

Intelligent Machine Design Laboratory

EEL5666.6515

Instructors: Dr. A. Antonio Arroyo

Dr. Eric M. Schwartz

TAs: Mike Pridgen

Thomas Vermeer

 Patrick Connaway

Lawntonomous Maximus	

	

	
 	

	

	
 	
 	

	

	
 	

	

Abstract
Lawntonomous Maximus is an autonomous lawn mower. He is capable of mowing a typical
well maintained Floridian lawn. The robot is much smaller than a standard gas powered push
mower, so it has limited mowing capabilities. Lawntonomous uses ultrasonic sensors for
collision avoidance and a wireless dog fence to help define the cutting area.
	
 	

Executive Summary	

Lawntonomous Maximus is a downsized autonomous lawnmower. Initially I wanted to use my
grandmother’s old lawn mower for this but due to overwhelming mass of such a task I decided to
do something on a smaller scale. 	

	

I built the mechanical system for the robot from scratch. I took a part a weed wacker I purchased
from Dr. Schwartz and bolted it to the mobile platform. I purchased sheet steel from Rodger’s
Welding and had them shear it. I welded together the components in the Machine shop on
campus. All of the wooden components were made on the T-Tech. I designed them in
Solidworks and had them cut by the TAs. I made the drive hubs I used in the Machine shop as
well. My sister painted the robot yellow and green for me, so by media day it was looking great.
I was successful in the design of my mechanical system but I want to achieve more with the
electrical and software systems. 	

	

I wanted to attempt some fuzzy logic and achieve wall following but the ultrasonic sensors I used
were too unreliable. The main program was incredibly simple because of this. I was pleased
with how well collision avoidance was working, but would have liked to have done softer turns. 	

	

The biggest let down was the wireless dog fence I really wanted to demonstrate this sensor
functioning. I was still pleased with my demo but would have been happier to see the special
sensor working. Overall I was pleased with the project and look forward to continuing it this
summer. 	

Introduction
When I was a boy, too young to get a real job, I would mow lawns. My grandmother would pay
my brother and me to do a lot of yard work. She has about an acre of land, so mowing her lawn
was a lucrative chore at the time. My brother and I would each use a push mower and it would
take hours to finish the job. I believe this is why I came up with the concept of an autonomous
lawnmower.

I conceived the idea of an autonomous lawnmower in the fall term of 2009 and then heard about
this class. I felt as though it was the perfect way to materialize my ideas. I was a little
disappointed when I found out an autonomous lawnmower was already on the market, but I still
felt compelled to build one myself.

I built a downsized mower because of my budget and the amount of time I can invest. Initially I
intend on programming the robot to be capable of obstacle avoidance and position

determination. I want to program it such that it can mow the small lawn at my apartment
complex.

Integrated System	

 8.4 V 	

 	

The integrated system is relatively simple. The ultrasonic sensors just determine when an
obstacle is in the path of the robot. The speed of the robot is a function of the analog voltage
returned from the ultrasonic sensor. The bump switches and wireless fence signal basically
cause the same reaction from the robot. They both just cause the robot to reverse then make a
turn between 90 and 270 degrees based on the value from the front center sonar. I want to
integrate my GPS sensor into the system this summer.

Mobile platform
The mobile platform is made of 16 gauge sheet steel (See figure 1). The two side pieces are
welded into place. The drive motors are mounted on these components. When I originally

12 V

designed the platform I didn’t account for the space the procured by the welds. This caused a
slight misalignment of the drive motors, so the robot would not go straight.

	

Figure	
 1

The electronics are mounted on balsa wood which is bolted to the platform. The PVR Board is
mounted in the front behind a bumper equipped with three Ultrasonic Sensors and two bump
switches. Originally I had an identical bumper mounted on the rear but the sensors were only
used when Lawntonomous was reversing. This proved to be impractical, so I reduced this to a
much simpler configuration. I just used one ultrasonic sensor mounted in the center.

Actuation
Two Merkle Korff motors are used to drive to robot. They are mounted onto the sheet steel
welded on the sides I machined two identical aluminum drive hubs and milled holes in the drive
wheels. The hubs transfer the torque via a set screw which rests on the face cut out of the shaft
of the motor.

The motors are rated to output 18 lb in of torque at 16 rpm at peak voltage. From empirical data
Lawntonomous moves about 1 ft/s at max speed. The drive wheels were purchased from a
surplus distributor online they are 8” lawnmower wheels. The motor driver provided from the
lab. Sean Fruct wrote the source and header files I used for the motor driver.

I took apart a weed wacker and mounted it on the platform for the mowing system. The circuitry
for this system was fairly complex. When the robot is turned on the mowing system will also
turn on. There was a kill switch located atop the robot for emergency situations.

Sensors
The robot implements sonar for obstacle avoidance. This is the most practical
option, because the robot operates outside. Three sensors will be mounted on
the front of the mower (one centered and one to the left and right). One is
mounted in the rear. Initially I wanted to attempt some fuzzy logic but my

sensors were not reliable enough. In the end I used a single threshold value for all the sensors
and averaged it over 5 values. The collision avoidance is very reliable. I used the MaxBotix
ultrasonic sensors (Product code: RB-Max-01) (See figure 3).

Two bump switches are mounted on the front bumper. They have only been used for turns made
too close to walls. Initially I wanted to use G.P.S. for the special sensor. I purchased a less
expensive sensor that is only accurate within a few meters. I struggled with the software for a
few weeks and then decided to use a different sensor. In hind sight I should have bribed a CSE
major to help me.

I attempted to implement a wireless pet fence as my special sensor
(See figure 4). Originally I wanted to use it to confine the perimeter
in which Lawntonomous cut. This proved to be a more challenging
task than I anticipated. The wireless transmitter was designed to keep
pets out of one’s garden. The transmitter would shock ones pet if it
entered the area. The shock would stop after about 30 seconds which
proved to be a problem. I was unable to turn off the sensor and turn it
back on to regain the signal.

I then tried to use the transmitter to repel the robot. This was a much simpler task. I was able to
get a clean signal from the shock collar without the need of a capacitor. When the robot was in
range the signal would go high and I could read it through an I/O port. The system was
incredibly simple and I was able to get it properly functioning the night before media day. I
went to test it in the Rotunda but it was locked by that hour. The next day I was unable to get the
sensor to function when the robot was moving. I could get a great signal when the robot was not
moving. I am uncertain as to why this occurred. I should have spent the extra money and bought
a fence meant to confine a pet as oppose to repel it.

Behaviors
The robot is programmed to do random mowing. The numbers input to the motor functions are a
function of the values returned from the ultrasonic sensors. This system is incredibly simple and

Figure	
 3

Figure	
 4

proved to work great for my yard. There is about a 5 to 10 degree slope my yard this proved to
be no challenge for the high torque motors. Although the thick tree roots that have grown up and
out from the ground proved to be invisible to the ultsonic sensors. The front drive wheels make
over but the weed wacker gets caught onto them.

The bump switches just cause Lawntonomous to reverse and the turn in a random direction based
on the value from the front center ultrasonic sensor. I am still working with the wireless fence if
I cannot get it fully functional I am going to use it to keep my cats from getting outside.

Experimental Layout and Results	

The Ultrasonic sensors I used were proved to be functional for basic collision avoidance but
when I attempted more complex behaviors they were not very reliable. I attempted to employ a
function for softer turns, but was unable to successfully execute it when it was integrated into the
main program.

The wireless dog fence involved a lot of experimenting. I took apart the shocker collar to get the
circuit board out of it. I hooked it up the oscilloscope and found the node that gave the best
signal when the receiver was in range of the transmitter. When I collected the signal through an
I/O port the signal would go high when in range which made this sensor seemingly too easy. I
was able to use this signal to tell Lawntonomous which areas of the yard are off limits.

Unfortunately I was only successful with it once the night before media day in the IMDL lab.
I went to test it in the Rotunda that night but it was locked. The next day I was unable to
replicate the experiment. I could get Lawntonomous to receive the signal when he wasn’t
moving, but once he began translating he could not pick it up.

Conclusion
The goal of this project was to build a robot capable of maintaining a yard by mowing it a few
times a week during the summer and a couple times a month during the winter. I was successful
in this sense. I have a lot of work to do on Lawntonomous over the summer to make a more
effective mower.

I am content with what was accomplished this semester. The mechanical design was the most
successful portion of the project. The robot was aesthetically pleasing. The cutting system I
designed was much more attractive and equally effective relative to the original weed wacker.
There are few things I could improve with this aspect. The sensor suite is pretty lame right now.
I intend on making the wireless fence fully functional and adding getting some assistance with
the GPS sensor. I also have built a circuit for an “Edge of the World” sensor. It will recognize a
sudden change in elevation to prevent Lawntonomous from going off a cliff. I am pleased with
my progress thus far, and look forward to my future work.

Picture	
 Sources	

	

Figures	
 1:	
 Photo	
 by	
 author	

	
 	

Figure	
 2:	
 	

	

Maxbotix	
 LV-­‐MaxSonar-­‐EZ1	
 High	
 Performance	
 Sonar	
 Module	
 Product	
 code	
 :	
 RB-­‐Max-­‐01	

	

http://www.robotshop.us/maxbotix-­‐ez1-­‐ultrasonic-­‐ranger-­‐2.html	

	

Figure	
 3:	

	

http://www.amazon.com/gp/product/images/B002GQDUBW/sr=8-­‐
11/qid=1271818796/ref=dp_image_0?ie=UTF8&n=1055398&s=home-­‐garden&qid=1271818796&sr=8-­‐

11	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Appendix

Header f iles used
#ifndef __PVR_h__
#def ine __PVR_h__

#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR.h"
#def ine LCD PORTK_OUT
#def ine LCDDDR PORTK_DIR
volatile int delaycnt;
void xmegaInit(void);
void delayInit(void);
void delay_ms(int cnt);
void delay_us(int cnt);
void lcdDataWork(unsigned char c);
void lcdData(unsigned char c);
void lcdCharWork(unsigned char c);
void lcdChar(unsigned char c);
void lcdStr ing(unsigned char ca[]);
void lcdInt(int value);
void lcdGoto(int row, int col);
void lcdInit(void);
void ServoCInit(void);
void ServoDInit(void);
void ServoC0(int value);
void ServoC1(int value);
void ServoC2(int value);
void ServoC3(int value);
void ServoC4(int value);
void ServoC5(int value);
void ServoD0(int value);
void ServoD1(int value);
void ServoD2(int value);
void ServoD3(int value);
void ServoD4(int value);
void ServoD5(int value);
void ADCAInit(void);

int ADCA0(void);
int ADCA1(void);
int ADCA2(void);
int ADCA3(void);
int ADCA4(void);
int ADCA5(void);
int ADCA6(void);
int ADCA7(void);
#endif

#ifndef __MotorFunctions_h__
#def ine __MotorFunctions_h__

#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR.h"

void dr ivemotorsinit(void);

void dr ivemotorA(int mode, int speed);

void dr ivemotorB(int mode, int speed);

void dr ive(int direction, int r ightspeed, int leftspeed);

#endif

Source Files used
#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR.h"

/*********
 * Xmega *
 *********/

void xmegaInit(void)
{
 CCP = 0xD8;
 CLK_PSCTRL = 0x00;
 PORTQ_DIR = 0x01;

 //setup oscilllator
 OSC_CTRL = 0x02; //enable 32MHz
internal clock
 while ((OSC_STATUS & 0x02) == 0); //wait for oscillator to
be ready
 CCP = 0xD8; //wr ite
signature to CCP
 CLK_CTRL = 0x01; //select internal
32MHz RC oscillator
}

/*********
 * Delay *
 *********/

void delayInit(void)
{
 TCF1_CTRLA = 0x01; //set clock/1
 TCF1_CTRLB = 0x31; //enable COMA
and COMB, set to FRQ
 TCF1_INTCTRLB = 0x00; //turn off
interrupts for COMA and COMB
 SREG |= CPU_I_bm; //enable all
interrupts
 PMIC_CTRL |= 0x01; //enable all low
pr ior ity interrupts
}

void delay_ms(int cnt)
{
 delaycnt = 0; //set count value
 TCF1_CCA = 32000; //set COMA to be
1ms delay
 TCF1_CNT = 0; //reset counter
 TCF1_INTCTRLB = 0x01; //enable low
pr ior ity interrupt for delay
 while (cnt != delaycnt); //delay
 TCF1_INTCTRLB = 0x00; //disable
interrupts
}

void delay_us(int cnt)
{
 delaycnt = 0; //set counter
 TCF1_CCA = 32; //set COMA to be
1us delay
 TCF1_CNT = 0; //reset counter
 TCF1_INTCTRLB = 0x01; //enable low
pr ior ity interrupt for delay
 while (cnt != delaycnt); //delay
 TCF1_INTCTRLB = 0x00; //disable
interrupts
}

SIGNAL(TCF1_CCB_vect)
{
 delaycnt++;
}

SIGNAL(TCF1_CCA_vect)
{
 delaycnt++;
}

/*******
 * LCD *
 *******/

#def ine LCD PORTK_OUT
#def ine LCDDDR PORTK_DIR

void lcdDataWork(unsigned char c)
{
 c &= 0xF0; //keep data bits,
clear the rest
 c |= 0x08; //set E high
 LCD = c; //wr ite to LCD
 delay_ms(2); //delay
 c ^= 0x08; //set E low
 LCD = c; //wr ite to LCD

 delay_ms(2); //delay
 c |= 0x08; //set E high
 LCD = c; //wr ite to LCD
 delay_ms(2); //delay
}

void lcdData(unsigned char c)
{
 unsigned char cHi = c & 0xF0; //give cHi the high 4 bits of c
 unsigned char cLo = c & 0x0F; //give cLo the low 4
bits of c
 cLo = cLo * 0x10; //shift cLo left 4
bits
 lcdDataWork(cHi);
 lcdDataWork(cLo);
}

void lcdCharWork(unsigned char c)
{
 c &= 0xF0; //keep data bits,
clear the rest
 c |= 0x0A; //set E and RS
high
 LCD = c; //wr ite to LCD
 delay_ms(2); //delay
 c ^= 0x08; //set E low
 LCD = c; //wr ite to LCD
 delay_ms(2); //delay
 c |= 0x08; //set E high
 LCD = c; //wr ite to LCD
 delay_ms(2); //delay
}

void lcdChar(unsigned char c)
{
 unsigned char cHi = c & 0xF0; //give cHi the high 4 bits of c
 unsigned char cLo = c & 0x0F; //give cLo the low 4
bits of c
 cLo = cLo * 0x10; //shift cLo left 4
bits

 lcdCharWork(cHi);
 lcdCharWork(cLo);
}

void lcdStr ing(unsigned char ca[])
{
 int i = 0;
 while (ca[i] != '\0')
 {
 lcdChar(ca[i++]);
 }
}

void lcdInt(int value)
{
 int temp_val;
 int x = 10000;
 int leftZeros=5;

 if (value<0)
 {
 lcdChar('-');
 value *= -1;
 }

 while (value / x == 0)
 {
 x/=10;
 leftZeros--;
 }

 while ((value > 0) || (leftZeros>0))
 {
 temp_val = value / x;
 value -= temp_val * x;
 lcdChar(temp_val+ 0x30);
 x /= 10;
 leftZeros--;

 }

 while (leftZeros>0)
 {
 lcdChar(0+ 0x30);
 leftZeros--;
 }

 return;
}

void lcdGoto(int row, int col)
{
 unsigned char pos;
 if ((col >= 0 && col <= 19) && (row >= 0 && row <= 3))
 {
 pos = col;
 if (row == 1)
 pos += 0x40;
 else if (row == 2)
 pos += 0x14;
 else if (row == 3)
 pos += 0x54;
 lcdData(0x80 + pos);
 }
}

void lcdInit(void)
{
 delayInit(); //set up the delay functions
 LCDDDR = 0xFF; //set LCD port to outputs.
 delay_ms(20); //wait to ensure LCD
powered up
 lcdDataWork(0x30); //put in 4 bit mode, part 1
 delay_ms(10); //wait for lcd to f inish
 lcdDataWork(0x30); //put in 4 bit mode, part 2
 delay_ms(2); //wait for lcd to f inish
 lcdData(0x32); //put in 4 bit mode, part 3
 lcdData(0x2C); //enable 2 line mode
 lcdData(0x0C); //turn everything on

 lcdData(0x01); //clear LCD
}

/*********
 * Servo *
 *********/

void ServoCInit(void)
{
 TCC0_CTRLA = 0x05; //set TCC0_CLK to CLK/64
 TCC0_CTRLB = 0xF3; //Enable OC A, B, C, and D.
Set to Single Slope PWM
 //OCnX = 1 from
Bottom to CCx and 0 from CCx to Top
 TCC0_PER = 10000; //20ms / (1/(32MHz/64)) =
10000. PER = Top
 TCC1_CTRLA = 0x05; //set TCC1_CLK to CLK/64
 TCC1_CTRLB = 0x33; //Enable OC A and B. Set to
Single Slope PWM
 //OCnX = 1 from
Bottom to CCx and 0 from CCx to Top
 TCC1_PER = 10000; //20ms / (1/(32MHz/64)) =
10000. PER = Top
 PORTC_DIR = 0x3F; //set PORTC5:0 to output
 TCC0_CCA = 0; //PWMC0 off
 TCC0_CCB = 0; //PWMC1 off
 TCC0_CCC = 0; //PWMC2 off
 TCC0_CCD = 0; //PWMC3 off
 TCC1_CCA = 0; //PWMC4 off
 TCC1_CCB = 0; //PWMC5 off
}

void ServoDInit(void)
{
 TCD0_CTRLA = 0x05; //set TCC0_CLK to CLK/64
 TCD0_CTRLB = 0xF3; //Enable OC A, B, C, and D.
Set to Single Slope PWM
 //OCnX = 1 from
Bottom to CCx and 0 from CCx to Top
 TCD0_PER = 10000; //20ms / (1/(32MHz/64)) =

10000. PER = Top
 TCD1_CTRLA = 0x05; //set TCC1_CLK to CLK/64
 TCD1_CTRLB = 0x33; //Enable OC A and B. Set to
Single Slope PWM
 //OCnX = 1 from
Bottom to CCx and 0 from CCx to Top
 TCD1_PER = 10000; //20ms / (1/(32MHz/64)) =
10000. PER = Top
 PORTD_DIR = 0x3F; //set PORTC5:0 to output
 TCD0_CCA = 0; //PWMC0 off
 TCD0_CCB = 0; //PWMC1 off
 TCD0_CCC = 0; //PWMC2 off
 TCD0_CCD = 0; //PWMC3 off
 TCD1_CCA = 0; //PWMC4 off
 TCD1_CCB = 0; //PWMC5 off
}

void ServoC0(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCC0_CCA = (750 + value); //Generate PWM.
}

void ServoC1(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCC0_CCB = (750 + value); //Generate PWM.
}

void ServoC2(int value)

{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCC0_CCC = (750 + value); //Generate PWM.
}

void ServoC3(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCC0_CCD = (750 + value); //Generate PWM.
}

void ServoC4(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCC1_CCA = (750 + value); //Generate PWM.
}

void ServoC5(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250

 TCC1_CCB = (750 + value); //Generate PWM.
}

void ServoD0(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD0_CCA = (750 + value); //Generate PWM.
}

void ServoD1(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD0_CCB = (750 + value); //Generate PWM.
}

void ServoD2(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD0_CCC = (750 + value); //Generate PWM.
}

void ServoD3(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms

 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD0_CCD = (750 + value); //Generate PWM.
}

void ServoD4(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD1_CCA = (750 + value); //Generate PWM.
}

void ServoD5(int value)
{
 if (value > 100) //cap at +/- 100
 value = 100; // -100 => 1ms
 else if (value < -100) // 0 => 1.5ms
 value = -100; // 100 => 2ms
 value *= 5; //multiply value by 2.5
 value /= 2; // new range +/- 250
 TCD1_CCB = (750 + value); //Generate PWM.
}

/********
 * ADCA *
 ********/

void ADCAInit(void)
{
 ADCA_CTRLB = 0x00; //12bit, r ight adjusted
 ADCA_REFCTRL = 0x20; //set to Vref = Vcc/1.6 =
2.0V (approx)
 ADCA_CH0_CTRL = 0x01; //set to single-ended
 ADCA_CH0_INTCTRL = 0x00; //set f lag at conversion complete.

Disable interrupt
 ADCA_CH0_MUXCTRL = 0x08; //set to Channel 1
 ADCA_CTRLA |= 0x01; //Enable ADCA
}
int ADCA0(void)
{
 ADCA_CH0_MUXCTRL = 0x00; //Set to Pin 0
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA1(void)
{
 ADCA_CH0_MUXCTRL = 0x08; //Set to Pin 1
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA2(void)
{
 ADCA_CH0_MUXCTRL = 0x10; //Set to Pin 2
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA3(void)
{
 ADCA_CH0_MUXCTRL = 0x18; //Set to Pin 3

 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA4(void)
{
 ADCA_CH0_MUXCTRL = 0x20; //Set to Pin 4
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA5(void)
{
 ADCA_CH0_MUXCTRL = 0x28; //Set to Pin 5
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}
int ADCA6(void)
{
 ADCA_CH0_MUXCTRL = 0x30; //Set to Pin 6
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result

}
int ADCA7(void)
{
 ADCA_CH0_MUXCTRL = 0x38; //Set to Pin 7
 ADCA_CTRLA |= 0x04; //Start Conversion on ADCA
Channel 0
 while ((ADCA_CH0_INTFLAGS & 0x01) != 0x01); //wait for conversion
to complete
 delay_ms(10);
 int value = ADCA_CH0_RES; //grab result
 return value; //return result
}

#include <avr/io.h>
#include <avr/interrupt.h>
#include "PVR.h"

/*==
The Following three functions are used to control
the Motor Dr iver 1A Dual TB6612FNG sku: ROB-09457
from SparkFun Electronics.

dr ivemotorsinit(void) - This function initializes the
IO Pins on Port J and readies them for use with
the motor dr iver .

dr ivemotorA(int mode, int speed) - This function takes an integer from
1-5 as the mode, and a number from 0-100 for the
speed as a percentage of max speed.

dr ivemotorB(int mode, int speed) - This function takes an integer from
1-5 as the mode, and a number from 0-100 for the
speed as a percentage of max speed.

Wir ing Directions:
Left Side of Chip
 Plug Vm into the pin labeled PWM D5(Vcc)
 Plug Vcc into one of the Power Bus's Vcc pins

 Plug Gnd into a Power Bus's Gnd Go through and plug all the grounds
on the
 chip into pins on
the power bus or wire them
 all together and
plug in one.
 Plug A01 into a plug on motor A
 Plug A02 into the other plug on motor A
 Plug B01 into a plug on motor B
 Plug B02 into the other plug on motor B
Right Side of Chip
 Plug PWMA into Port F0(Signal)
 Plug AIN2 into Port J pin 0
 Plug AIN1 into Port J pin 1
 Plug STBY into Port J pin 2
 Plug BIN1 into Port J pin 3
 Plug Bin2 into Port J pin 4
 Plug PWMB into Port F1(Signal)

===*/

void dr ivemotorsinit(void){
 PORTJ_DIR |= ((1<<0) | (1<<1) | (1<<2) | (1<<3) | (1<<4)); // Set pins
0-4 as output (1)
 PORTJ_OUT = ((1<<0) | (1<<1) | (1<<2) | (1<<3) | (1<<4)); // Set all
pins to Output Low (0), this puts both motors in standby

 TCF0_CTRLA = 0x05; //set TCC0_CLK to CLK/64
 TCF0_CTRLB = 0xF3; //Enable OC A, B, C, and D.
Set to Single Slope PW
 //OCnX = 1 from Bottom to CCx and 0 from CCx to Top
 TCF0_PER = 10000; //20ms / (1/(32MHz/64)) =
10000. PER = Top
 PORTF_DIR = 0x3F; //set PORTF:0 to output
 TCF0_CCA = 0; //PWMF0 off
 TCF0_CCB = 0; //PWMF1 off

}

void dr ive(int direction, int r ightspeed, int leftspeed){

 if (leftspeed > 100){
 leftspeed = 100;
 }

 if (leftspeed < 0){
 leftspeed = 0;
 }

 if (r ightspeed > 100){
 r ightspeed = 100;
 }

 if (r ightspeed < 0){
 r ightspeed = 0;
 }

 TCF0_CCA = (1000*r ightspeed); // Set the Duty Cycle
 TCF0_CCB = (1000*leftspeed); // Set the Duty Cycle

 if (direction == 1){ // Forward
 PORTJ_OUT = ((1<<0) | (0<<1) | (1<<2) | (1<<3) | (0<<4) |
(1<<2));
 }
 if (direction == 2){ // Reverse
 PORTJ_OUT = ((0<<0) | (1<<1) | (1<<2) | (0<<3) | (1<<4) |
(1<<2));
 }
 if (direction == 3){ // Right
 PORTJ_OUT = ((1<<0) | (0<<1) | (1<<2) | (0<<3) | (1<<4) |
(1<<2));
 }
 if (direction == 4){ // Left
 PORTJ_OUT = ((0<<0) | (1<<1) | (1<<2) | (1<<3) | (0<<4) |
(1<<2));;
 }

}

void dr ivemotorA(int mode, int speed) {

 if (speed > 100){
 speed = 100;
 }

 if (speed < 0){
 speed = 0;
 }

 TCF0_CCA = (1000*speed); // Set the Duty Cycle

 if (mode == 1){ // Standby
 PORTJ_OUT = (0<<2);
 }
 if (mode == 2){ // Stop
 PORTJ_OUT = ((0<<0) | (0<<1) | (1<<2));
 }
 if (mode == 3){ // Short Brake
 PORTJ_OUT = ((1<<0) | (1<<1) | (1<<2));
 }
 if (mode == 4){ // Clockwise
 PORTJ_OUT = ((1<<0) | (0<<1) | (1<<2));
 }
 if (mode == 5){ // Counter Clockwise
 PORTJ_OUT = ((0<<0) | (1<<1) | (1<<2));
 }
}

void dr ivemotorB(int mode, int speed) {
 if (speed > 100){
 speed = 100;
 }

 if (speed < 0){
 speed = 0;
 }

 TCF0_CCB = (1000*speed); // set the Duty cycle

 if (mode == 1){ // Standby
 PORTJ_OUT = (0<<2);
 }
 if (mode == 2){ // Stop
 PORTJ_OUT = ((0<<3) | (0<<4) | (1<<2));
 }
 if (mode == 3){ // Short Stop
 PORTJ_OUT = ((1<<3) | (1<<4) | (1<<2));
 }
 if (mode == 4){ // Clockwise
 PORTJ_OUT = ((1<<3) | (0<<4) | (1<<2));
 }
 if (mode == 5){ // Counter Clockwise
 PORTJ_OUT = ((0<<3) | (1<<4) | (1<<2));
 }
}

Main Program

#include <avr/io.h>
#include "PVR.h"
#include "MotorFunctions.h"

#def ine FC (ADCA1() + ADCA1() + ADCA1()+ ADCA1() + ADCA1()) / 5
#def ine FR (ADCA2() + ADCA2() + ADCA2()+ ADCA2() + ADCA2()) / 5
#def ine FL (ADCA3() + ADCA3() + ADCA3()+ ADCA3() + ADCA3()) / 5

#def ine BC (ADCA4() + ADCA4() + ADCA4()+ ADCA4() + ADCA4()) / 5

int i;
int j;
int k;

int thresh;

thresh = 500;

void main(void)
{
 xmegaInit(); //setup XMega
 delayInit(); //setup delay functions
 ADCAInit(); //setup PORTA
analong readings
 lcdInit(); //setup LCD on
PORT K
 ServoDInit(); //setup PORTD
Servos
 ServoCInit(); //setup PORTC
Servos
 dr ivemotorsinit(); //setup motors
 PORTQ_DIR |= 0x01; //set Q0 (LED) as
output
 PORTB_DIR |= 0x00; //set B0 as input
 PORTH_DIR |= 0x01; //set H0 as output

 while(1)
 {

 PORTH_OUT = 0x01;

 i = PORTB_IN;
 i = i & 0x01;

 j = PORTB_IN;
 j = j & 0x02;

 k = PORTB_IN;
 k = k & 0x04;

 lcdInit();

 if(i == 1)
 {
 dr ive(1,0,0);
 delay_ms(300);
 lcdStr ing("Entered Off");
 lcdGoto(1,0);
 lcdStr ing("Limits Area");
 dr ive(2,80,80);
 delay_ms(2000);
 dr ive(3,80,80);
 delay_ms(3*FC^2);
 }
 else
 {
 if(FC < thresh)
 {
 lcdInit();
 dr ive (1,0,0);
 delay_ms(300);

 if (FR < thresh && FL < thresh)
 {
 lcdStr ing("Obstacle->Front");
 lcdGoto(1,0);
 lcdStr ing("Side");
 dr ive(2,FC/5,FC/5);
 delay_ms(5*FC^2);
 dr ive(3,FC/5,FC/5);
 delay_ms(FC^2);
 }
 else if (FR < thresh)
 {
 dr ive(4,FR/5,FR/5);
 lcdStr ing("Obstacle->Front");

 lcdGoto(1,0);
 lcdStr ing("Right side");
 delay_ms(FR^2);
 }
 else if (FL < thresh)
 {
 dr ive(3,FL/5,FL/5);
 lcdStr ing("Obstacle -> Front");
 lcdGoto(1,0);
 lcdStr ing("Left side");
 delay_ms(FL^2);
 }
 else
 {
 dr ive(2,90,90);
 delay_ms(FC^2);
 dr ive(3,90,90);
 delay_ms(1500);
 }
 }
 else if (FR < thresh)
 {
 dr ive(1,80,50);
 delay_ms(FR^2);
 }
 else if (FL < thresh)
 {
 dr ive(1,50,80);
 delay_ms(FL^2);
 }
 else if (FR < thresh & FL < thresh)
 {
 dr ive(2,80,80);
 delay_ms(FR^2);
 dr ive(FR/7,80,80);
 delay_ms(FL^2);
 }
 else if (j == 0 | k == 0)
 {
 dr ive(1,0,0);

 delay_ms(300);

 if (j == 0)
 {
 lcdStr ing("Left Side");
 lcdGoto(1,0);
 lcdStr ing("Collision");
 dr ive(2,80,80);
 delay_ms(2000);
 dr ive(3,80,80);
 delay_ms(2000);
 }
 else
 {
 lcdStr ing("Right side");
 lcdGoto(1,0);
 lcdStr ing("Collision");
 dr ive(2,80,80);
 delay_ms(2000);
 dr ive(3,80,80);
 delay_ms(2000);
 }
 }
 else
 {
 dr ive(1, 100, 100);
 lcdStr ing("Lawntonomous");
 lcdGoto(1,0);
 lcdStr ing("Maximus");
 delay_ms(500);
 }
 }
 }
}

	

