

Sensor Report

EEL 5666
Intelligent Machine Design Lab

Sara Keen

March 17, 2005

 2

Table of Contents

Introduction………………………………………………………….. 3

Infrared Sensors………………………………………………….. 3

Ultrasonic Sensors………………………………………………. 5

Bump Switches……………………………………………………….. 8

RF………………………..…………………………………………………. 9

Conclusion……………………………………………………………. 11

Sources for parts………………………………………………… 12

 3

Introduction

My two robots, Zack and A.C. will be equipped with numerous sensors that will enable
them to perform intelligently in any environment. Ultimately all of the sensors working
together will permit both robots to “see” and understand what is happening around them
and their partner. This report discusses the four sensors I am using and their purposes.

Infrared Sensors

I am using 4 Sharp GP2D12 Infrared distance sensors to employ obstacle avoidance.
Each sensor requires a JST three pin connector to be interfaced with the microcontroller.

Theory of Operation

While the GP2D12 is connected to ground and power the sensor takes continuous
distance readings and outputs the result as an analog voltage. I connected the GP2D12s
directly to the pins for the analog-to-digital converter on my microcontroller to obtain
digital results. The sensors have a range of approximately 4 to 30 inches. Following is a
chart showing readings from all four sensors at various distances.

 4

 Dist (in) IR1 IR2 IR3 IR4

1 190 188 172 172
2 351 328 347 332
3 495 485 517 505
4 508 456 456 511
5 427 380 388 403
6 333 317 328 320
7 277 281 291 284
8 246 251 260 256
9 223 226 234 233

10 205 208 214 214
11 196 196 200 198
12 182 180 182 178
13 162 161 164 164
14 151 150 157 155
15 141 146 149 144
16 134 133 142 140
17 125 130 133 132
18 122 126 125 123
19 126 119 121 115
20 122 113 122 111
21 118 106 109 107
22 113 101 105 103
23 109 98 102 96
24 102 94 97 92

Software Implementation

It is obvious from the above chart that all of the sensors are nearly identical, therefore my
code need not acknowledge which sensor the robot is reading from. At extremely close
distances readings tend to be inaccurate, and my code accounts for this by beginning to
turn when an obstacle is about ten inches away. I used the main clock to create interrupts
every millisecond to take readings from the sensors. A polling routine can not count the
time before an infrared signal is echoed back because any interrupt could pause the
polling routine and render all of the readings. Using timer interrupts the analog to digital
converter takes five readings every millisecond and returns their average. The following
code shows the timer interrupt initializations and ADC calculations.

void init_timer0(void)
{
 TCCR0 = 0;
 TIFR |= BV(OCIE0)|BV(TOIE0);

 5

 TIMSK |= BV(TOIE0)|BV(OCIE0); /* enable output compare interrupt */
 TCCR0 = BV(WGM01)|BV(CS02)|BV(CS00); /* CTC, prescale = 128 */
 TCNT0 = 0;
 OCR0 = OCR_1MS; /* match in aprox 1 ms */
}

uint16_t adc_readn(uint8_t channel, uint8_t n)
{
 uint16_t t;
 uint8_t i;

 adc_chsel(channel);
 adc_start();
 adc_wait();
 adc_start();

 /* sample selected channel n times, take the average */
 t = 0;
 for (i=0; i<n; i++) {
 adc_wait();
 t += adc_read();
 adc_start();
 }

Using the constant readings from the GP2D12s it was easy to implement an obstacle
avoidance routine. Here is an example of how the robot would search for and react to an
obstacle on the left.

while (1) {

 //read left sensor
 irleft = adc_readn(2, 5); /* sample channel 5 times, take average */

//read right sensor
 irright = adc_readn(3, 5); /* sample channel 5 times, take average */

 if ((irleft > 200) & (irright < 200)) {
 if (irflag != 1) { //if this is the first detection

 clr_lcd();
 printf("Obstacle on left");

 irflag = 1;
 SERVO5 = SERVO_FOR4; // left servo faster than
 SERVO6 = SERVO_FOR2; // right servo
 }

 6

 }

}

As my robots are small and will not be moving at high speeds, only two sensors are
required for each robot. The sensors are placed on the front corners of the platform
facing approximately 20° outward. This allows plenty of warning before collision
occurs.

Ultrasonic Sensors

Both robots will be equipped with two Devantech SRF04 Ultrasonic rangefinders to
position themselves in front of objects they will pick up. With two sensors that have a
known angle between them a robot can easily determine perpendicular distance.

Theory of Operation

These sensors can be controlled by using the timers and normal i/o pins on the
microcontroller. To begin a reading a signal to the trigger input of the SRF04 must be
held high for at least 10 us. At the falling edge of the trigger the ultrasonic ping is
emitted. After about 100us the microcontroller begins listening for the echo using an
input pin. The timing diagram of the SRF04 is shown below.

 7

 The table below contains readings from all four sensors. Note that the readings are not
representative of distance, they simply represent the number of delays that occurred
before an echo was received. To detect nearby objects the robots look for readings less
than a certain value.

Dist (in) 1 2 3 4

1 15 17 15 15
1.375 14 16 18 14
1.625 17 18 20 17

2 21 24 22 21
2.375 22 25 26 22
2.625 26 29 33 26

3 30 34 38 30
3.375 34 39 37 34
3.625 35 41 41 35

4 43 50 47 43
4.375 47 53 51 47
4.625 50 54 55 50

5 54 57 59 54
5.375 63 62 64 63
5.625 64 65 66 64

6 73 69 70 73
6.375 75 74 77 75
6.625 79 77 79 79

7 84 81 84 84
7.375 90 85 89 90
7.625 89 88 93 89

8 94 93 94 94
8.375 98 98 101 98
8.625 102 107 106 102

9 106 105 109 106
10 118 117 121 118
11 129 129 131 129
12 144 141 143 144
13 152 151 157 152
14 166 167 171 166
15 179 177 179 179

As with the GP2D12 sensors, all four are very similar and can be programmed
identically.

Software Implementation

The time it takes to receive the echo is used to calculate distance. I used the following
code to take measurements.

 8

int timeout = 50;

 while(((PIND&0x02) == 0x02) && timeout) // port D pin1 is where echo is read
 { // when echo is low reading is complete

 left_dist++; //count # delays
 delay_10us(1);
timeout--; //timeout makes sure loop ends
 }

The timeout ensures that if an error occurs and the echo pulse never goes low the robot
will not be trapped in an endless loop. Another factor taken into consideration was that
the accuracy of the distance readings are dependent upon on the above loop not being
interrupted. To prevent this I programmed a timer interrupt every millisecond to send a
ping and wait for a response using the loop above. Below I have included a picture of my
platform while the positioning of the GP2D12s and SRF04s was being tested. All of the
sensors had to be precisely angled for the behaviors be effective.

Bump Switches

The simplest sensor I will use is a bump switch. The purpose of the switches will be to
inform the robot when the inside of its “hand” is touching an object.

Theory of Operation

Using the sonar detectors the robot will position itself a predetermined distance away
from the object it wants to lift. It will then open its hand and move forward until the

 9

bump switch is depressed. When this happens the value of the input pin connected to the
bump switch will change and the robot knows to stop moving. At this point the robot can
grasp and lift the object. The bump switches should not be necessary, as sonar is
extremely accurate for distance calculation. They are a preventative measure and act as
error detection in my behavior routines.

Software Implementation

The simple program shown here demonstrates to use of bump switches.

while(bump != pushed)
{
SERVO5 = SERVO_FOR1;
SERVO6 = SERVO_FOR1; //robot slowly moves forward
}
SERVO5 = SERVO_STOP
SERVO6 = SERVO_STOP

lift_arm();

RF

The robots will communicate using AM-RTD-315 transceivers. As canbe inferred from
their name, these transceivers use amplitude modulation to communicate at a frequency
of 315 MHz. The robots only need to send each other messages when they find things,
but to

Theory of Operation

The AM-RTD-315 uses the TX and RX pins to send and receive serial data. To put data
in serial format I used UART1 of the microcontroller and connected the input and output
directly to the transceiver. When the robot has data to send it can turn off the receiver
using pin25 to achieve half-duplex communication.

 10

Standard RF protocol dictates that a quarter-wavelength antenna be used, which is 8.91
in. in this case. Encoding is not necessary to send or receive data, but can ensure reliable
transmission. This can be easily achieved with an encoder chip or done in software.
Manchester encoding is the most simple and most widely used. I am using a parity bit as
my only form of error checking to send raw data. This is because the robots will never be
very far apart and messages can be sent multiple times. Without encoding the data rate is
about 10kbps

The transceivers are mounted on the back of the robot with the antenna as far as possible
from the batteries. This picture shows how the antenna is connected to the back of both
robots.

 11

Software Implementation

The following code shows the UART1 initializations.
int init_uart1(void)
{
/* enable UART1 */
 UBRR1H = (BAUD_RR >> 8) & 0xff;
 UBRR1L = BAUD_RR & 0xff;

 UCSR1B = ((1<<RXEN) | (1<<TXEN) | (RXCIE1)); //ENABLE TX, RX AND RX
 //INTERRUPT
 UCSR1C = ((UPM11) | (UPM10) | (UCSZ11) | (UCSZ10));//SET FOR 8 BIT CHAR,

// ODD PARITY
}

The RX interrupt was enabled to allow the robots to go about their business until they
receive a message rather than use polling. When a robot needs to transmit data they can
use the following routine. The receiver is turned off in the beginning and the enables
again at the end so as not to interrupt transmission.

void USART1_TX(unsigned char DATA_TX)
{
PORTC = (PORTC & 0xFE);
 while(!(UCSR1A & (1<<UDRE)))
 ; // WAIT FOR EMPTY TX BUFEFER
 UDR1 = DATA_TX; //PUT DATA IN REGISTER
 PORTC = (PORTC | 0x01);
}

One problem I have had with RF is that it must send data for about 30ms before the other
end can begin receiving without errors. One solution to this problem is to send about
30ms of garbage at the beginning of every transmission. This significantly decreases the
data rate, but as that is not my priority I think that this is a sufficient solution.

Conclusion

Using all of the sensors I have presented in this paper my robots will be able to avoid
running into walls, search for and align themselves with various objects, know when they
are holding an object, and communicate with each other. The remaining task is to
integrate all of the robots abilities together into behaviors. By building on the programs I
already have written, this goal can be easily accomplished.

 12

Sources for Parts

Abacom Technologies
www.abacom-tech.com

AM-RTD-315 Transceiver modules

Mark III Robot Store
MarkIII@junjun.org

Sharp GP2D12 Infrared Sensors
3 pin JST cables

Acroname
www.acroname.com

Devantech SRF04 Ultrasonic Sensors

Hobby Shack
www.shopatron.com

Hitec HS-422 Standard Deluxe Servos

Servo City
www.servocity.com

Hitec HS-81MG Servo

