_UPPERLIMIT)) {

stop();

wait(500);

reverse();

wait(2000);

look_right();

24

look_left();

}

if ((Sensor_Data[Bump] > B_LOWERLIMIT) && (Sensor_Data[Bump] <

B_UPPERLIMIT)) {

stop();

wait(500);

forward();

wait(2000);

look_right();

look_left();

}

}

void look_right()

{

sensor_read();

write("Right Eye Sees: ");

write_int(Sensor_Data[Right_Eye]);

25

if (Sensor_Data[Right_Eye] > IRThreshold) {

obstacle = 1;

left=1;

left_turn();

printf("Turning Left\n");

}

else left = 0;

}

void look_left()

{

sensor_read();

write("Left Eye Sees: ");

write_int(Sensor_Data[Left_Eye]);

if (Sensor_Data[Left_Eye] > IRThreshold) {

obstacle = 1;

right=1;

right_turn();

printf("Turning Right\n");

}

26

else right=0;

}

void right_turn() {

if(right == 1) {

rspeed = -Halfspeed;

lspeed = Halfspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

if (obstacle == 1){

sensor_read();

while(Sensor_Data[Left_Eye] > IRThreshold){

sensor_read();

if(Sensor_Data[Left_Eye] < IRThreshold){

forward();

right = 0;

obstacle = 0;

}

}

}

}

 if(flame == 1){

27

sensor_read();

while(Sensor_Data[Center_Flame] > Sensor_Data[Right_Flame]){

sensor_read();

if(Sensor_Data[Center_Flame] <

Sensor_Data[Right_Flame]){

forward();

right = 0;

flame = 0;

}

}

}

}

void left_turn() {

if (left == 1) {

rspeed = Halfspeed;

lspeed = -Halfspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

if(obstacle == 1){

sensor_read();

while(Sensor_Data[Right_Eye] > IRThreshold){

28

sensor_read();

if(Sensor_Data[Right_Eye] < IRThreshold){

forward();

left = 0;

obstacle = 0;

}

}

}

if(flame == 1){

sensor_read();

while((Sensor_Data[Center_Flame] > Sensor_Data[Left_Flame])

&& (Sensor_Data[Right_Flame] > Sensor_Data[Left_Flame])){

sensor_read();

if((Sensor_Data[Center_Flame] <

Sensor_Data[Left_Flame]) || (Sensor_Data[Right_Flame] < Sensor_Data[Left_Flame])){

forward();

left = 0;

flame = 0;

}

}

}

}

29

}

void forward() {

rspeed = Halfspeed;

lspeed = Halfspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

}

void reverse() {

rspeed = -Halfspeed;

lspeed = -Halfspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

}

void stop() {

rspeed = 0;

lspeed = 0;

motorme(RIGHT_MOTOR, rspeed);

30

motorme(LEFT_MOTOR, lspeed);

}

void follow_flame(){

sensor_read();

write("Right Flame: ");

write_int(Sensor_Data[Right_Flame]);

write("Center Flame: ");

write_int(Sensor_Data[Center_Flame]);

write("Left Flame: ");

write_int(Sensor_Data[Left_Flame]);

if((Sensor_Data[Right_Flame] < Sensor_Data[Center_Flame]) &&

(Sensor_Data[Right_Flame] < Flame_ThresholdR)){

right = 1;

flame = 1;

/*printf("Following flame right\n");

wait(1000);*/

right_turn();

}

31

if((Sensor_Data[Left_Flame] < Sensor_Data[Center_Flame]) &&

(Sensor_Data[Left_Flame] < Flame_ThresholdL)){

left = 1;

flame = 1;

/*printf("Following Flame left\n");

wait(1000);*/

left_turn();

}

 if((Sensor_Data[Center_Flame] < Sensor_Data[Left_Flame]) &&

(Sensor_Data[Center_Flame] < Sensor_Data[Right_Flame]) &&

(Sensor_Data[Center_Flame] < Flame_ThresholdC)){

forward();

/*printf("Going forward\n");

wait(1000);*/

if(Sensor_Data[Center_Flame] <= 85){

stop();

wait(1000);

reverse();

wait(300);

stop();

32

wait(500);

turn_180();

stop();

write_int(Sensor_Data[Center_Flame]);

write("Fan On");

fan();

victory_dance();

flame_on = 0;

stop();

}

}

}

/*void short_check_fire() {

int j, k, sumL=0, sumC=0, sumR=0, averageL, averageC, averageR;

for(j=0; j < 11; j++){

Fire_DataL[j]=analog(Left_Flame);

Fire_DataC[j]=analog(Center_Flame);

Fire_DataR[j]=analog(Right_Flame);

}

33

for(k=0; k < 11; k++){

sumL += Fire_DataL[k];

sumC += Fire_DataC[k];

sumR += Fire_DataR[k];

}

 Sensor_Data[Left_Flame] = (sumL/10);

 Sensor_Data[Center_Flame] = (sumC/10);

 Sensor_Data[Right_Flame] = (sumR/10);

}*/

void init_flame(){

sensor_read();

Flame_ThresholdR = (analog(Right_Flame)-8);

Flame_ThresholdC = (analog(Center_Flame)-8);

Flame_ThresholdL = (analog(Left_Flame)-8);

write("Left_Flame: ");

write_int(Flame_ThresholdL);

write("Center Flame: ");

write_int(Flame_ThresholdC);

34

write("Right Flame: ");

write_int(Flame_ThresholdR);

}

void turn_180(){

rspeed = -Maxspeed;

lspeed = Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

wait(900);

stop();

}

void fan(){

SET_BIT(PORTD, 0x08); /* turns fan on (set bit 3 to 5 volts) */

wait(5000);

write("Turning off Fan");

 CLEAR_BIT(PORTD, 0x08); /* turns fan off (set bit 3 back to 0

volt) */

wait(1500);

}

void search(){

35

forward();

wait(time);

stop();

sensor_read();

if((Sensor_Data[Center_Flame] >= Flame_ThresholdC) &&

(Sensor_Data[Right_Flame] >= Flame_ThresholdR) && (Sensor_Data[Left_Flame] >=

Flame_ThresholdL)){

turn_90;

time += 750;

}

else {

flame_on=1;

while(flame_on == 1){

 check_bumper();

 look_left();

 look_right();

 follow_flame();

}

}

36

}

void turn_90(){

rspeed = -Maxspeed;

lspeed = Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

wait(450);

stop();

}

void setdigport(){

 SET_BIT(DDRD, 0x08); /* set PortD bit 3 as dig output */

 CLEAR_BIT(PORTD, 0x08); /* set PortD bit 3 to 0 (0 volts) */

}

void rightt(){

rspeed = -Maxspeed;

lspeed = Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

37

wait(50);

rspeed = Maxspeed;

lspeed = -Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

wait(50);

stop();

}

void leftt(){

rspeed = Maxspeed;

lspeed = -Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

wait(50);

rspeed = -Maxspeed;

lspeed = Maxspeed;

motorme(RIGHT_MOTOR, rspeed);

motorme(LEFT_MOTOR, lspeed);

wait(50);

stop();

}

38

void shake(){

int a;

for(a = 0; a < 5; a++){

 rightt();

leftt();

}

}

void victory_dance(){

shake();

turn_90();

shake();

turn_180();

shake();

turn_90();

shake();

stop();

wait(3000);

}

