A Quadruped Walking Robot
Frank Bergschneider
Robot Name: Mini-Dog
EEL 5666 Intelligent Machine Design Laboratory

Instructors: Dr. A. Antonio Arroyo
Dr. Eric M. Schwartz
TAs: Ryan Chilton and Josh Weaver

Table of Contents

IO N o3 1 ot S 3
2. EXECULIVE SUMMAIYoiiiiiiiicteeiee sttt ettt e st e e beesteesabe e sbaeesbeebaestbeestaesbaeeateesbeesabeenteesssesaseenseenans 3
K TR 1011 oo o3 T o 3
O 101 (=10 - LC=To IS V) (=T 1 USSP S PP 4
ST Y/ o o 1 L3N o 1 {0 ST 5
T AN od - L1 o] o S 7
-] 1110 £ O T O T TP UT ST PUPTOPOPTOPI 8
ST = =1 T VT SR 11
9. Experimental Layout and RESUILScc.eeciieiieie ettt ettt sve e ste e s be e te e saaeenreas 13
10. O] o [1ES] o] o PSS TURRSPRRRR 16
11. [To Tl U =101 =LA o] TS 16
12. F N o] 0110 Lo [Tt SRR USSR 17

1. Abstract

Mini-Dog is an intelligent autonomous quadruped robot designed to follow a designated leader
using color tracking with a camera. Legged robots excel at traversing rugged terrain and open
new possibilities for troop support roles, autonomous exploration, and the study of walking
mechanics. The Mini-Dog is a proof of concept robot that demonstrates quadruped locomotion,
which could be further developed to incorporate autonomous navigation by GPS and scaled up to
carry supply loads.

2. Executive Summary

Mini-Dog’s goal is to demonstrate quadruped locomotion and follow a designated leader by
using color tracking. The leader will hold a colored piece of poster board and Mini Dog will
track the leader as they move around. The robot consists of a mobile platform with four legs and
a Droid phone with an IP Webcam application installed, and a laptop for image processing. The
mobile platform consists of a microcontroller board that handles all low level servo control,
sensor inputs, LED direction display, and also direction arbitration based on input from the
sensors and direction information received from the laptop. The color tracking algorithm is
performed on a remote laptop and direction data is sent to the robot by an Xbee connection. The
color tracking program contains logic for determining if the robot is too close to the leader and if
the color is present or if simply color noise from the environment is present. When the robot is
turned on, it moves to a static standing position and waits for direction information from the
color tracking program. If no direction information is received after approximately 1 minute,
then the robot enters search mode and begins to search for the leader. Once the leader is found,
the robot will actively follow the leader until it reaches a close position and waits for the leader
to continue moving.

3. Introduction

Legged robots have reached the point where they are transitioning from the areas of research and
development to commercially available products. Recent developments include Esko Bionics
Exoskeleton, IHMC Mina Exoskeleton and Boston Dynamics’ LS3 Big Dog, Little Dog and
PETman robots. The focus of this project is on quadruped walking robotics. The Mini-Dog is
designed to be an autonomous quadruped walking robot capable of following a leader using a
camera. It will employ quadruped locomotion to follow its target. The robot is specifically
inspired by Boston Dynamics’ LS3 Big Dog and Little Dog quadruped robots.

The robot will follow a leader using a camera to track a specifically colored target worn by the
leader. The camera is a Droid cell phone with an IP camera application installed, and
OpenCV/C++ is used for image processing on an off board laptop computer. The laptop will
handle the image processing and communicate to the robot which direction to go. The robot will
use this information and do trajectory planning onboard. The laptop and robot communicate

wirelessly using Xbee radio modules. It will employ 1 sonar sensor and 2 IR sensors for object
detection and avoidance. The sonar would be used as an input into the trajectory planning of the
robot.

4. Integrated System

The Mini Dog robot consists of two parts: the mobile robotic platform and a stationary laptop
computer. The mobile robotic platform consists of a Xmega microcontroller board, Xbee Series
1 radio module, sonar and IR sensors, LED array, Motorola Droid with IPWebcam application
installed, a 2200 mAh LiPo battery, and 4 legs actuated by 2 servos on each leg. The laptop
computer consists of an Xbee USB Explorer module with an Xbee Series 1 module installed,
Visual Studios 10 with the OpenCV libraries, ManyCams Virtual Webcam software, and IP
Webcam Adapter software running on Windows 7 OS. A Linksys WRT54GL Wireless
Broadband router is used for an IP/TCP connection between the Droid phone and the laptop.

LiPo Battery Droid Cam g
Router
2
Servos x8 44— Xmega 3
Microcontroller (¢ P Xbee)
Laptop
LED Array ¢— OpencV
T T ManyCam Virtual Webcam
IP Camera Adapter
IR Sensor x2| | Sonar Senor Bluetooth Dongle

— Xbee
Mobile Platform — |P/TCP

— Analog
= USART

Figure 1: System Block Diagram

The microcontroller board is the Epiphany ATxmegal28A1U from OOTB Robotics. The
development environment used for the microcontroller is Atmel Studio and the microcontroller is
programmed in the language is C. The microcontroller programming software is chip45boot2
programmer. The color tracking camera software was developed in Visual Studios 10 with the
OpenCV libraries and the language is C++. The below tables contain a summary of the primary
hardware and software components used for the robot.

Component Location Function Description
Motorola Droid Phone Robot IP Webcam | Android v2.2.3, Arm Cortex A8 550
MHz Processor, 5SMP camera
Xmega Board Robot Controller | ATxmegal28A1U Development Board
Xbee Series 1 Module | Robot/Laptop Xbee Digit International Series 1 Xbee Radio
Connection
Xbee Explorer Laptop Xbee Funspark Xbee USB Explorer
Connection
Laptop Laptop Image Gateway MS2274 with Windows 7 OS
Processing
Router Laptop IP Linksys WRT54GL Wireless
Connection Broadband
Table 1: Primary Hardware Components
Software Location Function Description
IP Webcam App Droid IP Webcam Video over IP
Phone
IP Camera Adapter Laptop IP Webcam Network camera adapter
ManyCam Virtual Laptop IP Webcam Mount IP Webcam as virtual webcam
Webcam
MS Studio 10 Laptop Image Color tracking from IP Webcam video
Processing stream
X-CTU Laptop Xbee Setup | Configure Xbee network addresses

Table 2: Primary Software Components

5. Mobile Platform

The mobile platform has evolved from the initial design to a shorter, more stable design. The
knee servos have also been mounted on the outside of the thigh to avoid hitting the body, and to
make the thigh as shorter as possible to minimize the torque on the hip servos. The body was
constructed from %" aluminum angle brackets because of the high torques and loads the body
experiences during walking. The legs were constructed from 1/8” laminated plywood. This same
plywood was used as top cover for the body to mount the sensors and Droid phone. A 1/16” steel
hurricane strap was bent into a mount to hold the Droid phone. Small angles brackets were used
to mount the sensors to the top covers. Primarily, 4-40 and 6-32 screws and lock nuts were used
to fasten components together. Rubber doorstops were added to the bottom of the legs to provide
more traction between the floor and legs, which improved the walking behavior.

Figure 2. Initial Mobile Platform Design
B FEe e

Figure 3. Assembled Mobile Platform

Figure 4. Final Mobile Platform

6. Actuation

The robot will move using 4 actuated legs employing a 4-legged animal gait (e.g. Similar to a cat
or dog, etc) with servo actuated hip and knee joints with a passive shock absorber/spring shank
segment. It will employ 4 Hitec HS-755Hb 1/4 Scale Servo HRC33755S for the robot’s hip, and
4 HD Power servos for the knees. Below is a sample gait pattern for one leg. All four legs
implement this walking pattern simultaneously for forward and turning locomaotion. The pattern
is implemented in parts for each leg during a single gait cycle. For an example of the forward
movement sequence, the front left leg pulls back and extends, then the front right and back leg
shift backwards pushing the body forward, the front left then shifts back, the back right swings
back and extends forward, the front right and back left then shift back, and finally the back right
shifts back to complete the cycle. Because of concerns about dynamic stability and excessive
load on the servos, the walking pattern is executed in complete cycles even if any object is
detected by the sensors. Because each gait pattern takes approximately 1 second to execute, this
leads to decreased responsiveness when obstacle avoidance behaviors are necessary. For turning,
the basic change in the gait pattern is to decrease the joint angles on the desired turning side, and
increase the joint angles on the opposite. For a hard turn, this same pattern was applied with the
addition of keeping the back leg on the turning side stationary to decrease forward movement.

LAGLNS

Figure 5: Walking Gait Pattern

7. Sensors

The sensors used for the robot are: (x2) IR Distance sensor, (x1) Sonar Range Finder, and
Motorola Droid IP Camera with the color tracking vision system. The below table list the sensors
used, and each sensor is detailed below.

Sensor Function Qty
LV-MaxSonar-EZ4 Forward Object Sonar Range Finding 1
Sharp GP2Y0A21 Side IR Distance Sensing 2

Droid Camera Image Acquisition 1

Table 3: Sensor Selection
Sonar Sensor

The LV-MaxSonar-EZ4 is a sonar range finder with a working range of 1-21”. Currently, the
analog output is being sampled, which gives a scaled voltage from 0-Vcc (3.3 V). The output
voltage is extremely noise, which is due to the sensor’s electronic noise susceptibility. A lowpass
filter was implemented in software for this sensor. The filter takes a weighted average of current
and two previous samples. The equation is given by

Filtered X[n]=(4/6)*x[n]+(1/6)*X[n-1]*(1/6)*x[n-2]

LV-MaxSonar®-EZ4 "~ Circuit

The LV-MaxSonar"-EZ4" sensor functions using
active components consisting of an LM324, a diode
array, a PIC16F676, together with a variety of
passive components.

&
4
1 v o 1w
T
1 14
Z x 13
9
L;<’" ™ e
e

+

3

F
1

e
o
|:
+

1 _{ 11
188K ,wi E . o
| 3 12
7 8
S-THR VILLIBrBTE |
%B.B!u

4.7
7
688,
o.1u I I

Figure 6: Sonar Circuit

IR Distance Sensor

The Sharp GP2Y0A21 is a IR Distance sensor with a working range of 4-32”. It outputs a

voltage scaled from 0-Vcc (3.3 V). A lowpass filter was implemented in software for these
Sensors.

B Absolute Maximum Ratings (Ts=25C,Vcc=5V)
Parameter Svmbol Rating Unit
Supply voltage Ve -0.3 to +7 V
Qutput terminal voltage Vo -0.3 to V0.3 \Y
Operating temperature Tope -10 to +60 C
Storage temperature Tag -40 to +70 C

Figure 7: IR Specification

Color Tracking Vision System

The overall objective is to follow a leader using quadruped locomotion and a color tracking
vision system. The color tracking system is the “special” system, which allows to the robot to
follow a leader. The system consists of a Motorola Droid with Android OS 2.3.2 and IP Webcam
Application installed with a Gateway MS2254 laptop running Visual Studios for image

processing. The Droid IP Webcam required two extra programs to access Droid cam MJPEG
stream on the laptop: IP Webcam Adapter and ManyCam Virtual Webcam. The virtual webcam
was not displayed in the Device Manager in Windows, but was listed as WebCam 0 when
accessed by OpenCV. There is also approximately a 1-2 second lag from Droid camera to
processed video. The IP Webcam app was written by Pavel Khlebovich.

The image processing algorithm performs a color thresholding of the desired color, calculates the
number pixels of the desired color and the center of mass position of the pixels. This information
is used to determine if the number of pixels is greater than the minimum number of pixels
required to detect the colored badge. This is to prevent noise pixels from being counted as the
badge. If the number of pixels is greater than the minimum, then the x position of the CoM is
sent to the robot. One problem encountered was that the images from the IP Webcam were very
noisy and delayed at least 1 second. To counter the effects of the noise, the OpenCV
morphological operation erode and dilate were used to shrink small patches of noisy pixels and
grow large patches of closely clustered pixels respectively. The delay seemed to be unavoidable
due to the chain of programs the video was being passed through.

Motorola Droid
== IP Webcam App — Router =
Laptop
OpenCV
ManyCam Virtual Webcam
. IP Camera Adapter
Target Microcontroller <] Bluetooth Dongle
BlueSMIRF
= Xbee
— IP/TCP

Figure 8: Color Tracking Vision System Block Diagram

The HSV color scale was used to characterize the colored badge that the robot will follow. Neon
green was selected based on the results of experiments with the vision system. The HSV values
for neon green are approximately 48-53; 200-230; 225-250. After testing with neon green, it was
determined that hot pink resulted in less noisy and stood out from the environment better. The
target was switched to hot pink with HSV values of approximately 330; 100; 100.

10

HSV

Saturation

Value

)Hue

Figure 9: HSV Color Classification

Communication

The final communication module was used the Xbee 1mW Trace Antenna Series 1 radio
modules. The Xbees provided a wireless communication link between the laptop and the robot.
A SparkFun Xbee USB Explorer was to interface the Xbee module to the USB port on the
laptop. The Xbee modules were configured using X-CTU from Digi International. The PAN IDs
were changed to 3000 to prevent communicating on other channels given the number of other
robots using Xbee.

Figure 10: Xbee Module

8. Behaviors

Mini-Dog has two basic behaviors: Follow the leader and search for the leader. Once the robot is
turned on, it moves all of its servos to the zero positions and waits for approximately 5 seconds.
The zero position is 90 degrees for all the servos. Once it has zeroed the servos, the robot waits
for approximately 1 minute to get direction information from the laptop. During this period, the
robot doesn’t move. If no directions are received in this time period, then the robot starting
walking in search of the leader. During this period, the robot relies on sensor input only and tries
to move forward in a direction without any obstacles. Because of the difficulties with turn, the
threshold for the robot to perform a turn in this mode are very low. Movement in this mode is
essentially random because of the interactions with the environment. The robot will continue to

11

explorer for about 2 minutes, and then return to a stationary state. The robot will return to search
mode after approximately 1 more, and this cycle will continue until a leader is found. Obstacle
avoid is based on upper and lower sensor threshold for the IR and sonar sensors. There is also
logic for sudden large increases in the sensor values which indicate sudden movement near the
robot.

If the leader’s color is detected, then the robot receives a direction from the laptop to go forward,
turn left or turn right to follow the leader. As long as the leader is found, the robot will follow
indefinitely. If the leader’s color is found but the number of pixels of the color is too large than
the robot does not move until the number of pixels decreases below a threshold. This prevents
the robot from running into the leader. The flow charts for the robot and color tracking program
are given below.

Open Serial
Port and Video
Stream

Get Direction
From Sensors

1

Select HSV
Direction Search =Foii:Video
Message No Period?
Yes Yes .Get Next
3 3 Video Frame
and Calc
i Direction
Direction Use Sensor
Arbitrator Direction

nPixels <
Too Close
Threshold

4

Move
According to
Direction

nPixels >
Noise
Threshold

Transmit

Direction

Figure 11: Mini Dog Flow Chart

12

9. Experimental Layout and Results

Walking Algorithm Experiments

These experiments are ongoing. | have finished assembling the legs, and I have been
experimenting with different walking patterns. | have moved away from a stiff cautious gait to
one that is more biologically inspired by a cat’s gait. | have found that to be able to smoothly
move the leg forward, it must be rotated back and then lift the shin to avoid scrapping the foot on
the ground.

Droid Camera Image Processing Experiment

A small colored target was placed in different environments and lighting conditions to test the
effects on the color tracking system. Several colors were tested and neon green was chosen
because it was very dissimilar to any colors found in the environment. The vision system would
detect large amounts of noise if the selected color was very similar to other colors in the image,
eg if neon pink was chosen, noise pixel would appear occasionally in any red or orange in the
image. The color tracking program on the laptop will be calibrated during operation by selecting
the color manually in the operating environment (mouse click on the desired color).

Neon Green HSV 48-53 ;: 200-230; 225-250

Pixel Threshold for Target Presence 1000

P e"o R W™ m

Figure 12: Processed Droid camera stream

13

Many

72 8% RE %™ %S

Figure 13: Processed Droid camera stream with noise from environment

Sonar Sensor Characterization

The sonar was mounted on the robot, and the sensor values were recorded as a large board was
moved toward the sensor. The analog output of the Sharp sonar sensor is known to be very
susceptible to electronic noise. The first plot shows considerable variation in output voltage for a
slowly moving target. This led to using a low pass filter in software. The second plot shows a
smoother (noisy samples were manually removed) curve for reference.

3.5

3

Voltage (V)
= N
(02} N (02}

[ERN

0
0 20 40 60 80 100 120 140 160

Distance (in)

Figure 14: Noisy Analog Output from LV-MaxSonar-EZ4

14

Voltage (V)
o = N w
[V ST, B SR T, I TR BN

-0.5

A\ o~

20

40

60

80

100 120 140

160

Distance (in)

Figure 15: Reference Analog Output from LV-MaxSonar-EZ4

IR Sensor Characterization

The IR sensors were mounted on the robot, and the sensor values were recorded as a large board
was moved toward the sensors. The analog output of the sensor was much more consistent than
the sonar sensor. There were slightly differences between the two sensors. One was show more
susceptibility to noise. This may be due to faulty wiring on the noisier sensor. Lowpass filters

will also be implemented in software for these sensors.

3.5

3

2.5

2

1.5

Voltage (V)

1

0.5

10

20

30

40

Distance (in)

50 60 70

80

Figure 16: Analog Output from Sharp GP2Y0A21 Distance Sensor

15

10. Conclusion

The Mini Dog robot has taught me some valuable lessons about embedded programming, image
processing, and commercially valuable sensors and components. | learned that simplicity is a
very good thing. The complexity of the walking algorithm took a lot of time to develop and |
wish | had got to focus more on the Xmega and OpenCV aspects of the project. | will definitely
continue developing the robot. There are quite a few changes | would like to make in the future
to the robot. | would like to add a 3" degree of freedom to each leg to enhance the turning
abilities of Mini Dog. This would allow for much sharper turns with less overall servo
movements. It would also good to have foot switches mounted on the bottom of the foot to
indicate if the foot is touching the ground. The foot switches would be used as feedback for gait
control. Ideally, the robot would be able to walk over uneven ground, and foot down information
would be valuable. I would also like to have an embedded camera with on board image
processing via an Odroid or BeagleBoard. Wireless communication proved to be problematic
and having a self-contained robot would make it more reliable and practical.

11. Documentation

Mini-Dog Website https://sites.google.com/site/minidogfbb/

Epiphany Xmega Board http://ootbrobotics.com/

LV-MaxSonar-EZ4 Sonar: http://www.pololu.com/file/0J85/gp2y0a21ykOf.pdf

Sharp GP2Y0A21 IR Sensor: http://www.jameco.com/Jameco/Products/ProdDS/2157335.pdf

Xbee Datasheet: https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

HSV http://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg

HD MG1501 Servos http://www.pololu.com/catalog/product/1057

GForce 2200mAnh LiPO http://www.valuehobby.com/

ManyCams http://www.manycam.com/

IP Webcam https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en

IP Camera Adapter http://ip-webcam.appspot.com/

16

12. Appendices
A. Mini Dog Code

Adapted
/ *

* Mini D

Major
3/27/
3/16/
3/7/1

Crea
Auth

¥ Ok X X X X ¥ ¥

*
~

//#inclu
//#inclu
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine

uints_t
uints_t
uints_t
uints_t
uints_t
uints_t
uints_t

17

from OOTB Robotics Library

og

Change log:

13: Updated direction arbitrator logic
13: Updated walking algo

3: Updated walking algo

ted: 1/20/2013
or: Frank Bergschneider

de <ctype.h>

de <stdint.h>
<avr/io.h>
<util/delay.h>
<math.h>
<stdlib.h>
<stdio.h>
<avr/interrupt.h>
<string.h>

"clock.h"
"ATtinyServo.h"
"uart.h"
"ADC_manual.h"

MIN(a,b) (((a)<(b))?(a): (b))

MAX(a,b) (((a)>(b))?(a): (b))

analogChannell @ //analog channel on port A ADC Channel ©
analogChannel2 1 //analog channel on port A ADC Channel 1
leftIRPin 3

rightIRPin 2

sonarPin 1

leftIRThr_U 200

leftIRThr_L 60 //40

rightIRThr_U 200 //90

rightIRThr_L 60

sonarThr_U 254

sonarThr_L 50

sonarThr_U2 110

sonarThr_L2 60

BT_str usartDO_str//usartDO_str //Bluetooth port, Pin2=Rx, Pin3=Tx

lastLR; //last side direction detected used for hard turns
direction;

directioni;

direction2;

direction3;

directionFromCamera;

objectFound;

uint8_t dT=10, dK=15;

uint8_t sZ=90; //all servos are zeroed at 90 deg
uint8_t countSincelastMsg;

//uint8_t msgCount;

uint8_t sonar_Filtered;

uint8_t rightIR_Filtered;

uint8_t leftIR_Filtered;

uint8_t senseturn;

void talkTolLaptop(void); //talk to laptop vision system
void directionMessage(void); // calls talkToLaptop three times to get direction
void turnLeft(void);

void turnRight(void);

void goForward(void);

void turnLeftHard(void);

void turnRightHard(void);

void nextState(void);

void zeroServos(void);

void cylon(void);

void cylon_slow(void);

int main(void)

{
uint8_t move=0;

//global var initializations
senseturn=0;
sonar_Filtered=50;
rightIR_Filtered=50;
leftIR_Filtered=50;
direction=1; directionl=1; //direction2=5; direction3=5;
directionFromCamera=1;
objectFound=0;
countSincelastMsg=0;
//msgCount=0;

lastLR=4;

int go=1, BTLED=0;

clockInit();
ATtinyServoInit();
PORTE.PIN3CTRL = PORT_SRLEN_bm; //decrease slew rate on Tiny pins

//Leg angles names: side|Thigh or Knee|Zero or Forward or Back
uint8_t sZ=90; //all servos are zeroed at 90 deg

/* ISR complete later
//initialize 5 Hz timer for sensing
//TCFO.CTRLA=TC_CLKSEL_DIV64 _gc; //0x01 select system clk /64
TCFO.CTRLA=TC_CLKSEL_DIV1_gc;
TCFO.PER=10000%64; //20 ms period
TCFO.CNT=0; //set counter to ©
//TCFO.INTCTRLA=TC_Ck1;
*/
//PORTE.DIRSET=0x80;//xbee pin
PORTE.OUTSET=PIN7_bm; //?
PORTE.DIRSET=PIN7_bm; //set PD3 as Tx/out

18

19

PORTE.DIRCLR=PIN6_bm; //Set D2 as Rx/in

usartInit(&USARTCO,115200);//USB port
usartInit(&USARTDO,9600);//Bluetooth port
usartInit(&USARTE1,9600);

sei(); //global interrupt enable

//PORTF.OUT = 0x00;
fprintf(&USB_str,"Start\r \n");
fprintf(&Xbee_str,"Start Xbee\r \n");

//Blink Debug LED and blue LED
PORTR.DIRSET=0x02;
PORTB.DIRSET=0xFF;

PORTB.OUT = OXxFF;
PORTD.DIRSET=0xXFF;

PORTD.OUT = 0x20;
zeroServos();

//cylon_slow();

PORTR.OUT = Oxff; //Inverted logic on port r!
//cylon_slow();

PORTB.OUT = 0x00;

//ADC likes being here, needs time for clock to initialize?
ADC_init();

while(go){
//Move laptop comm to ISR at 2 Hz
talkToLaptop();
//directionMessage();
nextState();

//R side servos: 2,3 L side servos: 1,4
if (direction==5){

//Straight

PORTD.OUT=0x20;

if (move){

goForward();

} else _delay_ms(1000);
} else if (direction==4){

//object on R, turn L, inc R step, dec L Step

PORTD.OUT=0x10;

PORTD.OUT=0x08;

if (move)

{

if(lobjectFound){

turnLeftHard();

} else turnLeft();

turnLeft();

} else _delay_ms(1000);

} else if (direction==6){
//object on L, turn R, inc L step, dec R Step

PORTD.OUT=0x40;
PORTD.OUT=0x80;
if (move){

if(lobjectFound){
turnRightHard();
} else turnRight();
turnRight();
} else _delay_ms(1000);
}else if(direction==9){
//Back up

if (lastLR==4){
PORTD.OUT=0x18;
if (move){
turnLeftHard();
turnLeftHard();
if (direction1==9){
turnLeftHard();
}
}else _delay ms(1000);
//nextState();

} else {
PORTD.OUT=0xCO;
if (move){
turnRightHard();
turnRightHard();
if (direction1==9){
turnRightHard();

}
}else _delay _ms(1000);

//_delay ms(1000);

}else if(direction==1){
//not sure what to do

cylon();
}
}
return 0;

void talkTolLaptop(void){
//talk to laptop vision system
//PORTB.OUT=0x01;
uint8_t msgCount=0;
directionFromCamera=0;
objectFound=0;

char xmsg="";
//char xmsg[10];

if (dataInBufE1()){
msgCount++;
fscanf(&Xbee_str,"%c",&xmsg) ;
//fprintf(&USB_str," Xbee Message! %c \r \n", xmsg);
//_delay ms(500);

20

countSincelastMsg=0;

}

if (dataInBufE1()){
msgCount++;
fscanf(&Xbee_str,"%c",&xmsg) ;
//fprintf(&USB_str," Xbee Message! %c \r
//_delay ms(500);

}

if (dataInBufE1l()){
msgCount++;
fscanf(&Xbee_str,"%c",&xmsg);
//fprintf(&USB_str," Xbee Message! %c \r
//_delay ms(500);

}

if(msgCount==1){
directionFromCamera=5; objectFound=1;
fprintf(&USB_str," Direction from camera

directionFromCamera);

} else if(msgCount==2){
directionFromCamera=4; objectFound=1;
fprintf(&USB_str," Direction from camera

directionFromCamera);

} else if(msgCount==3){
directionFromCamera=6; objectFound=1;
fprintf(&USB_str," Direction from camera

directionFromCamera);

}

void directionMessage(void){

}

void turnLeft(void){

21

//object on R, turn L, inc R step, dec L Step
uint8_t dT1=3;
uint8_t dTr=12;

//Front Right leg
setServoAngle(2,szZ+dT*4);
setServoAngle(6,sZ+dK*2);
//_delay ms(200);

//shift body forward
setServoAngle(1,sZ-dT);
setServoAngle(3,sZ+dT);

//back Left Leg at end usually
setServoAngle(9,sZ-dT*4);
setServoAngle(18,sZ-dK);
_delay_ms(100);

//finish Front right leg movement

\n",

\n",

from

from

from

Xmsg) ;

Xmsg) ;

LT %i \r \n",

LT%i \r \n",

LT %i \r \n",

setServoAngle(2,sZ-dTr);
_delay_ms(200);
setServoAngle(6,sZ);
//_delay ms(200);

//back Left Leg
setServoAngle(9,sZ+dT1*2);
_delay_ms(100);
setServoAngle(18,sZ);

//Front Left leg
setServoAngle(1,sZ-dT*4);
setServoAngle(5,sZ-dK*2);
//_delay ms(100);

//shift body forward
setServoAngle(2,sZ+dT);//90
setServoAngle(9,sZ-dT);//0

//back Right Leg
setServoAngle(3,sZ+dT*4);
setServoAngle(7,sZ+dK);
_delay_ms(100);

//finish Front Left movement
setServoAngle(1,sZ+dTl);
_delay_ms(100);
setServoAngle(5,sZ);
//_delay ms(200);
//setServoAngle(1,sZ+dTl);
//_delay ms(20);

//back Right Leg
setServoAngle(3,sZ-dTr*2);
_delay_ms(200);
setServoAngle(7,sZ);
//_delay ms(200);
nextState();

}

void turnRight(void){
//object on L, turn R, inc L step, dec R Step
uint8_t dT1=12;
uint8_t dTr=3;
//Front Left leg
setServoAngle(1,sZ-dT*4);
setServoAngle(5,sZ-dK*2);
//_delay ms(100);

//shift body forward
setServoAngle(2,sZ+dT);//90
setServoAngle(9,sZ-dT);//0

//back Right Leg

setServoAngle(3,sZ+dT*4);
setServoAngle(7,sZ+dK);

22

//_delay ms(100);

//finish Front Left movement
setServoAngle(1,sZ+dTl);
_delay_ms(200);
setServoAngle(5,sZ);
_delay_ms(200);

//back Right Leg
setServoAngle(3,sZ-dTr*2);
_delay_ms(100);
setServoAngle(7,sZ);
//_delay ms(200);
nextState();

//Front Right leg
setServoAngle(2,sZ+dT*4);
setServoAngle(6,sZ+dK*2);
//_delay ms(200);

//shift body forward
setServoAngle(1,sZ-dT);
setServoAngle(3,sZ+dT);

//back Left Leg
setServoAngle(9,sZ-dT*4);
setServoAngle(18,sZ-dK);
//_delay ms(100);

//finish Front right leg movement
setServoAngle(2,sZ-dTr);
_delay_ms(100);
setServoAngle(6,sZ);

//_delay ms(200);

//back Left Leg
setServoAngle(9,sZ+dT1*2);
_delay_ms(100);
setServoAngle(18,sZ);
//_delay ms(300);

void goForward(void){

23

//Straight

uint8_t m_Back=3;

//Front Left leg
setServoAngle(1,sz-dT*4); //4
setServoAngle(5,sZ-dK*2);
//setServoAngle(5,sZ+dK*2);
//setServoAngle(1,sZ-dT*4);

//_delay ms(100);
//shift body forward

setServoAngle(2,sZ+dT);//90
setServoAngle(9,sZ-dT);//0

//back Right Leg
setServoAngle(3,sZ+dT*m_Back);
setServoAngle(7,sZ+dK);
//_delay ms(100);

//finish Front Left movement
setServoAngle(1,sZ+dT+5); //dT
_delay_ms(200);
setServoAngle(5,sZ);
_delay_ms(100);

//back Right Leg
setServoAngle(3,sZ-dT*2);
_delay_ms(100);
setServoAngle(7,sZ);
//_delay ms(200);

nextState();

//Front Right leg
setServoAngle(2,sz+dT*4);
setServoAngle(6,sZ+dK*2);
_delay_ms(100);

//shift body forward
setServoAngle(1,sZ-5); //-dT
setServoAngle(3,sZ+5); //+dT

//back Left Leg
setServoAngle(9,sZ-dT*m_Back);
setServoAngle(18,sZ-dK);
//_delay ms(100);

//finish Front right leg movement
setServoAngle(2,sz-7); //-dT
_delay_ms(200);
setServoAngle(6,sZ);
_delay_ms(200);

//back Left Leg
setServoAngle(9,sZ+dT*3); //2
_delay_ms(100);
setServoAngle(18,sZ);
//_delay ms(300);

void turnLeftHard(void){

24

//object on R, turn L, inc R step, dec L Step
uint8_t dT1l=5;

uint8_t dTr=10;

//Front Right leg

setServoAngle(2,sZ+dT*4);
setServoAngle(6,sZ+dK*2);

_delay_ms(100);

//shift body forward
setServoAngle(1,sZ-dT);
setServoAngle(3,sZ+dT);

//finish Front right leg movement
setServoAngle(2,sZ-dTr);
_delay_ms(200);
setServoAngle(6,sZ);
_delay_ms(200);

nextState();

//Front Left leg
setServoAngle(1,sZ-dT*3); //3
setServoAngle(5,sZ-dK*2);
//_delay ms(300);

//back Left Leg
setServoAngle(3,sZ+dT*4);
setServoAngle(7,sZ+dK);
_delay_ms(100);
setServoAngle(3,sZ-dTr);
_delay_ms(200);
setServoAngle(7,sZ);
_delay_ms(100);

//finish Front Left movement
setServoAngle(5,sZ);
_delay_ms(20);
setServoAngle(1,sZ+dTl); //+4dTl
_delay_ms(20);

//shift body forward
setServoAngle(2,sZ+dT);//90
setServoAngle(9,sZ-dT);//0
//setServoAngle(9,szZ-dT);//0

void turnRightHard(void)

{
//object on L, turn R, inc L step, dec R Step
uint8_t dTl=10;
uint8_t dTr=5;

//Front Left leg
setServoAngle(1,sZ-dT*4);
setServoAngle(5,sZ-dK*2);
//_delay ms(300);

//shift body forward

setServoAngle(2,sZ+dT);//90
setServoAngle(9,sZ-dT);//0

//finish Front Left movement
setServoAngle(1,sZ+dTl);

25

_delay_ms(200);
setServoAngle(5,sZ);
_delay_ms(100);

//Front Right leg
setServoAngle(2,sZ+dT*3); //4 ususally
setServoAngle(6,sZ+dK*2);
_delay_ms(100);

//back Left Leg
setServoAngle(9,sZ-dT*4);
setServoAngle(18,sZ-dK);
//_delay ms(100);

//back Left Leg
setServoAngle(9,sZ+dTl);
_delay_ms(200);
setServoAngle(18,sZ);

//finish Front right leg movement
setServoAngle(2,sZ-0); //-dTr
_delay_ms(20);
setServoAngle(6,sZ);

//_delay ms(200);

nextState();

//shift body forward
setServoAngle(1,sZ-dT);
setServoAngle(3,sZ+dT);

}

void nextState(void)
{
// if large increase in new sensor values, something is probably in the way
uint8_t large_increase=75;
uint8_t sonar_Filtered_old=sonar_Filtered;
uint8_t rightIR_Filtered_old=rightIR_Filtered;
uint8_t leftIR_Filtered_old=1leftIR_Filtered;

//Move sensing to ISR at 10 Hz
uint8_t sensorDirection;

uint8_t sonar_Filter[]={0,0,0,0};
uint8_t rightIR_Filter[]={9,0,0,0};
uint8_t leftIR_Filter[]={0,0,0,0};
uint8_t i, test;

senseturn=0;

for (i=0;i<4;i++){

test =readSonar();

sonar_Filter[3]=sonar_Filter[2];

sonar_Filter[2]=sonar_Filter[1];

sonar_Filter[1]=sonar_Filter[Q0];

sonar_Filter[@]=test;
//sonar_Filtered=((2*sonar_Filter[@]+sonar_Filter[1]+sonar_Filter[2])/6);

26

test =readIR_R();

rightIR_Filter[3]=rightIR_Filter[2];

rightIR_Filter[2]=rightIR_Filter[1];

rightIR_Filter[1]=rightIR_Filter[0];

rightIR_Filter[@]=test;
//rightIR_Filtered=(4/5)*rightIR_Filter[0]+(1/5)*rightIR_Filter[1];
//rightIR_Filtered=((4*rightIR_Filter[@]+rightIR_Filter[1]+rightIR_Filter[2])/6);

test =readIR_L();

leftIR_Filter[3]=leftIR_Filter[2];

leftIR_Filter[2]=leftIR_Filter[1];

leftIR_Filter[1]=leftIR_Filter[0];

leftIR_Filter[0@]=test;
//leftIR_Filtered=(4/5)*1leftIR_Filter[@0]+(1/5)*leftIR_Filter[1];
//leftIR_Filtered=((4*leftIR_Filter[@]+leftIR_Filter[1]+leftIR_Filter[2])/6);
}

//sonar_Filtered=((3*sonar_Filter[@]+sonar_Filter[1]+sonar_Filter[2]+sonar_Filter[
31)/6);

rightIR_Filtered=((5*rightIR_Filter[@]+rightIR_Filter[1]+rightIR_Filter[2]+rightIR
_Filter[3])/8);

leftIR_Filtered=((5*leftIR_Filter[@]+leftIR_Filter[1]+leftIR_Filter[2]+leftIR_Filt
er[3])/8);

//rightIR_Filtered=((3*rightIR_Filter[@]+rightIR_Filter[1])/4);
//leftIR_Filtered=((3*leftIR_Filter[@]+leftIR_Filter[1])/4);

sonar_Filtered=(sonar_Filter[@]+sonar_Filter[1]+sonar_Filter[2]+sonar_Filter[3])>>
2;

//rightIR_Filtered=(rightIR_Filter[@]+rightIR_Filter[1]+rightIR_Filter[2]+rightIR_
Filter[3])>>2;

//leftIR_Filtered=(leftIR_Filter[@]+leftIR_Filter[1]+leftIR_Filter[2]+leftIR_Filte
r[31)>>2;

//Sensor direction logic
if ((sonar_Filtered< sonarThr_L2)||(sonar_Filtered>sonarThr_U2)){//((
sonar_Filtered> sonarThr_L)&&(sonar_Filtered<sonarThr_U)){
//IR sensors are higher or lower than upper or lower threshold turn
if ((rightIR_Filtered < rightIRThr L)||(leftIR_Filtered <
leftIRThr_L)||(rightIR_Filtered > rightIRThr_U)||(leftIR_Filtered >
leftIRThr_U)){//(rightIR_Filtered>1.2*1leftIR_Filtered){

if ((rightIR_Filtered>1.5*1leftIR_Filtered)||(rightIR_Filtered <
rightIRThr_L)){
//Left
//PORTR.0OUT=0x00;
direction=4;
lastLR=4;

else if ((leftIR_Filtered>1.5*rightIR_Filtered)||(leftIR Filtered <
leftIRThr_L)){
//PORTR.0OUT=0x00;
direction=6;
lastLR=6;

} else {
//PORTR.OUT=0x00;

27

direction=9;

}

if(((leftIR_Filtered < leftIRThr_L)&&(rightIR_Filtered <
rightIRThr L)) || ((leftIR_Filtered > 2*leftIRThr_U)&&(rightIR_Filtered >
2*rightIRThr_U))){
direction=9;

}

/*

if(rightIR_Filtered < rightIRThr_L){
direction=4;

lastLR=4;
}
*/
} else {
direction=5;
}
}else {

//PORTR.OUT=0XFF;
direction=9;

}

//sonar gets last word

if ((sonar_Filtered> sonarThr_L2)&&(sonar_Filtered<sonarThr_U2)){
direction=9;

}

sensorDirection=direction;

//check for large increase

if(fabs(leftIR_Filtered-leftIR_Filtered_old)>large_increase){
sensorDirection=9; lastLR=6; senseturn=1;
fprintf(&USB_str,"Turn Right! ");

}

if(fabs(rightIR_Filtered-rightIR_Filtered_old)>large_increase){
sensorDirection=9; lastLR=4; senseturn=1;
fprintf(&USB_str,"Turn Left!");

if(fabs(sonar_Filtered-sonar_Filtered_old)>large_increase){
sensorDirection=9; senseturn=1;
fprintf(&USB_str,"Turn Around! ");

}

//if((direction+directionl+direction2+direction3)>32) {
// senseturn=1;

/1}

// Arbitrator logic
if(objectFound){//&&(!senseturn)){

// if object found by camera, go that direction
PORTB.OUT=0x0T;
if (countSincelLastMsg<3){
direction=directionFromCamera;
fprintf(&USB_str,"Camera: %d \r\n",directionFromCamera);

28

}else objectFound=0;
//countSincelLastMsg=0;

} else{

//if object not found, go in last known dir or use sensor direction
if no msg in 4 cycles
if (countSincelLastMsg<3){
direction=directionil;
} else if((countSincelLastMsg>2)&&(countSincelLastMsg<6)){

direction=1;
} else{
direction=1;//sensorDirection;
PORTB.OUT=0x00;
if ((countSincelLastMsg>50)&&(countSincelLastMsg<250)) { //50
and 500
PORTB.OUT=0x00;
direction=sensorDirection;

}
}

//If there was a large increase in one of the sensor, turn
if(senseturn&&(countSinceLastMsg>3)){
fprintf(&USB_str," bc large sensor increase! \r\n");
direction=sensorDirection;

}

countSincelLastMsg++;
//save last sequence of direction
direction3=direction2; direction2=directionl; directionl=direction;

fprintf(&USB_str,"Count %d \r\n",countSincelLastMsg);

fprintf(&USB_str,"sD %d Direction %d Object %d Sonar %d Left %d Right %d LastLR:
%d\r\n",sensorDirection, direction, objectFound, sonar_Filtered, leftIR_Filtered,
rightIR_Filtered,lastLR);

//direction=5;

//lastLR=4;
}

void zeroServos(void){
//zero all servos, calibrate();
//move legs to @ positionf
setServoAngle(1,sZ);
setServoAngle(2,sZ);
setServoAngle(9,sZ);
setServoAngle(3,sZ);
cylon();
setServoAngle(5,sZ);
setServoAngle(6,sZ);
setServoAngle(7,sZ);
setServoAngle(18,sZ);
cylon();

//shift body forward (thighs back) for first step
setServoAngle(1,sZ-dT*.5);

29

setServoAngle(2,sZ+dT*.5);
setServoAngle(3,sZ+dT*.5);
setServoAngle(9,sZ-dT*.5);
cylon();

void cylon(void){
// cylon LED sequence with 1000 ms delay
_delay_ms(100);
PORTD.OUT=0x20;
_delay_ms(100);
PORTD.OUT=0x40;
_delay_ms(100);
PORTD.OUT=0x80;
_delay_ms(100);
PORTD.OUT=0x40;
_delay_ms(100);
PORTD.OUT=0x20;
_delay_ms(100);
PORTD.OUT=0x10;
_delay_ms(100);
PORTD.OUT=0x08;
_delay_ms(100);
PORTD.OUT=0x10;
_delay_ms(100);
PORTD.OUT=0x20;
_delay_ms(100);

}

void cylon_slow(void){
// cylon LED sequence with 1000 ms delay
_delay_ms(300);
PORTD.OUT=0x20;
_delay_ms(300);
PORTD.OUT=0x40;
_delay_ms(300);
PORTD.OUT=0x80;
_delay_ms(300);
PORTD.OUT=0x40;
_delay_ms(300);
PORTD.OUT=0x20;
_delay_ms(300);
PORTD.OUT=0x10;
_delay_ms(300);
PORTD.OUT=0x08;
_delay_ms(300);
PORTD.OUT=0x10;
_delay_ms(300);
PORTD.OUT=0x20;
_delay_ms(300);

}

/*

ISR(TCF@_OVF_vect){
//PORTR.DIRSET=0x02;
//_delay ms(1000);
PORTR.OUTTGL = Oxff;

30

fprintf(&USB_str,"%d \r\n", rightIR);//leftIR,rightIR);

B. Color Tracking Code

Sample code adapted from Josh Weaver

#include <highgui.h>
#include <cv.h>
#include "stdafx.h"
#include <dos.h>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <Windows.h>
#include <string>
#include <sstream>
#include "SerialPort.h"

// Maths methods

//#define max(a, b) ((a) > (b) ? (a) : (b))
//#define min(a, b) ((a) < (b) ? (a) : (b))
#tdefine abs(x) ((x) > @ ? (x) : -(x))
#tdefine sign(x) ((x) > @ ? 1 : -1)

// Step mooving for object min & max
#define STEP_MIN 5
#tdefine STEP_MAX 100

IplImage *image;
//CvFont fontil;
//cvInitFont(&Fontl, CV_FONT_HERSHEY_SIMPLEX, 0.4, 0.4, 0, 1, 8);

// Position of the object we overlay
CvPoint objectPos = cvPoint(-1, -1);

// Color tracked and our tolerance towards it
int h =0, s =0, v = 0, tolerance = 4;
char tbName[50]="Filter Selection";

int H_MIN = ©;

int H_MAX = 256;

int S_MIN = @;

int S_MAX = 256;

int V_MIN = @;

int V_MAX = 256;

int go=0;

void tbCallBack(int, void*)

{
}

void createTrackBar(){

31

// cvNamedWindow("Mask"™, CV_WINDOW_AUTOSIZE);
// cvMoveWindow("Mask", 650, 0);
cvNamedWindow(tbName,) ;
cvMoveWindow(tbName, 650,350);
char tbNameMem[50];
sprintf(tbNameMem, "H_MIN",H_MIN);
cv::createTrackbar("H_MIN",tbName,&H_MIN, H_MAX, tbCallBack);

}
/*

* Transform the image into a two colored image, one color for the
color we want to track, another color for the others colors

* From this image, we get two datas : the number of pixel detected,
and the center of gravity of these pixel

*/
CvPoint binarisation(IplImage* image, int *nbPixels) {
int x, y;
// CvScalar pixel;

IplImage *hsv, *mask;
IplConvKernel *kernel;

int sommeX = @, sommeY = 0;
*nbPixels = 0;

// Create the mask &initialize it to white (no color detected)
mask = cvCreateImage(cvGetSize(image), image->depth, 1);

// Create the hsv image

hsv = cvCloneImage(image);

cvCvtColor(image, hsv, CV_BGR2HSV);

// We create the mask

cvInRangeS(hsv, cvScalar(h - tolerance -1, s - tolerance, ©0), cvScalar(h +
tolerance -1, s + tolerance, 255), mask);

// Create kernels for the morphological operation

kernel = cvCreateStructuringElementEx(5, 5, 2, 2, CV_SHAPE_ELLIPSE);

// Morphological opening (inverse because we have white pixels on black
background)

cvDilate(mask, mask, kernel, 4);

cvErode(mask, mask, kernel, 4);

// We go through the mask to look for the tracked object and get its gravity

center
for(x = 0; x < mask->width; x++) {
for(y = ©; y < mask->height; y++) {
// If its a tracked pixel, count it to the center of gravity's
calcul

if(((uchar *)(mask->imageData + y*mask->widthStep))[x] == 255) {
sommeX += X;
sommeY += y;
(*nbPixels)++;

}

// Show the result of the mask image

32

cvShowImage("Mask", mask);

// We release the memory of kernels
cvReleaseStructuringElement (&kernel);

// We release the memory of the mask

cvReleaseImage(&mask);

// We release the memory of the hsv image
cvReleaseImage(&hsv);

if(*nbPixels > 0)

return cvPoint((int)(sommeX / (*nbPixels)), (int)(sommeY / (*nbPixels)));
else

return cvPoint(-1, -1);

if (!go){
printf("GO!\n");
}
go=1;

}

void addObjectTovVideo(IplImage* image, CvPoint objectNextPos, int nbPixels) {
int objectNextStepX, objectNextStepY;

// Calculate circle next position (if there is enough pixels)
if (nbPixels > 10) {

// Reset position if no pixel were found

if (objectPos.x == -1 || objectPos.y == -1) {
objectPos.x = objectNextPos.x;
objectPos.y = objectNextPos.y;

}

// Move step by step the object position to the desired position
if (abs(objectPos.x - objectNextPos.x) > STEP_MIN) {
objectNextStepX = max(STEP_MIN, min(STEP_MAX, abs(objectPos.x -
objectNextPos.x) / 2));
objectPos.x += (-1) * sign(objectPos.x - objectNextPos.x) *
objectNextStepX;

if (abs(objectPos.y - objectNextPos.y) > STEP_MIN) {
objectNextStepY = max(STEP_MIN, min(STEP_MAX, abs(objectPos.y -
objectNextPos.y) / 2));
objectPos.y += (-1) * sign(objectPos.y - objectNextPos.y) *

objectNextStepY;
}
// -1 = object isn't within the camera range
} else {
objectPos.x = -1;

objectPos.y

_1;

}

// Draw an object (circle) centered on the calculated center of gravity
if (nbPixels > 10)

33

//cvDrawCircle(image, objectPos, 15, CV_RGB(255, 0, 0), -1);

cvCircle(image, objectPos, 20, CV_RGB(©,0,255),2);

cvLine(image, cvPoint(objectPos.x,objectPos.y+20),

cvPoint(objectPos.x,objectPos.y-20),CV_RGB(0,0,255),2);

cvLine(image, cvPoint(objectPos.x+20,objectPos.y), cvPoint(objectPos.x-

20,0bjectPos.y),CV_RGB(90,0,255),2);
//cvPutText(image, "Target:", objectPos,0,CV_RGB(0,0,255));

// We show the image on the window
cvShowImage("Color Tracking", image);

}
void getObjectColor(int event, int x, int y, int flags, void *param = NULL) {
// Vars
CvScalar pixel;
IplImage *hsv;
if(event == CV_EVENT_LBUTTONUP) {
// Get the hsv image
hsv = cvCloneImage(image);

cvCvtColor(image, hsv, CV_BGR2HSV);

// Get the selected pixel
pixel = cvGet2D(hsv, y, x);

// Change the value of the tracked color with the color of the selected

pixel

h = (int)pixel.val[@o];

s = (int)pixel.val[1];

= (int)pixel.val[2];
printf("HSV: %d %d %d \n",h,s,v);
// Release the memory of the hsv image
cvReleaseImage(&hsv);
}

}

int main() {

// initialize serial port class and open port
Serial* SP = new Serial();
while (!(SP->IsConnected()))

{
printf("Trying to connect... \r\n");
Sleep(500);
delete SP;
Serial* SP = new Serial();
//connected=SP->IsConnected;

}

if (SP->IsConnected()){

34

35

printf("\r \n Connected! \r \n\n\n");

//Serial::Serial();

char incomingData[256]=""; //in data buffer
char outData[256]=""; //out data buffer

int datalength = 256;

int readResult 9;

CvCapture *capture;
// Key for keyboard event
char key = 'd';

int direction;

// Number of tracked pixels

int nbPixels, i=1;

// Next position of the object we overlay
CvPoint objectNextPos;

// Initialize the video Capture (200 => CV_CAP_V4L2)
// Droid Cam from ManyCam=0; Laptop Webcam =1;
capture = cvCaptureFromCAM(9);
//capture = cvCreateFileCapture("http://192.168.1.106:8080/shot.jpg");

// Check if the capture is ok
if (!capture) {
printf("Can't initialize the video capture.\n");
return -1;

// Create the windows

createTrackBar();
cvNamedWindow("Color Tracking", CV_WINDOW_AUTOSIZE);
cvNamedwindow("Mask", CV_WINDOW_AUTOSIZE);
cvMoveWindow("Mask", 650, 0);

cvMoveWindow("Color Tracking", 650, 350);

// Mouse event to select the tracked color on the original image
cvSetMouseCallback("Color Tracking", getObjectColor);

// While we don't want to quit
while(key != 'Q' && key != 'q') {
//if (go){
// We get the current image
image = cvQueryFrame(capture);

// If there is no image, we exit the loop
if(!image) continue;

objectNextPos = binarisation(image, &nbPixels);
addObjectTovideo(image, objectNextPos, nbPixels);

// We wait 10 ms
key = cviWaitKey(10);

//readResult = SP->ReadData(incomingData,datalLength);
//Decide if object is found and send position

//Note: send Y position because Droid is mounted sideways!

//turn camera
if ((i>15)){
printf("X: %d %d\n",objectNextPos.x, nbPixels);
readResult = SP->ReadData(incomingData,datalLength);
printf("Bytes read: (-1 means no data available)
%i\n",readResult);
//printf("Incoming Data: %c\n",incomingData);
if(nbPixels>900){
if(nbPixels>130000){
//printf("Too close to target, stop
\r\n");
} else{
//send X direction to laptop
if(objectNextPos.x>410){
direction=4;
outData[@]="11";
SP->WriteData(outData, 2);
}else if (objectNextPos.x<250) {
direction=6;
outData[@]="rrr';
SP->WriteData(outData, 3);
}else
if((objectNextPos.x>250)&&(objectNextPos.x<450)){
direction=5;
outData[e]="f";
//cviaitKey(600);
SP->WriteData(outData, 1);

} else{
printf("Target not found! \r\n");

}
printf("Send: %i %s \r\n", direction, outData);
}

}

i=1;

}else i++;

/1}

//Release serial port
if(SP->IsConnected()){

SP->~Serial();

printf("Serial Port closed.");

// Destroy the windows we have created
cvDestroyWindow("Color Tracking");
cvDestroyWindow("Mask");

// Destroy the capture
cvReleaseCapture(&capture);

36

}else printf("Could not open serial port!");

Sleep(1000);
return 0;

Serial::Serial()//char *portName)

{

1/

//We're not yet connected
this->connected = false;

//LPCWSTR p=*portName;
printf(TEXT("COM5"));
//Try to connect to the given port throuh CreateFile
this->hSerial = CreateFile(TEXT("\\\\.\\COM12"),//TEXT(portName),
GENERIC_READ | GENERIC_WRITE,
9,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

//Check if the connection was successfull
if(this->hSerial==INVALID_HANDLE_VALUE)
{
//If not success full display an Error
if(GetLastError()==ERROR_FILE_NOT_FOUND){

//Print Error if neccessary
printf("ERROR: Handle was not attached. Reason: COM not available.\n");//,

portName);

37

}
else
{
printf("ERROR!!!");
}
}
else
{

//If connected we try to set the comm parameters
DCB dcbSerialParams = {0};

//Try to get the current
if (!GetCommState(this->hSerial, &dcbSerialParams))

¢ //If impossible, show an error
printf("failed to get current serial parameters!");
}
else
{

//Define serial connection parameters for the arduino board
dcbSerialParams.BaudRate=CBR_9600;
dcbSerialParams.ByteSize=8;
dcbSerialParams.StopBits=ONESTOPBIT;
dcbSerialParams.Parity=NOPARITY;

//Set the parameters and check for their proper application
if(!SetCommState(hSerial, &dcbSerialParams))

{
printf("ALERT: Could not set Serial Port parameters");
}
else
{
//If everything went fine we're connected
this->connected = true;
//Sleep(200);
printf(" Serial Port Connected \r\n");
}
}
:~Serial()

//Check if we are connected before trying to disconnect
if(this->connected)

//We're no longer connected
this->connected = false;

//Close the serial handler
CloseHandle(this->hSerial);

int Serial::ReadData(char *buffer, unsigned int nbChar)

//Number of bytes we'll have read

DWORD bytesRead;

//Number of bytes we'll really ask to read
unsigned int toRead;

//Use the ClearCommError function to get status info on the Serial port
ClearCommError(this->hSerial, &this->errors, &this->status);

//Check if there is something to read
if(this->status.cbInQue>0)

}
}
Serial:
{

{

b
}
{

{
success

38

//If there is we check if there is enough data to read the required number
//of characters, if not we'll read only the available characters to prevent
//locking of the application.

if(this->status.cbInQue>nbChar)

{
toRead = nbChar;
}
else
{
toRead = this->status.cbInQue;
}

//Try to read the require number of chars, and return the number of read bytes on

if(ReadFile(this->hSerial, buffer, toRead, &bytesRead, NULL) && bytesRead != 0)

return bytesRead;

}

//If nothing has been read, or that an error was detected return -1
return -1;

bool Serial::WriteData(char *buffer, unsigned int nbChar)

{
DWORD bytesSend;

//Try to write the buffer on the Serial port
if(!WriteFile(this->hSerial, (void *)buffer, nbChar, &bytesSend, 0))
{
//In case it don't work get comm error and return false
ClearCommError(this->hSerial, &this->errors, &this->status);

return false;

}

else
return true;

}
bool Serial::IsConnected()

//Simply return the connection status
return this->connected;

C. Sonar/IR Characterization

#include <avr/io.h>
#include <util/delay.h>
#include <math.h>
#tinclude <stdlib.h>
#include <stdio.h>

#include "clock.h"
#include "ATtinyServo.h"
#include "uart.h"
//#include "adc.h"
//#include "motor.h"
#include "ADC_manual.h"

#define analogChannell @ //analog channel on port A ADC Channel ©

#define analogChannel2 1 //analog channel on port A ADC Channel 1
#define leftIRPin ©

39

#tdefine rightIRPin 2

#tdefine sonarPin 3

#tdefine leftIRThreshold 1000
#tdefine rightIRThreshold 1000
#tdefine sonarThreshold 3000

//To be used for path planning and stability measure?
uint8_t leftIR; //analog distance value
uint8_t rightIR;

uint8_t sonar;

int8_t direction;

int8_t directionFromCamera;

int main(void)
{
uint8_t test;

direction=9;

uint8_t sonar_Filtered=0;

uint8_t rightIR_Filtered=0;
uint8_t leftIR_Filtered=0;
uint8_t sonar_Filter[]={0,0,0};
uint8_t rightIR_Filter[]={90,0,0};
uint8_t leftIR_Filter[]={0,0,0};

clockInit();

//adcInit(&ADCA);

ATtinyServoInit();
usartInit(&USARTCO,115200);//USB port
sei();

//Blink Debug LED

PORTR.DIRSET=0x02;

_delay_ms(1000);

PORTR.OUT = Oxff; //Inverted logic on port r!
_delay_ms(1000);

_delay_ms(1000);

//ADC likes being here
ADC_init();

while(1){
sonar =readSonar();
sonar_Filter[2]=sonar_Filter[1];
sonar_Filter[1]=sonar_Filter[Q0];
sonar_Filter[@]=sonar;
sonar_Filtered=((2*sonar_Filter[@]+sonar_Filter[1]+sonar_Filter[2])/6);

rightIR =readIR_R();

rightIR_Filter[2]=rightIR_Filter[1];

rightIR_Filter[1]=rightIR_Filter[0];

rightIR_Filter[@]=rightIR;

//rightIR_Filtered=(4/5)*rightIR_Filter[0]+(1/5)*rightIR_Filter[1];
rightIR_Filtered=((4*rightIR_Filter[@]+rightIR_Filter[1]+rightIR_Filter[2])/6);

leftIR =readIR_L();

40

leftIR_Filter[2]=1leftIR_Filter[1];

leftIR_Filter[1]=leftIR_Filter[0];

leftIR_Filter[@]=leftIR;
//leftIR_Filtered=(4/5)*1leftIR_Filter[@0]+(1/5)*leftIR_Filter[1];
leftIR_Filtered=((4*leftIR_Filter[@]+leftIR_Filter[1]+leftIR_Filter[2])/6);

if (sonar_Filtered<45){
if ((sonar_Filtered> 30)&&(1)){
PORTR.0OUT=0x00;
direction=0;
//for (i=0;i<5;i++){
//sonar[0]=0;

/1%

}

else {
PORTR.OUT=OxFF;
direction=9;

}

}else {

if (rightIR_Filtered>leftIR_Filtered){

if (rightIR_Filtered > 80){
PORTR.OUT=0x00;
direction=1;

}

else PORTR.OUT=0OxFF;

} else if (leftIR_Filtered>rightIR_Filtered){

if ((leftIR_Filtered > 80)&&(!(leftIR_Filtered<20))){
PORTR.OUT=0x00;
direction=-1;

}

else {
PORTR.OUT=0OxFF;

}

}

}

fprintf(&USB_str,"%d \r\n", rightIR);//leftIR,rightIR);
_delay_ms(500);

//fprintf(&USB_str,"Direction %d Sonar %d Left %d Right %d\r\n", direction,
sonar_Filtered, leftIR_Filtered, rightIR_Filtered);

41

42

