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Abstract 
This robot is designed to test the practicality of constructing an 

autonomous lawn care system. It will also allow experimentation with several 
technologies and help to investigate their practical applications.  The first 
prototype of this platform will use an RF emitting wire as a containment field, 
random walk programming to control obstacle and field limit boundary reactions, 
and a linear motor controller implemented in software.  The lawnmower will be an 
autonomous platform with the integral safety feature of obstacle avoidance.  The 
robot is a robust outdoor platform designed to operate continuously for several 
hours.  Future versions will be weatherproofed and will include an automatic 
recharging system.  The sensor package includes an ultrasound sensor for 
obstacle avoidance, one RF field strength detector, and one digital compass to 
permit plow navigation programming. 
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Executive Summary 
 
 The robot completed this semester was built to integrate several 

technologies into a robust platform designed to meet a practical need.  The robot 

was designed around a robust frame. The frame was made from aluminum plate 

welded together.  The robot is powered by high torque DC brushless motors.  

The cutting motor is a motor and cutting head taken from an electric weed 

trimmer. The robot’s front wheels are mounted in a way that permits a zero 

turning radius.  The robots maneuvers by reversing the direction of one of the 

motors.   

 

The robot’s processor is the Atmel 128 chip implemented in the BD Micro Mavric 

IIB board.  The robot’s sensor suite consists of an ultrasound, digital compass, 

and an RF field detector.  The robot uses a software implemented linear control 

scheme to change motor speeds.  The programming for the robot is very 

simplistic and reliable.   

 

The RF field detectors are modified electronic dog collars used as training 

devices for pets.  The detectors were supplied by Radio Systems Corporation.  

The sensors were modified by removing a large voltage transformer from the 

circuit.  This reduced the output voltage of the dog collar to a reasonable 5 volts.  

There is a separate transmitter which connects to a wire laid at the boundary of 

the yard.   

 



 5 

Introduction 

In the last several years, autonomous platforms have crept into consumer’s lives 

to handle menial, time intensive tasks.  Several of these platforms have been 

designed for lawn care. However, the cost of these robot far outweighs the cost 

of having the lawn care handled by an external company.  The goal of this project 

is to develop a platform that is completely autonomous, has the safety features 

that consumers expect (and the liability issues in the USA demands), and has a 

final cost under $500. 

 

In the past, several autonomous lawnmowers have been created at the 

University of Florida. The earliest attempt was named the Lawn Nibbler [1] and 

was built around an electric weed trimming platform.  This robot used an 

electronic pet fence in order to stay within the required boundaries.  It also 

proposed and demonstrated a simple navigation system (gPS, ground 

positioning system) using triangulation of ultrasonic pulses emitting from several 

“satellites” placed in the yard.  In 1999, Chandler and Meiszer [2] created the 

Lawn Shark using a modified Toro electric push mower.  This mower used two 

ultrasonic sensors (sonar) and an improved gPS system.  Meiszer [3] explored 

the use of genetic algorithms to optimal place the satellites for the gPS system.  

Chandler later explored the use of textural analysis for intelligent mowing in [4] 

and [5].  The robot described here will begin the process of improving on these 

previous designs by creating a robust and reliable platform that will adequately 
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and intelligently cover a consumer’s yard, while also maintain safe and 

continuous operation.  This platform will also be used for further research. 

 

The discussion of this robot will begin with a description of the integrated system. 

In this section will introduce how the systems operate and interact with each 

other. Block diagrams of the sensor package are also displayed. The next 

section will describe the mechanical design of the platform. The design 

specifications are and relevant calculations are shown in this section.  CAD 

drawings and pictures of the robust design of the lawn care system are 

displayed.  The drive mechanisms and specifications are also covered in some 

detail. The next section includes an in-depth look at the sensors used in the 

present version of the robot, and discusses the design, theory, motivation, 

application, and the performance results.  The last section describes the software 

that integrates the sensors and actuators with the required behaviors to enable 

the robot to meet all the performance goals. 

 

Integrated System 

Figure 1 shows a block diagram of the systems and subsystems in this lawn care 

robot. The system is centered on the BD Micro Mavric IIB microcontroller board. 

All the sensor outputs are inputs to this device and all the command functions are 

generated by this microcontroller board. The Mavric IIB is powered by the 

Atmega 128 14.75 MHz microcontroller/microprocessor and has 128K RAM in a 

very compact package. The microprocessor board is very powerful and more 



 7 

 
Figure 1.  Preliminary Block Diagram of 

subsystems 

than capable of handling this robot’s present purpose and many of the future 

upgrades presently envisioned. The Atmega AVR format also has many 

enthusiasts and there is a great deal of information available online posted by 

experienced users. The BD Micro has built in capabilities for controlling six pulse 

width modulation (PWM) outputs to for motor or servo control. The two drive 

motors on the robot are controlled by a PWM signal sent from the 

microprocessor board to motor drivers contained within the motor assemblies. 

Two sensors are connected to the I2C connections on the board. Several I/O 

ports on this board allow other sensors and an LCD display to be readily 

integrated into the design  

The values from the boundary 

sensors (an electric pet fence) are 

analyzed using a fuzzy logic 

algorithm.  When, for example, a 

boundary is found, the PWM 

signals to one or both of the drive 

motors are modified to turn the 

platform away from the boundary. The motor has onboard circuitry that controls 

speed and direction of the drive motor. The robot uses and LCD display driven by 

the microprocessor and mounted on the upper surface of the platform to show 

motor speeds and directions, the distance to an obstacle determined by the 

ultrasound sensor, and bearing determined by the compass. 
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Mobile Platform 

The platform (shown in Figure 2) was designed to support 30 pounds over 20 

inches without significant deflection [6].  The platform is made of aluminum, and  

 

has two levels. The upper 

level is made of 1/16” sheet 

aluminum and supports the 

sensors and the 

microcontroller board. The 

lower level is made of a 1/4” 

aluminum plate which 

supports the drive motors, the cutting motors, and the batteries. The upper level 

is connected to the lower level by 4 supports visible in Figure 3.  The supports 

are constructed from 3/4” square aluminum bars, with a wall thickness of 1/8”. 

The upper level supports, motor mounts, and front wheel supports are welded 

into place as shown in Figure 4.  Figure 5 shows the fully assembled platform.  

 

Figure 2.  Pro Engineer Model of Robot 

 

 
Figure 3.  Lower Level of Robot 

 
Figure 4.   The Frame of the Robot 
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The platform is supported on four 6-inch diameter wheels.  The platform currently 

has only one cutting height, however improvements in the design are being made 

to permit a range of cutting heights.    

 

Actuation 

The robot is propelled by two 

motors, each providing 300 oz-in of 

torque. The force required to 

commence motion [6] of the 

lawnmower is determined by the equation 

F = u x N  ,         EQN. 1 

where F is the required force, u is the coefficient of friction between rubber and 

grass (~0.35) [7], and N is the normal force at each wheel. The normal force was 

set at 10 lbs to give a factor of reliability, resulting in a required force of 3.5 lbs. 

The required torque is determined by the equation 

 T = r x F  ,               EQN. 2 

where T is the torque required, r is the radius of the wheels (3 inches), and F is 

the force (from Eqn 1). The torque required at each motor is 10.5 in-lbs. The 

motors selected were the Pittman N2300 Series Brushless Motors, with a torque 

rating of 18.75 in-lbs (see figure 6). The motors are connected to the wheels by a 

shaft. The shaft is firmly attached to the motor by setscrews and the wheel is 

held in place by cotter pins. The robot maneuvers by changing the speed and 

 
Figure 5.  Completed Robot 
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direction of each of the two drive motors. These 

parameters are controlled by two PWM signals 

from the Mavric board sent to control boards 

integrated in the motor assemblies.   

The control board used is the Pittman 2311 

Onboard Feedback and Control Board. The 

controller uses 5 wires as inputs and 2 wires as 

outputs. The controller inputs power, direction, and speed. The speed is varied 

by a PWM signal. The range is 2 KHz to 10 KHz, and the signal is a 5 volt pulse 

with a duty cycle between 0 and 100% pulse width. The wide range of PWM 

frequencies made the process of integrating the drive motor with the Atmel 128’s 

internal clock very easy. A pre-scalar is used to adjust the internal clock to a 

frequency suitable for PWM generation. Equation 3 [8] shows the formula 

required to calculate the pre-scalar value used with the PWM control, where fclk I/O 

is the clock speed of the microprocessor, fOCnxPWM is the PWM signal generated, 

N is the prescaler, and TOP is the maximum number in the timer’s counter. Since 

this is an 8 bit timer, the value for TOP is 255.  An 8 bit timer was used as 

opposed to the available 16 bit timer because the resolution in an 8 bit timer is 

more than adequate for the design purpose.  The current design allows 256 

possible motor speeds.  A 16 bit timer would allow 65,536 possible motor 

speeds.   

 

                 EQN. 3 

 
Figure 6.  Motor with Internal 

Control Board Visible 



 11 

 

Using this equation and pre-scalar of 

8, a 7.2 KHz signal is generated. The 

PWM signal is made by setting the 

OCR1AL and OCR1BL registers to a 

certain value. OCR1AL controls the 

right motor, while OCR1BL controls 

the left motor. The timer continuously counts from 0 to 255 and then resets itself 

to 0. When the timer matches the value set in OCR1AL or OCR1BL, the output 

pin on the Mavric board which controls the motors’ PWM signal is set to +5 volts. 

When the timer returns to zero, the output pin is set to 0 volts. This continuous 

pattern creates a square wave which comprises the PWM signal. The lower the 

value in OCR1AL or OCR1BL is, the sooner the square wave starts, and the 

longer the square wave lasts. This in turn increases the output of the motor. At 

extreme values near 255 the motor does not recognize the short spike and the 

opposite effect is produced. The control board also has a difficult time with the 

signal if it is too close to zero.  The motors are controlled in the software by a 

simple while loop with several if statements.  Short delays are built into the 

function to smooth out the motor reaction. The result is a smooth linear reaction 

to a motor speed change (Figure 6). A sample of the motor driver code is shown 

in Figure 7   

Motor Response
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Figure 6.  Plot of Linear Motor Response 
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Figure 8.  Front Wheel Mounting 

 

The front wheels are mounted in a 

fashion that permits a zero turning 

radius (see Figure 8. The cutting 

motor is a 12 Volt DC motor with a 

weed trimmer head taken from a cordless weed trimmer. Currently it is turned on 

and off through the microprocessor board in response to sensor readings.  The 

drive and cutting motors will be powered by a 12 Volt, 7 Amp-hour lead acid 

battery mounted on the lower platform.  The drive motors draw .25 Amps each, 

giving the motors a projected run time of several hours.   

 

 

Sensors 

The lawnmower’s sensors are 

designed to ensure safe and 

efficient operation of the robot. The 

robot has a Devantech SRF-08 Ultrasound Sensor for obstacle avoidance. The 

sensor is mounted in the front facing forward with no obstructions. The 

performance data for this sensor is shown in Figure 9 The range is accurate from 

30 inches to 1 inch.  The sonar will only detect large objects beyond 36 inches.  

For redundancy, the robot has several bump sensors mounted on the front and 

sides to detect collisions. The robot also has a digital compass which can be 

used for a rudimentary plow navigation pattern. The compass chosen was the 

void motor(int dirl, int speedl….){ 
    while(speed_val_l != speedl || 
speed_val_r != speedr….  
 …… 
 if(speed_val_l > speedl){ 
                OCR1BL = OCR1BL +1; 
                speed_val_l--;} 

……. 
 delay_ms(5); 

 
Figure 7.  Sample Code for Motor 

Drivers 
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Devantech CMPS-03 Digital Compass. Both of the Devantech sensors are 

connected with an I2C connection to the microprocessor board. There are also 

photo-resistors mounted in the cutting section to detect light.  This is a safety 

feature to prevent unsafe lifting while the cutting motor is on.   

 

 

 

 

 

 

  

 

The boundary is controlled by an electronic pet fence, supplied by Radio 

Systems Corporation. The system includes a transmitter with a boundary wire, 

and separate collar unit.  

 

The transmitter sends a 10 KHz sine wave over the boundary wire. When the 

collar is within range, it emits an electric shock.  The unit was opened up, and the 

transformer that generates the large voltage shock was removed from the circuit. 

The output signal is taken across the gap where the transformer was removed. 

The output is a constant 5 volt signal when it is activated, and 0 volts when off. 

One sensor is currently mounted and implemented. Another sensor is in the 

development process. When an additional sensor is mounted, the robot will not 

Ultrasound Sensor Performance
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Figure 9.  Sonar Performance Data 
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only know that it reached the boundary, but also which side hit the boundary and 

the approximate direction that the robot reached the boundary. 

 

Behaviors 

The robot uses random travel and reactions for its behavior. The robot travels in 

its initial start heading until an obstacle or the boundary is reached. When either 

of these circumstances occurs, the robot reverses both motors, turns to a 

random direction greater than 90 degrees and less than 270 degrees. The robot 

then continues this until another obstacle is hit or the boundary is reached and 

continues in this pattern until statistically, the yard has been covered. In the 

future, the robot will use the RF boundary sensors to “wall follow” with the 

boundary, then use the compass to complete a plow pattern. The behavior is 

implemented by running if statements in the main program loop, which compare 

the value of both the ultrasound and the input pins of the RF field detector 

sensor. A more efficient method using interrupts is being implemented. 
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Cost 

The total replacement cost for this robot is just under $700 (as detailed in Table 1).  In the 

above bill of materials, the items with a star were donated by companies or were 

previously owned by the Machine Intelligence Lab. The actual cost to build this robot 

was $397. It is my belief that the 

actual robot can still achieve its 

goal of a production cost of less 

than $500. I believe that if this 

robot were to be mass produced, an 

agreement with Radio Systems 

Corporation could be made, or 

circuitry could be designed to 

achieve a similar goal.  

 

4. Conclusion 

This paper was written to 

demonstrate the feasibility of 

constructing an autonomous lawn care system for small applications and further 

research.  Presently, this system only has the capabilities of a safe an 

autonomous lawnmower, similar to other robot lawnmowers now available for 

purchase.  Past research has shown that a combination of plow cutting, wall-

following and random travel based on the parameters of a given yard will be 

necessary to cover the yard efficiently (without full knowledge of the yard layout).  

Budget  Qnty Price Total 
BD Micro Board 1 $100.00 $100.00 

Compass  1 $ 50.00 $ 50.00 

Ultrasound 1 $ 50.00 $ 50.00 

Photoresistors 4 $  2.50 $ 10.00 
Petsafe Radio 
Fence* 1 $254.95 $254.95 

Cutting Motor 1 $ 30.00 $ 30.00 

Battery*  1 $ 29.00 $ 29.00 

Batteries  1 $ 10.00 $ 10.00 

Setscrews 2 $  1.00 $  2.00 

Wheels  4 $  6.00 $ 24.00 

Bearings  2 $  9.09 $ 18.18 

Cotter Pins 3 $  1.50 $  4.50 

Screws  1 $  5.00 $  5.00 

Al Plate  1 $ 44.04 $ 44.04 

Al Sheet*  1 $ 12.94 $ 12.94 

Al Rod  1 $  4.88 $  4.88 

Al Wheel fork 2 $  7.00 $ 14.00 

Al Square Bar 2 $ 13.21 $ 26.42 

Al Motor Mounts 1 $  4.00 $  4.00 

     

Total    $693.91 

Table 1.  Cost of Completed Robot 
* denotes donated items 
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Future designs may include a navigation system that permits even more efficient 

coverage.   

5. Future Work 

Work will be continued on this robot or a second prototype during the summer of 

2006.  During the next phase of the project, a recharging system will be added to 

the lawn care system.  Other mechanical additions adjustments for cutting height, 

an additional motor and cutter for edging and a camera mounted on the front.  

The camera will be used to reproduce some of Chandler’s work to detect the 

difference between cut and uncut grass.  This will allow us to more efficiently 

determine a cutting pattern in open areas.  The camera will also be used to 

determine the boundary between the sidewalk (or road) and the grass.  We also 

intend to use the camera to detect the presence of weeds, grass in need of 

fertilizer and ant hills.  Once these turf problems are found, the lawn care robot 

will dispense the appropriate chemical treatment. 
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Code 
 
/***************************************************** 
This program was produced by the 
CodeWizardAVR V1.24.7d Evaluation 
Automatic Program Generator 
© Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l. 
http://www.hpinfotech.com 
e-mail:office@hpinfotech.com 
 
Project :  
Version :  
Date    : 4/20/2006 
Author  : Freeware, for evaluation and non-commercial use only 
Company :  
Comments:  
 
 
Chip type           : ATmega128 
Program type        : Application 
Clock frequency     : 14.745600 MHz 
Memory model        : Small 
External SRAM size  : 0 
Data Stack size     : 1024 
*****************************************************/ 
 
#include <mega128.h> 
#include <delay.h> 
 
 
#include <stdlib.h> 
// #include <stdio.h> 
 
// I2C Bus functions 
#asm 
   .equ __i2c_port=0x12 ;PORTD 
   .equ __sda_bit=1 
   .equ __scl_bit=0 
#endasm 
#include <i2c.h> 
 
// Alphanumeric LCD Module functions 
#asm 
   .equ __lcd_port=0x1B ;PORTA 
#endasm 
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#include <lcd.h> 
 
#define  _BV(bit)   (1 << (bit)) 
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) 
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) 
 
#define ADC_VREF_TYPE 0x00 
 
// Declare your global variables here 
 
 
void motor(int, int, int, int); 
// void obstacle(void); 
// void turn(int); 
void pingE0(void); 
void compassC0(void); 
void shock(void); 
// void plow(void); 
void obstacle(void); 
void read_zapper(void); 
// void bearing_avg(void); 
// void strtwy(void); 
 
int speed_val_l = 230;  
int speed_val_r = 230;  
 
int dir_val_l = 1;  
int dir_val_r = 1; 
 
unsigned int zapper_value=0; 
unsigned int heading=0; 
unsigned int desired_dir=0; 
 
// int desired_dir; 
// int heading;       
 
// int i; 
// int j; 
// int t; 
int rndm; 
 
unsigned char rangeE0; 
unsigned char bearingC0; 
 
char str[10]; 
char stra[10]; 
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char strb[10]; 
char speedle[10]; 
char speedri[10]; 
 
 
void main(void) 
{ 
// Declare your local variables here 
 
// Input/Output Ports initialization 
// Port A initialization    
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out 
Func0=Out  
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0 
// 
//  LCD Display 
//  
PORTA=0x00; 
DDRA=0xFF; 
 
// Port B initialization 
// Func7=In Func6=Out Func5=Out Func4=In Func3=Out Func2=Out Func1=In 
Func0=In  
// State7=T State6=0 State5=0 State4=T State3=0 State2=0 State1=T State0=T 
//  
// Pins 5 and 6 are PWM output 
// Pins 2 and 3 and Direction Outputs to motors 
// Pin 1 is input of shock sensor 
// 
PORTB=0x00; 
DDRB=0x6C; 
 
// Port C initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=Out  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=0  
PORTC=0x00; 
DDRC=0x01; 
 
// Port D initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T 
// 
// Pin 1 is SDA 
// Pin 0 is SCL 
//  
PORTD=0x00; 



 20 

DDRD=0x00; 
 
// Port E initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T  
PORTE=0x00; 
DDRE=0x00; 
 
// Port F initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T  
PORTF=0x00; 
DDRF=0x00; 
 
// Port G initialization 
// Func4=In Func3=In Func2=In Func1=In Func0=In  
// State4=T State3=T State2=T State1=T State0=T  
PORTG=0x00; 
DDRG=0x00; 
 
// Timer/Counter 0 initialization 
// Clock source: System Clock 
// Clock value: Timer 0 Stopped 
// Mode: Normal top=FFh 
// OC0 output: Disconnected 
ASSR=0x00; 
TCCR0=0x00; 
TCNT0=0x00; 
OCR0=0x00; 
 
// Timer/Counter 1 initialization 
// Clock source: System Clock 
// Clock value: 1843.200 kHz   <-- Frequency for 7.2 Khz Output 
// Mode: Fast PWM top=00FFh 
// OC1A output: Non-Inv. 
// OC1B output: Non-Inv. 
// OC1C output: Discon. 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
// Timer 1 Overflow Interrupt: Off 
// Input Capture Interrupt: Off 
// Compare A Match Interrupt: Off 
// Compare B Match Interrupt: Off 
// Compare C Match Interrupt: Off 
// 
// PWM for Primary Drive Motors 
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// 
TCCR1A=0xA1; 
TCCR1B=0x0A; 
TCNT1H=0x00; 
TCNT1L=0x00; 
ICR1H=0x00; 
ICR1L=0x00; 
OCR1AH=0x00; 
OCR1AL=0x00; 
OCR1BH=0x00; 
OCR1BL=0x00; 
OCR1CH=0x00; 
OCR1CL=0x00; 
 
// Timer/Counter 2 initialization 
// Clock source: System Clock 
// Clock value: Timer 2 Stopped 
// Mode: Normal top=FFh 
// OC2 output: Disconnected 
TCCR2=0x00; 
TCNT2=0x00; 
OCR2=0x00; 
 
// Timer/Counter 3 initialization 
// Clock source: System Clock 
// Clock value: Timer 3 Stopped 
// Mode: Normal top=FFFFh 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
// OC3A output: Discon. 
// OC3B output: Discon. 
// OC3C output: Discon. 
// Timer 3 Overflow Interrupt: Off 
// Input Capture Interrupt: Off 
// Compare A Match Interrupt: Off 
// Compare B Match Interrupt: Off 
// Compare C Match Interrupt: Off 
TCCR3A=0x00; 
TCCR3B=0x00; 
TCNT3H=0x00; 
TCNT3L=0x00; 
ICR3H=0x00; 
ICR3L=0x00; 
OCR3AH=0x00; 
OCR3AL=0x00; 
OCR3BH=0x00; 



 22 

OCR3BL=0x00; 
OCR3CH=0x00; 
OCR3CL=0x00; 
 
// External Interrupt(s) initialization 
// INT0: Off 
// INT1: Off 
// INT2: Off 
// INT3: Off 
// INT4: Off 
// INT5: Off 
// INT6: Off 
// INT7: Off 
EICRA=0x00; 
EICRB=0x00; 
EIMSK=0x00; 
 
 
// Timer(s)/Counter(s) Interrupt(s) initialization 
TIMSK=0x00; 
ETIMSK=0x00; 
 
// ADC initialization 
// ADC Clock frequency: 115.200 kHz 
// ADC Voltage Reference: AREF pin 
// Only the 8 most significant bits of 
// the AD conversion result are used 
ADMUX=0x40; 
ADCSRA=0xc7; 
 
 
// I2C Bus initialization 
i2c_init(); 
 
 
// LCD module initialization 
lcd_init(16); 
lcd_clear(); 
 
delay_ms(500); 
 
while (1) 
      { 
      // Place your code here 
    
      lcd_clear(); 
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      pingE0(); 
       
      delay_ms(50); 
       
      pingE0(); 
       
      delay_ms(100); 
 
      compassC0(); 
       
      delay_ms(50); 
       
      read_zapper(); 
      if(zapper_value > 200) 
          shock(); 
      } 
} 
 
 
// Read the zapper from the A to D 
// This function takes approximately .3 ms to complete 
void read_zapper(void) 
{ 
unsigned int result; 
 
//uses 2.5 V reference 
ADMUX=0x40|0x00; 
// Start the AD conversion 
ADCSRA|=0x40; 
// Wait for the AD conversion to complete 
while ((ADCSRA & 0x10)==0); 
ADCSRA|=0x10; 
 
result = ADCW; 
 
//average the values (new value affects the result by 1/16 of the difference) 
result = (result + zapper_value) >> 1; 
result = (result + zapper_value) >> 1; 
result = (result + zapper_value) >> 1; 
zapper_value = (result + zapper_value) >> 1; 
} 
     
 
void motor(int dirl, int speedl, int dirr, int speedr){ 



 24 

     while(speed_val_l != speedl || speed_val_r != speedr || dir_val_l != dirl || dir_val_r != 
dirr){ 
      
          if(dirl < 0){ 
               //set output pin of left motor to 0 Volts 
               PORTB.2 = 1; 
               dir_val_l = -1; 
          } 
           
          if(dirl > 0) 
               { 
               //set output pin of left motor to 5 Volts 
               PORTB.2 = 0; 
               dir_val_l = 1; 
          }  
           
          if(dirr < 0){ 
               //set output pin  B 3 of right motor to 0 Volts 
               PORTB.3 = 0; 
               dir_val_r = -1; 
          } 
           
          if(dirr > 0) 
               { 
               //set output pin of left motor to 5 Volts 
               PORTB.3 = 1; 
               dir_val_r = 1; 
          }       
                                           
          // delay_ms(25);    
      
          if(speed_val_l > speedl){ 
               OCR1BL = OCR1BL +1; 
               speed_val_l--; 
          } 
           
          if(speed_val_l < speedl){ 
               OCR1BL = OCR1BL -1; 
               speed_val_l++; 
          }  
           
          if(speed_val_r > speedr){ 
               OCR1AL = OCR1AL +1; 
               speed_val_r--; 
          } 
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          if(speed_val_r < speedr) 
          { 
               OCR1AL = OCR1AL -1; 
               speed_val_r++; 
          } 
           
          lcd_clear(); 
          lcd_gotoxy(0,0); 
          lcd_putsf("motr l:r"); 
          lcd_gotoxy(9,0);                   
          itoa(speed_val_l, speedle); 
          itoa(speed_val_r, speedri); 
          lcd_puts(speedle); 
          lcd_putsf(":"); 
        
 
          lcd_gotoxy(13,0); 
          lcd_puts(speedri); 
           
          delay_ms(5); //delay on each increment to protect motors     
     }     
      
} //end motor() 
      
 
void compassC0() 
{ 
// PORTC.0=1; 
delay_ms(50); 
i2c_start(); 
i2c_write(0xC0); 
i2c_write(0x01); 
 
i2c_start(); 
i2c_write(0xC0 | 1);  
bearingC0=i2c_read(0x01); 
i2c_stop();   
 
lcd_gotoxy(0,2); 
lcd_putsf("Bearing: ");  
lcd_gotoxy(10,2); 
itoa(bearingC0, str); 
lcd_puts(str);  
// PORTC.0 = 0; 
delay_ms(50); 
}             
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void pingE0() 
{ 
i2c_start(); 
i2c_write(0xE0); 
i2c_write(0x00);   
i2c_write(0x50);  
delay_ms(70);  
 
i2c_start();      
i2c_write(0xE0); 
i2c_write(0x03);  
 
i2c_start(); 
i2c_write(0xE0 | 1);  
rangeE0=i2c_read(0); 
delay_ms(70); 
i2c_stop();   
 
lcd_gotoxy(0,1); 
lcd_putsf("Range:   "); 
lcd_gotoxy(10,1); 
itoa(rangeE0, stra); 
lcd_puts(stra); 
}     
 
void shock(void){ 
          lcd_clear(); 
          lcd_gotoxy(0,2); 
          lcd_putsf("Shock!"); 
           
          motor(1, 240, 1, 240); 
          delay_ms(50); 
           
          motor(-1, 150, -1, 150); 
          delay_ms(1000);  
           
          rndm = TCNT1L + 1100; 
          itoa(rndm, strb); 
          lcd_gotoxy(0,3); 
          lcd_puts(strb);  
           
          motor(1, 175, -1, 175);  
          delay_ms(rndm); 
           
          motor(1, 125, 1, 125);  
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          }      
           
       
// Obstacle Avoidance Function 
void obstacle(void){ 
     if(rangeE0 <= 0x10){ 
          motor(1, 210, 1, 210); 
          delay_ms(250); 
          motor(-1, 150, -1, 150); 
          delay_ms(250); 
          rndm = TCNT1L + 1100; 
          itoa(rndm, strb); 
          lcd_gotoxy(0,3); 
          lcd_puts(strb);  
           
          motor(1, 175, -1, 175);  
          delay_ms(rndm); 
           
          motor(1, 125, 1, 125); 
          } 
       }            


