

Final Report:
Auto Treasure Finder 5000

By: Philip Sherwood
April 22, 2008

EEL5666C Intelligent Machine Design Lab
Spring 2008

Professors: Dr. A. Arroyo and Dr. E. Schwartz
TA’s: Adam Barnett, Mike Pridgen, Sara Keen

2

Table of Contents

Title Page……………………………………………………1
Table of Contents………………………………………….. 2
Abstract ………………………………………..…………... 3
Executive Summary………………………………………... 4
Introduction………………………………………….……... 5
Integrated Systems……………………………...…………..5
Mobile Platform………………………………………...….. 6
Actuation…………………………………………………… 7
Sensors………………………………………………….….. 8
Behaviors…………………………………………….…….. 10
Experimental layout and results……………..……………...10
Conclusion……………………………………………..…...11
Appendices…………………………………………..……... 13

3

Abstract

The Auto Treasure Finder 5000 is an autonomous metal detecting robot. It will search for a
metal object and once found it will attempt to dig into the ground to retrieve the metal object. To
achieve the metal detection a wand style metal detector is used. A CdS cell is used across an
LED on the detector to interface it with the board. The robot consists of a platform made up of
several Plexiglas pieces in a basic box shape held together with several right angle brackets and
bolts. The body is roughly a 1 foot wide, 1 foot long and 3 inches tall. The propulsion is achieved
using two plastic and rubber tank tracks on each side of the robot each powered by small dc spur
gear motors. The digging mechanism is a plow made of metal wire that will dig up objects under
the ground. The plow is also connected to a dc motor for motion. Once the metal is detected the
robot will automatically shut down. The robot also uses a MAVRIC IIB board for processing, 2
sonars and 4 bump sensors for object avoidance and an LCD for user output.

4

Executive Summary

The purpose of the ATF 5000 is to locate metal buried in the ground, dig it up, and retrieve the
metal object.

A MAVRIC IIB board is used to perform all of the computations and logic to guide the ATF
5000. The MAVRIC IIB is created by BDmicro and utilizes an Atmel ATMeg128
microprocessor with a 14.7 MHz clock to do millions of operations per second.

The object avoidance is accomplished using 4 bump switches and 2 sonars. The sonars were the
primary object avoidance mechanism with the bump switches used as a last chance attempt to
avoid an object.

The special sensor for the robot is a metal detecting wand called the super scanner. The metal
detector is treated as a black box as it is unimportant to the operation of the robot how the
detector works as long as it works effectively. To interface the detector with the board a CdS cell
is used across an LED in the detector. The LED changes from a dimly lit green color when no
metal is detected to a brightly lit red color when metal is detected. This color change is enough to
allow a CdS cell to work perfectly and read into the board.

The ATF 5000 uses 2 separate battery packs for all of the power required. A set of 8 NiMH
batteries are used to power the motors while a set of 6 NiMH batteries are used to power the
board.

3 motors provide actuation for the robot. 2 are used for propulsion on each side of the robot
while being connected to a tank track for maximum traction. The third motor is used for the
digging mechanism which resembles a plow. The motor raises and lowers to plow to initiate and
end the digging process. All of the motors are driven by motor drivers that were provided by Dr.
Schwartz. The drivers utilize a 5 volt PWM signal from the board to create an 11 V PWM signal
for driving the motors.

An LCD is used as a mechanism to provide feedback with the user about any appropriate action
the robot is taking on it’s own as well any relevant sensor data that may be useful for debugging
purposes.

The platform was hand cut out of several pieces of Plexiglas. The basic shape is a box to house
all of the components of the robot. Bolts and brackets hold together the Plexiglas pieces for a
tight fit.

5

Introduction

The Auto Treasure Finder 5000 is designed with the lazy, forgetful pirate in mind. Have you ever
buried all your treasure only to lose you precious treasure map? Would you rather just lay on the
beach catching rays instead of shoveling away for buried booty? That's where the Auto Treasure
Finder 5000 comes in. Using a metal detector it will find buried metal and then it will dig into
the ground using it's robot arms to retrieve the lost loot. Plunder away!

The robot is designed to find treasure on a beach like environment with a soft ground. This
environment is perfect for amateur treasure seekers who use their own metal detectors to find
someone’s lost treasure underground. This paper is written to explain how the robot
accomplishes it’s goal of seeking, finding, and retrieving lost treasure through the use of a
mobile platform, several sensors, an integrated system and intelligent behavior algorithms.

Integrated System

The final robot required integration of a computer processor, LCD, mobile platform, two drive
belts on each side, a metal detector coil, a digging device, and several sensors. The processor
used for the ATF 5000 was the Atmel ATMega 128. This processor was attached interfaced
using a premade MAVRIC IIB purchased from bdmicro.com. This board does all the processing
and logic required for the ATF 5000 to have apparent intelligent qualities. All the sensors,
actuation, and electronics are interfaced through this board using C computer code shown in the
appendix.

An LCD screen is used as the primary display to the user any relevant data or words. This LCD
uses a standard 16 input/output pin setup which was run in 4 bit mode. This display can display
up to 32 characters on 2 lines. This display was used as the primary means for the robot to
display any relevant information about the output of the sensors or the data used by the
processor.

The sensors provided feedback from the environment. Most of the sensors were used for object
avoidance. 2 sonars and 4 bump switches were used. The sonars are simply used as a test as to
whether any object is within 1 foot of the left front or right front of the platform. If this case is
true to robot will turn away from the object while continuing forward.

The actuation is done by 3 12 volt DC motors. The motors are each connected to their own motor
driver. The motor drivers allow the 12 volt motors to be controlled by the board which runs at 5
volts. To accomplish this, the board supplies a 5 volt peak PWM signal which is converted to a
12 volt signal by the driver. The driver is supplied with its own 12 volt power source to use for
the voltage increase. 2 motors are connected to drive tracks on the robot while 1 motor is used
for a plow designed to scoop up a metal object.

The power source comes from 2 battery packs of NiMH batteries. A pack of 8 powers the motors
while a pack of 6 powers the board. These are simply connected to the power ports required by
the MAVRIC IIB board.

6

Mobile Platform

The platform is a fairly basic box shape made of Plexiglas. The propulsion system is based on
tank tracks and not wheels as usual. This is useful in an environment such as the beach because
tank tracks provide needed traction to move effectively through soft sand. The tracks used for the
robot were purchased from lynxmotion.com and are segmented pieces of both plastic and rubber.
The rubber is on the bottom to provide traction on nearly any surface. The plastic is used for the
structural support of each rubber piece of the track. Each piece fits into each other with a nylon
bushing in between each piece. Each track is powered by a single drive sprocket connected to a
motor on each side. A freewheeling sprocket is used on each side to maintain a proper shape of
the tracks for efficient travel.

The platform has several strategically placed holes for the LCD and switches for the robot. This
was done to streamline the design.

The metal detector is taped on the front of a cantilever beam bolted to the main chassis.
Electrical taped is used to secure the metal detector because any normal metal fastener would not
allow for appropriate responses from the metal detector. This provides the easiest construction
method as the detector is already in a good structure.

The digging mechanism is a plow made of wire with Plexiglas supports on each side of it. The
plow is bolted to an arm attached to a motor.

All of the motors were mounted to the platform using custom made motor mounts. This was
done to ensure a perfect fit and spacing on the robot. Hubs made specifically for the motors were
purchased from lynxmotion.com to ensure the motors could efficiently link power to the drive
train.

Nearly of the electronics are held in place using Velcro for a snug but removable fit. This proved
very advantageous as the Velcro wasn’t too strong as to damage the delicate electronics but was
strong enough to stay put with the robot in motion. Electrical tape was also used for the wiring
and to hold the LCD in place. This was the fastest method but perhaps not the most elegant
solution.

The picture on the next page in Figure 1 most effectively shows the finished platform without the
plow in place and without the LCD or switches in the correct place.

7

Figure 1. Main robot body without the plow.

Actuation

All of the actuation on the robot is done through 3 motors. These are basic DC spur gear motors
purchased through lynxmotion.com. Two motors are used to both drive the robot forward and
one is used for a plow to dig up metal. All three were controlled using motor controllers designed
by the MIL lab in previous semesters.

To facilitate motion, tank tracks were used. This proved more difficult than I had first hoped for.
Each track rolls on 2 sprockets. The sprocket in the rear is freewheeling while the sprocket in the
front is a drive sprocket. The sprocket is made of plastic and is bolted to the motor through the
use of a hub specifically designed for the motor. I then bolted the motors to the Plexiglas using
custom bent metal for the motor mounts. I was not careful enough when aligning the motors to
be perfectly perpendicular to the side walls. This leads to a slight angle of the tracks from the
true straight line of the robot. This caused relatively severe vibrational issues that shake all of the
parts on the robot when the robot is in motion.

The last motor is designed to help pick up metal with a plow. This is a very difficult task and is
one I’m not sure can be done effectively with my platform. The platform needs a redesign in
order to function properly. The plow was originally designed on paper to be supported by both

8

ends. However, due to poor planning the plow could only be supported on one end. This greatly
reduces the strength and digging power of the plow.

The motors were bought initially because of the high torque that was claimed by the
manufacturer. However, the motors do not seem to be operating as strongly I had hoped for. The
issue may be due to the motor controllers not operating as I am expecting. I may need more
experimentation to figure out what needs to be changed for max torque.

The hardest part I personally faced with actuation was not having the motor controllers work
until 2 weeks from the end of the class. I had found, purchased, and installed all of the correct
parts from the spec sheet but the drivers still did not work. It took many hours and weeks
searching for parts that would work as well as finding someone who knew how the fix them. The
motor driver boards were eventually hand modified to work correctly but not after wasting
several weeks.

Sensors

The ATF 5000 uses two sonar sensors, 4 bump switches, 1 Cds cell, and one metal detecting
wand to gather data from the environment to operate logically.

The Auto Treasure Finder 5000 (ATF 5000) uses several sensors to obtain information about the
outside world. Since robots are not equipped with biological sensors such as eyes and ears like
humans, robots rely on cleverly designed electrical sensors. In order to avoid running into people
or any other objects the ATF 5000 utilizes 2 sonar sensors to estimate the distance to the nearest
object and will avoid anything that comes to close. The sonars used are the SRF05 sensors
shown below in Figure 2 supplied by acroname.com.

Figure 2. SRF05 Ultra-Sonic Ranger

9

The 2 sensors are placed in the front of the robot about 8 inches apart and with the left sonar
facing slightly left by about 10 degrees and the right sonar facing slightly right by about 10
degrees. This sonar setup is designed to be able to detect objects both directly in front of the
robot as well as any object slightly offset to the right or left. The sonars work by generating a
short high frequency sound wave and measuring the time it takes for the wave to reflect off an
object and come back to the sonar. A 10 microsecond pulse is generated and an echo pulse is
received at a measured time later. The time is measured by the board in clock cycles. A
correlation between clock cycle time and actual distance can then be established using
experimental data. The test data is shown in the appendix. A correlation of y = 89.57 x + 80.94
was developed. This equation can then be used to find an object’s distance in inches with a
known clock cycle time by and subtracting 80.94 and then dividing the number by 89.57.

While the sonars are the primary means of object avoidance, the ATF 5000 also employs bump
switches. These switches are placed at various locations along the front of the robot. They are
switches that are activated when the robot physically bumps into an object. Once triggered the
robot will take immediate action and reverse itself and move in a new direction. These are
normally not needed as the sonar should avoid must objects before a collision occurs. However,
these switches are in place for safety reasons or for an object that is did not get picked up by the
sonar. The switches work by being in the normally open position or not normally connected. The
board will read the switch and measure 5 volts when the switch is opened and 0V when the
switch is closed. This reading is accomplished by a simple voltage divider connected to the
switch.
 The special sensor on the robot is what makes the ATF 5000 unique. The sensor is a
wand metal detector purchased from ebay.com shown in Figure 3.

Figure 3. Wand metal detector.

The detector was designed for handheld use for scanning a person for metallic objects. These
detectors are frequently seen in airports scanning for dangerous objects hidden in people’s
clothing. The low price and ease of use makes this a good choice for metal detection. When

10

metal is placed near the scanner, it will make noise, vibrate, as well as light an led. The challenge
is to integrate the metal detector for use in the robot. The led on the detector is used for this
purpose. Since the led changes from a dim green to a bright red color when a metal object is
detected, a CdS cell is placed across the led and is measured by the ADC on the MAVRIC IIB
board. When the reading is lower than normal the ATF 5000 knows metal is detected. The
scanner is mounted on the front of the robot horizontally on plastic so none of the metal objects
in the robot affect the detector.

Behaviors

The behaviors of the ATF 5000 are relatively basic as the ultimate behavior is simply a treasure
hunt. The robot simply moves forward and checks all of it’s sensors to see whether it should
continue forward or perform some action. Assuming it does not encounter metal the robot simply
does object avoidance.

The object avoidance is a matter of first checking whether any bump switches are pressed. If so,
the robot will back up and turn right to avoid the object it hit. If the bump switches are not
depressed then the robot checks the sonar data. If the sonars detect an object that is within one
foot of the robot it will turn accordingly. If an object is within one foot on the front right sonar it
will turn left and if an object is within one foot of the front left sonar it will turn right. If it is
within one foot of both sonars the robot will back up and turn right to avoid the object. This is
checked in an infinite loop.

During the loop there is a check for metal. If the MAVRIC IIB board sensing metal using the
metal detector it will enter into a digging mode. This robot will first stop the motors when metal
is detected. Then the robot will turn 180 degrees. This turn is simply allowing the motors to turn
for a predetermined amount of time. This time was found experimentally in the lab to generate a
nearly 180 degree turn every time tested. The turn is designed to put the plow directly over the
location where the metal detection occurred. Then the plow is lowered a predetermined amount
of time to allow the plow to fully lower into the ground. This time was again found through
experimentation. Then the robot moves forward for a short time as to plow the ground in front of
it. The metal will hopefully be stirred up and caught in the front of the plow. Then the plow
returns to it’s original location again while lifting up the metal object off the ground and placing
it on the robots surface.

Experimental Layout and Results

Most of the sensors for my robot did not require significant experimentation. The metal detector
range was fixed to around 6 inches so further experimentation was not necessary. However,
experimentation was important in a few key ways.

To generate an appropriate PWM signal by my board for my motor controllers, experimentation
was used. My motor controllers needed a 20 MHz PWM signal to operate efficiently. Since, I
could not figure out the appropriate value for the input compare register I simply hooked up the
output of the board to an oscilloscope. Since the value of the input compare register linearly
correlates to the PWM frequency I only needed to make 1 measurement of the frequency for a

11

guessed value of input compare register. Based on the measurement the guess value for the ICR
was multiplied by a factor of measured frequency over desired frequency. This proved to be a
value of 368 for my robot.

To ensure the bump switches were working a volt meter was used to measure the voltage across
the switch. The switches read 5 volts open and 0 volts closed which meant they worked
perfectly.

The values from the CdS cell across the metal detector LED was found with experimentation.
The value had to be measured with an analog to digital converter channel so experimentation
was used to both design the circuit and the logic in the processor. A resistor of 5K was used in
series with the CdS cell to balance the resistance of 10K without much light and 1K with a lot of
light. Using the ADC port the values measured were displayed on the LCD. It was found that
when no metal was found the value was around 180 and when metal was found there was a value
around 120. Thus, a threshold of 150 was used to determine if metal was found or not.

The sonars were tested most thoroughly of all the sensors for the best data. The time in clock
cycles from the echo off of a sheet of paper at known distances was measured to correlate
distance to clock count. This data is shown in the appendix.

Conclusion

Overall, the robot was a moderate success. The robot can complete its objectives in a very
controlled environment but is not constructed or designed well enough to have real world
capabilities. The robot has a decent platform but more testing and experimentation is needed to
exploit the full potential of the robot.

The platform needs to be redesigned for a more effective bot. The robot is very hard to put
together because each bolt must be supported on each side to screw into position because there is
a nut on one side. The platform is fairly small so it is difficult to fit your hand into the robot to
tighten the bolts. The motors were also not perfectly aligned which makes the robot have
vibration issues. Next time I will not use custom motor mounts but mounts supplied by the motor
manufacturer.

The plow does not work as I would have hoped for. If the motor drivers would have worked
earlier in the semester I could have designed a better digging mechanism. The mechanism is
simply not strong enough but I believe a few modifications could be done to the existing
platform to allow for a stronger plow.

Also, the metal detector does not do a great job for this robot. Throughout the semester I tried to
use other means of detecting metal but when I was running out of time I settled on the easiest
method. The detector tends to have a very weak detection range which limits the robot.

The code written is not the best style either. It is poorly commented and not effectively written.
Interrupts should be used in the future to streamline the code and allow for efficient transitions
for each behavior.

12

The most important lesson for future students when designing a robot for this class is to make
sure you stay within the time limits. The main parts of your robot should be ordered very early in
the semester. My motor drivers for my robot were not working until I had 2 weeks left in class.
This greatly hampered my ability to test or design any motion algorithms or mechanics of the
robot. I would have simply bought drivers if I had more money to spend and I would have had
the robot designed much sooner.

13

Appendices

Sonar Test:

 Sonar 1 Sonar 2

Object Distance (in) Echo Time (clock cycle) Echo Time (clock cycle)

1 135 135

2 243 234

3 338 343

4 415 414

5 517 533

6 640 628

7 725 722

8 760 798

9 905 913

10 1037 1026

11 1100 1101

12 1274 1235

18 1543 1770

24 2250 2155
Table 1. Sonar data collected by holding a sheet of paper perpendicular to each sensor alone.

Figure 4. Sonar distance correlation.

// Final code: Philip Sherwood
// Spring 2008: IMDL
//Auto Treasure Finder 2000

14

#include <avr/io.h>

void long_delay();
void short_delay();
void lcd_init(); // sets lcd in 4 bit mode, 2-line mode, with cursor on and set to blink
void lcd_cmd(); // use to send commands to lcd
void lcd_disp(); // use to display text on lcd
void lcd_displong();
void lcd_clear(); // use to clear LCD and return cursor to home position
void lcd_row(int row); // use to put the LCD at the desired row

int get_Sonarleft(); // use to read value left sonar module
int get_Sonarright(); // use to read value right sonar module
void config_adc(void);
void init_adc(void);
void pwm_init(void);

/* IMPORTANT!

Before using this code make sure your LCD is wired up the same way mine is, or change the code to
match the wiring of your own LCD. My LCD is connected to PortC of the At-Mega128 in the following manner:

PortC bit 7 : LCD data bit 7 (MSB)
PortC bit 6 : LCD data bit 6
PortC bit 5 : LCD data bit 5
PortC bit 4 : LCD data bit 4 (LSB)

PortC bit 3 : (not connected)
PortC bit 2 : LCD enable pin (clock)
PortC bit 1 : LCD R/W (read / write) signal
PortC bit 0 : LCD RS (register select) pin

Also remember you must connect a potentiometer (variable resistor) to the vcc, gnd, and contrast pins on the LCD.
The output of the pot (middle pin) should be connected to the contrast pin. The other two can be on either pin.

*/

void long_delay() // delay for 10000 clock cycles
{
 long int ms_count = 0;
 while (ms_count < 10000)
 {
 ms_count = ms_count + 1;
 }
}
void short_delay() // delay for 10000 clock cycles
{
 long int ms_count = 0;
 while (ms_count < 1000)
 {
 ms_count = ms_count + 1;
 }
}

15

void lcd_cmd(unsigned int myData)
{

 /* READ THIS!!!

 The & and | functions are the BITWISE AND and BITWISE OR functions respectively. DO NOT
 confuse these with the && and || functions (which are the LOGICAL AND and LOGICAL OR functions).

 The logical functions will only return a single 1 or 0 value, thus they do not work in this scenario
 since we need the 8-bit value passed to this function to be preserved as 8-bits
 */

 unsigned int temp_data = 0;

 temp_data = (myData | 0b00000100); // these two lines leave the upper nibble as-is, and set
 temp_data = (temp_data & 0b11110100); // the appropriate control bits in the lower nibble
 PORTC = temp_data;
 long_delay();
 PORTC = (temp_data & 0b11110000); // we have written upper nibble to the LCD

 temp_data = (myData << 4); // here, we reload myData into our temp. variable and
shift the bits
 // to the left 4
times. This puts the lower nibble into the upper 4 bits

 temp_data = (temp_data & 0b11110100); // temp_data now contains the original
 temp_data = (temp_data | 0b00000100); // lower nibble plus high clock signal

 PORTC = temp_data; // write the data to PortC
 long_delay();
 PORTC = (temp_data & 0b11110000); // re-write the data to PortC with the clock signal low
(thus creating the falling edge)
 long_delay();

}

void lcd_disp(unsigned int disp)
{

 /*

 This function is identical to the lcd_cmd function with only one exception. This least significant bit of
 PortC is forced high so the LCD interprets the values written to is as data instead of a command.

 */

 unsigned int temp_data = 0;

 temp_data = (disp & 0b11110000);
 temp_data = (temp_data | 0b00000101);
 PORTC = temp_data;
 //short_delay();
 PORTC = (temp_data & 0b11110001);
 short_delay(); // upper nibble

16

 temp_data = (disp << 4);
 temp_data = (temp_data & 0b11110000);
 temp_data = (temp_data | 0b00000101);
 PORTC = temp_data;
 short_delay();
 PORTC = (temp_data & 0b11110001);
 short_delay(); // lower nibble

}
void lcd_displong(unsigned int disp)
{

 /*

 This function is identical to the lcd_cmd function with only one exception. This least significant bit of
 PortC is forced high so the LCD interprets the values written to is as data instead of a command.

 */

 unsigned int temp_data = 0;

 temp_data = (disp & 0b11110000);
 temp_data = (temp_data | 0b00000101);
 PORTC = temp_data;
 long_delay();
 PORTC = (temp_data & 0b11110001);
 long_delay(); // upper nibble

 temp_data = (disp << 4);
 temp_data = (temp_data & 0b11110000);
 temp_data = (temp_data | 0b00000101);
 PORTC = temp_data;
 long_delay();
 PORTC = (temp_data & 0b11110001);
 long_delay(); // lower nibble

}

void lcd_init()
{
 lcd_cmd(0x33); // writing 0x33 followed by
 lcd_cmd(0x32); // 0x32 puts the LCD in 4-bit mode

 lcd_cmd(0x28); // writing 0x28 puts the LCD in 2-line mode

 lcd_cmd(0x0F); // writing 0x0F turns the display on, curson on, and puts the cursor in blink
mode

 lcd_cmd(0x01); // writing 0x01 clears the LCD and sets the cursor to the home (top left) position

 //LCD is on... ready to write

}

17

void lcd_string(char *a)
{

 /*

 This function writes a string to the LCD. LCDs can only print one character at a time so we need to
 print each letter or number in the string one at a time. This is accomplished by creating a pointer to
 the beginning of the string (which logically points to the first character). It is important to understand
 that all strings in C end with the "null" character which is interpreted by the language as a 0. So to print
 an entire string to the LCD we point to the beginning of the string, print the first letter, then we increment
 the pointer (thus making it point to the second letter), print that letter, and keep incrementing until we reach
 the "null" character". This can all be easily done by using a while loop that continuously prints a letter and
 increments the pointer as long as a 0 is not what the pointer points to.

 */

 while (*a != 0)
 {
 lcd_disp((unsigned int) *a); // display the character that our pointer (a) is pointing to
 a++; // increment a
 }
 return;

}
void lcd_stringlong(char *a)
{

 /*

 This function writes a string to the LCD. LCDs can only print one character at a time so we need to
 print each letter or number in the string one at a time. This is accomplished by creating a pointer to
 the beginning of the string (which logically points to the first character). It is important to understand
 that all strings in C end with the "null" character which is interpreted by the language as a 0. So to print
 an entire string to the LCD we point to the beginning of the string, print the first letter, then we increment
 the pointer (thus making it point to the second letter), print that letter, and keep incrementing until we reach
 the "null" character". This can all be easily done by using a while loop that continuously prints a letter and
 increments the pointer as long as a 0 is not what the pointer points to.

 */

 while (*a != 0)
 {
 lcd_displong((unsigned int) *a); // display the character that our pointer (a) is pointing to
 a++; // increment a
 }
 return;

}

void lcd_int(int value)
{

 /*
 This routine will take an integer and display it in the proper order on
 your LCD. Thanks to Josh Hartman (IMDL Spring 2007) for writing this in lab

18

 */

 int temp_val;
 int x = 10000; // since integers only go up to 32768, we only need to worry about
 // numbers containing at most a ten-thousands place

 while (value / x == 0) // the purpose of this loop is to find out the largest position (in decimal)
 { // that our integer contains. As soon as we get a non-
zero value, we know
 x/=10; // how many positions there are int the int and x will be
properly initialized to the largest
 } // power of 10 that will return a non-zero value when
our integer is divided by x.

 while (x >= 1) // this loop is where the printing to the LCD takes place. First,
we divide
 { // our integer by x (properly
initialized by the last loop) and store it in
 temp_val = value / x; // a temporary variable so our original value is preserved.
Next we subtract the
 value -= temp_val * x; // temp. variable times x from our original value. This will
"pull" off the most
 lcd_displong(temp_val+ 0x30); // significant digit from our original integer but leave all the
remaining digits alone.
 // After this, we add a hex 30 to our
temp. variable because ASCII values for integers
 x /= 10; // 0 through 9 correspond to hex numbers 30 through
39. We then send this value to the
 } // LCD (which understands ASCII).
Finally, we divide x by 10 and repeat the process
 // until we get a zero value (note:
since our value is an integer, any decimal value
 return; // less than 1 will be truncated to a 0)

}

void lcd_clear() // this function clears the LCD and sets the cursor to the home (upper left) position
{
 lcd_cmd(0x01);

 return;
}

void lcd_row(int row) // this function moves the cursor to the beginning of the specified row without changing
{ // any of the current text on the LCD.

 switch(row)
 {

 case 0: lcd_cmd(0x02);
 case 1: lcd_cmd(0xC0);

 }

 return;

19

}

int get_Sonarleft()
{

 int n = 0;

 PORTA = (PINA & 0xFE); // these two lines create a rising edge
 PORTA = (PINA | 0x01); // on PortA pin 1

 while (n < 40)
 {
 //waste enough clock cycles for at least 10us to pass
 n += 1;
 n++;
 }

 PORTA = (PINA & 0xFE); // force PortA pin 7 low to create a falling edge
 // this sends out the trigger

 while (!(PINA & 0x02))
 {
 // do nothing as long as echo line is low
 }

 n = 0; //re-use our dummy variable for counting

 while (PINA & 0x02)
 {
 n += 1; // add 1 to n as long as PortA pin 0 is high
 }

 //when we get here, the falling edge has occured

 return n;

}

int get_Sonarright()
{

 int n = 0;

 PORTA = (PINA & 0xEF); // these two lines create a rising edge
 PORTA = (PINA | 0x10); // on PortA pin 4

 while (n < 40)
 {
 //waste enough clock cycles for at least 10us to pass
 n += 1;
 n++;
 }

 PORTA = (PINA & 0xEF); // force PortA pin 7 low to create a falling edge
 // this sends out the trigger

20

 while (!(PINA & 0x20))
 {
 // do nothing as long as echo line is low
 }

 n = 0; //re-use our dummy variable for counting

 while (PINA & 0x20)
 {
 n += 1; // add 1 to n as long as PortA pin 0 is high
 }

 //when we get here, the falling edge has occured

 return n;

}

int main(void)
{

 long i;
 int analogLow = 0;
 int analogHigh = 0;

 config_adc();

 init_adc(); // initialize ADC converter

 DDRC = 0xFF; // set portC to output (could also use DDRC = 0b11111111)
 DDRE = 0xFF; // set portE to output
 DDRB = 0xFF; // set portB to output

 long Sonarleft,Sonarright = 0;

 DDRA = 0x99; // 2 sonar are connected with trigger echo ground power
 // times 2 from PortA.7 to PortA.0

 PORTA = (PINA & 0x00); // clear port A
 PORTA = (PINA | 0x88); // power both sonars
 PORTE = (PINE & 0x00); // clear port E
 PORTE = (PINE | 0b01001111); // give motors forward directions

 lcd_init(); // set lcd in 4 bit mode, 2-line mode, with cursor on and set to blink

 lcd_stringlong("Your LCD works."); // if your LCD is wired up correctly, you will see this text
 // on it when you power up your Micro-controller board.
 lcd_row(1);
 lcd_stringlong("DeStRoY hUmAnS");
 for (i = 0; i < 450; i++)
 {

21

 long_delay(); //delay to read LCD (humans reading)
 }

 pwm_init();
 OCR1A = 365;
 OCR1B = 365;

 while(1)

 {
 OCR1C = 0;

 analogLow = ADCL; // read ACD low register
 analogHigh = ADCH; // read ACD high register
 PORTB ^= 0x01;
 lcd_clear();
 lcd_string("Finding Treasure");
 Sonarleft = get_Sonarleft();
 short_delay();
 Sonarright = get_Sonarright();

 if ((!(PIND & 0b00001000))||(!(PIND & 0b00000100))||(!(PIND & 0b00000010))||(!(PIND &
0b00000001))){
 OCR1A = 0;
 OCR1B = 0;
 lcd_clear();
 lcd_stringlong("ouch");
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b10000000); // give motors reverse directions
 OCR1A = 200;
 OCR1B = 365;
 for (i = 0; i < 75; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b01000000);
 OCR1A = 365;
 OCR1B = 365;

 }

 if (Sonarleft < 2000){
 OCR1B = 0;
 lcd_clear();
 }
 else{
 OCR1B = 365;
 }
 if (Sonarright < 2000){
 OCR1A = 0;
 lcd_clear();
 }
 else{
 OCR1A = 365;

22

 }
 if (Sonarleft < 2000 && Sonarright < 2000){
 // reverse
 lcd_clear();
 lcd_string("Backup!");
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b10000000); // give motors reverse directions
 OCR1A = 200;
 OCR1B = 365;
 }
 else{
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b01000000); // give motors forward directions
 }

 if (analogLow < 150){

 OCR1A = 0;
 OCR1B = 0;
 OCR1C = 0;
 lcd_clear();
 lcd_stringlong("You hit metal");
 lcd_row(1);
 lcd_stringlong("I am self aware!");
 for (i = 0; i < 10; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b11000000); // give motors spin directions
 OCR1A = 365;
 OCR1B = 365;

 for (i = 0; i < 100; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 OCR1A = 0;
 OCR1B = 0;
 for (i = 0; i < 100; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 OCR1C = 365;
 for (i = 0; i < 20; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 OCR1C = 0;
 for (i = 0; i < 100; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 PORTE = (PINE & 0b00111111); // clear port E motion
 PORTE = (PINE | 0b10000000); // give motors reverse directions
 OCR1A = 365;

23

 OCR1B = 365;
 for (i = 0; i < 100; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 OCR1A = 0;
 OCR1B = 0;
 PORTE = (PINE & 0b11011111); // clear port E plow
 PORTE = (PINE | 0b00100000); // give motors reverse directions
 OCR1C = 365;
 for (i = 0; i < 20; i++)
 {
 long_delay(); //delay to read LCD (humans reading)
 }
 OCR1C = 0;
 lcd_clear();
 lcd_stringlong("Treasure found!");
 lcd_row(1);
 lcd_stringlong("Shutting down");
 while(1){
 }
 // end of demo ;)

 }

 }

 return 0;

}

void init_adc(void)
{
 ADCSRA |= 0b01000000; // start free running conversions
}

void config_adc(void)
{
 DDRF = 0b00000000; // set port F to all input
 // Note: when JTAGEN fuse is set, F4 - F7 don't work
 PORTF = 0x00; // make sure pull up resistor is not enabled

 ADMUX = 0b01000000; // 5V reference, select channel0 (pin F0)
 ADCSRA |= 0b10100111; // turn on ADC, don't start conversions
 // free funning
 // divide clock by 128

}

void pwm_init(void)
{//jump pins B5, B6, B7
 TCCR1A = 0b10101000; //00:P&FC PWM // 11......,..11....:OC1A,OC1B inv
 TCCR1B = 0b00010001; // ...10...:P&FC PWM //010:bclk/8 (~8kHz)
 DDRB = 0xFF; // set PWM pins as outputs, PB5 (OC1A) & PB6 (OC1B)
 ICR1=368;

24

 TCNT1=0x0000;
 OCR1A = 0x0000; // 1/2 duty, ~2.5v dc level, motor 1 on PB5 (OC1A)
 OCR1B = 0x0000;
 OCR1C = 0x0000; // 0/256 duty, ~2.5v dc level, motor 2 on PB6 (OC1B)
} // pwm_init

