
University of Florida

Department of Electrical and Computer Engineering

EEL 4665/5666

Intelligent Machines Design Laboratory

Hex Guard

Student Name: Tianyu Gu

Email: tianyu.gu@ufl.edu

TAs: Ryan Chilton, Josh Weaver

Instructors: Dr. A. Antonio Arroyo, Dr. Eric M. Schwartz

mailto:tianyu.gu@ufl.edu

2

Contents

Contents .. 2

Abstract ... 3

Introduction ... 4

Integrated System.. 4

Mobile Platform .. 5

Actuation ... 6

Sensors .. 8

Behaviors .. 9

Experimental Layout and Results ... 10

Experiment with Different Close-loop Methods ... 10

Cds cell ... 10

Bare wire .. 10

Light gate.. 11

Experiment with Different Structures.. 11

Conclusion .. 12

References ... 12

3

Abstract

Making land-mines is very cheap, but disarming them is not. Nowadays, there are millions of

mines buried in the earth, which is taking lives almost every hour all over the globe. Statistics

shows that it will cost 33 billion dollars to disarm all the land-mines in the world, and the

disarming activity itself has also taken innumerous lives of soldiers. A terrain robot capable of

moving on rugged road could potentially become a solution to this. This ‘Hex Guard’, which

mimics the walking gait of RHex built by Boston Dynamics, patrols around in an area to search

for metal objects, which could be eventually be weapons or land-mines when scaled up (Fig.1)

Fig.1 Hex Guard

4

Introduction

I was first inspired by the six-leg walking robot ‘RHex’ built by

Boston Dynamics, I soon developed a fever for its walking gait

since it can continuously walk despite obstacles or flipping. Then

I start to think of using it for a specific purpose. Nowadays wars

are taking place all over the world almost every day. The biggest

loss of war is the life of soldiers and civilians. Soldiers typically

use a metal detector device to detect weapons or mines. But at the same time that soldier also

risks losing his/her life. Hex Guard, however, is less likely to trigger a mine due to its weight, or

to be noticed by terrorists. We start with introducing the integrated system of Hex Guard, and

continue with its mechanical design, actuation, and sensor system. In the concluding section,

prospective features for Hex Guard are mentioned.

Integrated System

Hex Guard uses Epiphany board with ATXmega processor, one 3 cell Lipo battery for actuation,

one 9V alkaline battery for board powering, one quad and one dual motor controller, six DC gear

motors with photo-interrupters, two IR sensors, an accelerometer, and a metal detector. Epiphany

board handles all the data collection, decision making and execution. Motor controllers control

the direction and speed of DC motors with PWM signal coming from the board. Photo-

interrupters provide feedback signal to control the ‘start/stop’ of motors. It uses two IR sensors to

perform basic object avoidance. A metal detector is mounted beneath the robot’s platform to

detect metal objects. An accelerometer is also mounted in case the robot flips. Finally, two LEDs

on top of the platform indicate different behaviors. Below is a block diagram of the system.

Ephiphany

DIY Board Motor Controller

Photo-Interrupters Metal Detector

 IR Sensors

 Accelerometer

Lipo & Alkaline Battery DC motors LED Feedback

5

Mobile Platform

The platform of Hex Guard is designed to be symmetric about horizontal plane. The main body

is made of two pieces of 3mm thick wood that are connected by plastic standoffs. The bottom of

the platform is mainly comprised of Epiphany board, batteries, and actuation components. The

top part of the platform mainly holds sensors such as photo-interrupters and IR sensors (Fig2).

Top cover is assembled into the main platform with removable connectors. This design makes it

easy to access and maintain since the top cover is ready to remove.

Fig.2 Bottom and Top Platform

Hex guard uses PVC as the material for its leg mainly for two reasons: First, unlike wood, PVC

leg can bend a little bit, thus it will absorb shocks when hitting the ground. Secondly, it is pretty

easy to cut the leg from a PVC pipe. Each leg is then attached with a piece of mounting tape to

give certain friction while at the same time absorb shock.

Attribute Value

Body Height 110 mm

Overall Width 385 mm

Length 350 mm

Leg to Leg Spacing 130 mm

Ground Clearance 53 mm

Leg Diameter

Total Weight

114 mm

Approx. 4 kg

Tab.1 Physical Properties

6

Actuation

Hex Guard uses six DC motors to drive its legs. DC gear

motor with high torque and moderate gear ratio is preferred

for the following considerations. First, since it will perform

some heavy-duty tasks such as climbing and standing up,

Hex Guard would require high torque output for each of its

leg. As we were taught before, the speed of a motor is anti-

proportional to its torque. Thus big gear ratio is can achieve

powerful torque with low speeds. However, Hex Guard is

also supposed to run quickly on flat road with moderate

torque, so we don’t want to totally give up speed. Such a tradeoff between torque and speed

result in our considerations for DC gear motor.

Below chart shows the parameters of motor.

Attribute Value

Power 8 W

Gear Ratio 33:1

Voltage 12 V

RPM 300

Torque 576.5 mNm (5 Lb Inch)

Shaft Diameter 4 mm

Tab.2 Motor Parameter

Hex Guard will first stand up using all six legs. Basically it has two walking gaits to choose from

(details will be introduced in later chapter). One of them is the three-by-three walking gait that is

intended for smooth surfaces. In the tripod gait, three of the legs (as shown in Fig.3), which are

synchronized with light gates, start to rotate from 0 to 360 degrees. Once the photo-interrupters

sense one complete revolution of the first three legs, the other three legs start to rotate while the

first three will hold in static position. Repeating these two cycles gives a continuous sequence

walking of the robot. Turning is realized by reversing one of the motors in the same group. For

7

example, if the robot is turning right, then the motors on the left side will rotate forward, while

the one on the right side will rotate backward. After repeating this action for several times, the

robot could eventually realize turning.

A photo-interrupter (introduced in on-coming chapter) is mounted on top of each motor to

monitor its rotation. Motor controller uses H-bridge to control the forward/ reverse rotation of

the motor. To achieve certain speed in different waling gaits (e.g. turning and recovering

maneuver), Epiphany board sends a modulated square wave (PWM) to motor controller to tune

motor speed.

Fig.3 Three-by-three walking gait

The first four motors are controlled by the quad motor controller

package on Tim’s board. Basically one just defines the motor channel,

direction and PWM duty cycle and it is ready to go. For the remaining

two motors, I bought a dual motor driver from Pololu.com, and it has

similar structure as the quad package on Tim’s board. All I did was

modifying pre-defined codes to extend the functionality of motor control functions.

The battery for motors that I chose is Thunder Power 3-cell Lipo battery pack with 30C

discharge rate and 1800mAh capacity. Each cell of a Lipo battery has a voltage of 3.7V, so a 3s

Lipo has a voltage of 11.1V, which will reach 12.6V when fully charged. Since I need my robot

to be lightweight, and traditional battery usually accounts for a significant portion of the overall

weight (like NiMH), a Lipo battery seems to be a good

choice. I saved 50% of the battery weight by changing it

from NiMH rechargeable batteries to Lipo battery.

Another reason why I chose Lipo is because my robot

8

drives six 12V DC motors at the same time, which means that the total current it might draw is

very high. A Lipo battery with 30C discharge rate would maximize the performance of motors.

Sensors

Two IR sensors are mounted in front of Hex Guard to serve as the

object-avoidance sensor. Since Hex Guard can climb over small

obstacles, it reduces the number of sensors necessary to perform object

avoidance. Two Sharp® IR rangefinders, which are connected to ADC

channels on board, are used to prevent collision with large objects.

When selecting sensors for obstacle avoidance, it is common to come up with bumpers, sonars

and IRs. The reason why I chose IR sensor instead of sonar is because IR sensor shoots parallel

beams while sonar generates ultrasonic waves in the shape of a cone. Since a walking robot like

Hex Guard will often incline forward due to terrain characteristics, sonar might recognize the

ground as obstacle, which will cause the robot to stop for no reason. Thus IR sensors are

preferable since they can focus only on objects in front of the robot.

Infrared photo-interrupters are mounted on top of motor shaft to serve as simple encoders. Each

photo-interrupter has a pair of opposing emitter and detector in a case, providing non-contact

sensing. Every time motor shaft rotates one revolution, a piece of plastic mounted on the shaft

would ‘interrupt’ the infrared light between the emitter and receiver, producing a low analog

reading. In this way the MCU could tell whether either group of legs has completed rotation or

not. Below is a picture of photo-interrupter and its schematic diagram.

Fig.4 Photo-interrupter

9

A Velleman K7102 metal detector is used to detect metals.

It has a detection range of up to 8cm and it requires a 9V

power supply. The metal detector is working on the theory

of beat frequency oscillation. The detecting area is the metal

stick that is winded with copper wires. I bought a kit of

separate components and soldered them into a complete

sensor. Then I modified its circuit to realize controlling and

communication with the metal detector. Once it detects metal object beneath the robot, Hex

Guard stops walking and blinks its LEDs to warn people of potential hazards.

Behaviors

Hex Guard has two primary walking gaits: Three-by-three with close-loop control and six-by-six

with open-loop control. The former is intended on smooth surfaces with metal detecting function

activated, while the latter is a simple demonstration of how well Hex Guard could maneuver on

different terrains. Once the robot is powered, it automatically stands up by rotating all six legs

that will simultaneously stop at vertical position. Then it defaults to stand-by mode. At this time,

further command from human must be given in order to trigger either walking gaits.

If the left IR is blocked for a certain amount of time, then the three-by-three walking gaits is

activated. At this point the robot starts a sequence walking gait as described in “Actuation”. A

blue LED as well as a red LED on top of the robot indicates different behaviors: While it is

marching forward, the blue LED is turned on while the red one is off. While it is reversing, the

robot will turn on red LED while turn off the blue one. The robot randomly walks in the area to

search for a metal without running into any large obstacles. Once the robot detects a metal

objects lying beneath, it will stop moving and blink both LEDs until the metal is removed.

On the other hand, if the right IR sensor is blocked, the robot will activate six-by-six walking

gaits by setting all motors run constantly. In this mode the robot will try to climb any obstacles in

front of it. When it fails to climb something and gets stuck, it will automatically perform a

recover maneuver and randomly turns into other directions to continue the gait.

10

Experimental Layout and Results

Experiment with Different Close-loop Methods

The most challenging part might be the close loop control of motors. Servos and stepper motors

are controlled by sending incremental values to the control channel, which guarantees precise

control without any feedback. DC motors, however, requires shaft encoders to ensure precise

actuation. Since my robot runs all six legs with DC motor, it would be ideal to have an encoder

mounted on the motor. However, 12V DC high-torque geared motors with shaft encoders are

extremely expensive, which is definitely not suitable for hobby purpose. The DC motors I use on

Hex Guard come without any encoder or place to mount encoder. So I have to figure out some

method to realize the close-loop control.

Cds cell

I intended to use photo-resistor to sense between dark and bright colors on the hub (Fig.5),

however it turned out that photo-resistor is not sensitive to different colors. After some simple

experiments, I gave up this method.

Fig.5 Photo-resistor

Bare wire

Later I tried to use a bare wire to touch the hub to sense a full revolution. First the hub is

connected to ground. Then I attached a small piece of tape on the hub. The bare wire was

originally pulled low and read into an I/O pin. Every time the wire touches the tape, the signal is

pulled high so the MC could tell. The biggest problem with this method is that I could hardly

11

find a reliable method to mount the wire. Also the contact sensing makes both the wire and tape

easily wear out. After some trial and failures, I started to look for some better solutions.

Light gate

Compared to contact sensing, light gate is much more reliable since it requires no contact.

Frequently used in printers to sense moving objects, photo-interrupters are ideal for sensing the

rotations of motors. After experimenting with it, I found that photo-interrupters will hardly be

affected by ambient light due to its embedded design and the infrared characteristics. In addition,

the system’s response time is still very short even with four ADC channels processing six analog

inputs virtually at the same time.

Experiment with Different Structures

Another major issue is balance. DC motors have no self-locking mechanism, although high gear

ratio would give some resistance torque when motor is not powered, the whole platform is still

very sensitive to perturbations caused by robot locomotion. To stabilize the three legs in static

state while other legs are rotating, I did the following design changes: First I lowered the mass

center of the robot to reduce perturbations. Second the leg was extended to give more contact

area with the ground if it deviates from the equilibrium point. Finally the robot was able hold its

position while walking.

Fig.6 Mass Center Lowered & Leg Extended

12

Conclusion

IMDL is my first time to build a robot out of nothing. It is truly a great opportunity to gain

hands-on experience. At first I was intended to build a robot with many fancy features. However

it turned out to be very difficult to realize even basic walking gaits. As a mechanical engineering

student, I learned lots of electrical and computer engineering stuff through IMDL, which

supplemented huge amount of knowledge that is essential to completely design a robot or a

machine. It allows me to access various kinds of sensors and electrical components. In the future,

I might want to make the following improvements:

 Design encoders with more ticks, which would add self-locking feature through software

 Replace current DC motors with higher powered ones and more gear ratio

 Mount IP camera onto the robot and play with face recognition and autonomous navigation

References

 Boston Dynamics RHex terrain robot: http://www.youtube.com/watch?v=ISznqY3kESI

 University of Pennsylvania Kod Lab X-RHex technical report:

http://kodlab.seas.upenn.edu/uploads/Main/xrhextechreport.pdf

 Select the Right Battery for Your Robot DC:

http://vsblogs.wordpress.com/2012/02/09/select-the-right-battery-for-your-robot-dc-motors-

part-1-of-2/

 Thunder Power Lithium Polymer Battery:

http://www.ebay.com/itm/251084890508?ssPageName=STRK:MEWNX:IT&_trksid=p3984

.m1497.l2649

 TB6612FNG Dual Motor Driver: http://www.pololu.com/catalog/product/713

 The code for this project can be found at: https://sites.google.com/site/imdlhex/

http://www.youtube.com/watch?v=ISznqY3kESI
http://kodlab.seas.upenn.edu/uploads/Main/xrhextechreport.pdf
http://vsblogs.wordpress.com/2012/02/09/select-the-right-battery-for-your-robot-dc-motors-part-1-of-2/
http://vsblogs.wordpress.com/2012/02/09/select-the-right-battery-for-your-robot-dc-motors-part-1-of-2/
http://www.ebay.com/itm/251084890508?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l2649
http://www.ebay.com/itm/251084890508?ssPageName=STRK:MEWNX:IT&_trksid=p3984.m1497.l2649
http://www.pololu.com/catalog/product/713
https://sites.google.com/site/imdlhex/

13

Appendices

Project Code

/***

Main Function Set Up

 Description: This program set up all initializations and port definitions

***/

\#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include "RTC.h"

int main(void)

{

 clockInit();

 RTC_DelayInit();// initializing Real Time Clock

 adcInit(&ADCA); // initializing ADC on PORTA

 adcInit(&ADCB); // initializing ADC on PORTB

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 motorInit();

 sei();

 TCE0.PER = 1024;

 TCE0.CTRLA = TC_CLKSEL_DIV1_gc;

 TCE0.CTRLB = TC0_CCAEN_bm | TC_WGMODE_SS_gc;

 PORTC_DIRSET=0x33; //Accelerometer & LED indicator

 PORTC_OUT=0x01;

 PORTD_OUT=0x1A; // PORTD: 00011010; Enable motor driver standby & drive motor

5,6

 PORTE_DIRSET=0x01; // Set Buzzer pin as output

 stdout = &USB_str; //stdout --> USB : printf writes to the USB port.

14

//Setup ADC Mux Channels

 adcChannelMux(&ADCA,2,4); //channel 2 of ADCA will convert from the source on

pin4

 adcChannelMux(&ADCA,3,5);

 adcChannelMux(&ADCB,0,0);

 adcChannelMux(&ADCB,1,1);

 int leg_threshold = 500; // Photo-interrupter reads low when light is blocked

 int metal_threshold = 3900; // Metal Detector reads a value greater than 3900 when metal

is in vicinity

 int IR_threshold = 1800; // IR reads a value greater than 2000 when something is in front

of it

 // walking gait flag

 int three = 0; // three_by_three walking gait

 int three_stuck = 0; // three_by_three stuck flag

 int six = 0; // six_by_six walking gait

 int six_stuck = 0; // six_by_six stuck flag

 int recover_status = 0; // recover stance complete or not

15

/***

Stand_up subroutine

 Description: This program performs the stands up

***/

void stand_up() // define stand_up

 {

 setMotorEffort(1,520, MOTOR_DIR_FORWARD);

 setMotorEffort(2,500, MOTOR_DIR_FORWARD);

 setMotorEffort(3,500, MOTOR_DIR_FORWARD);

 setMotorEffort(4,520, MOTOR_DIR_FORWARD);

 setMotorEffort(5,500, MOTOR_DIR_FORWARD);

 setMotorEffort(6,500, MOTOR_DIR_FORWARD);

 int mark=0;// to get rid of unwanted initial value of photo-interrupter

 int16_t m1_state = 1; // flag 1 when motor 1 is running

 int16_t m2_state = 1; // flag 1 when motor 2 is running

 int16_t m3_state = 1; // flag 1 when motor 3 is running

 int16_t m4_state = 1; // flag 1 when motor 4 is running

 int16_t m5_state = 1; // flag 1 when motor 5 is running

 int16_t m6_state = 1; // flag 1 when motor 6 is running

 while (1)

 {

 mark++;

 adcChannelMux(&ADCA,0,0);_delay_ms(1);int16_t m5 =

analogRead(&ADCA,0);

 adcChannelMux(&ADCA,0,1);_delay_ms(1);int16_t m2 =

analogRead(&ADCA,0);

 adcChannelMux(&ADCA,1,2);_delay_ms(1);int16_t m3 =

analogRead(&ADCA,1);

 adcChannelMux(&ADCA,1,3);_delay_ms(1);int16_t m6 =

analogRead(&ADCA,1);

 int16_t m1 = analogRead(&ADCA,2);

 int16_t m4 = analogRead(&ADCA,3);

 if (m1 < leg_threshold && m1_state == 1 && mark>1)

{setMotorEffort(1,800, MOTOR_DIR_BACKWARD);_delay_ms(10);setMotorEffort(1,0,

MOTOR_DIR_BACKWARD);m1_state = 0;}// When leg1 reaches its position, brake motor1

 if (m2 < leg_threshold && m2_state == 1 && mark>1)

{setMotorEffort(2,800, MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(2,0,

MOTOR_DIR_BACKWARD);m2_state = 0;}// When leg2 reaches its position, brake motor2

 if (m3 < leg_threshold && m3_state == 1 && mark>1)

{setMotorEffort(3,800, MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(3,0,

MOTOR_DIR_BACKWARD);m3_state = 0;}// When leg3 reaches its position, brake motor3

 if (m4 < leg_threshold && m4_state == 1 && mark>1)

16

{setMotorEffort(4,800, MOTOR_DIR_BACKWARD);_delay_ms(10);setMotorEffort(4,0,

MOTOR_DIR_BACKWARD);m4_state = 0;}

 if (m5 < leg_threshold && m5_state == 1 && mark>1)

{setMotorEffort(5,800, MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(5,0,

MOTOR_DIR_BACKWARD);m5_state = 0;}

 if (m6 < leg_threshold && m6_state == 1 && mark>1)

{setMotorEffort(6,800, MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(6,0,

MOTOR_DIR_BACKWARD);m6_state = 0;}

 if (m1_state == 0 && m2_state == 0 && m3_state == 0 && m4_state ==

0 && m5_state == 0 && m6_state == 0 && mark>1) {break;} // When all legs reach their

position, jump out

 }

 }

17

/***

Emergency stop subroutine

 Description: This program performs emergency stop when metal is in vicinity

***/

void emergency_stop()

{

 PORTC_OUTCLR = 0x20; // Turn off red LED

 PORTC_OUTSET = 0x10; // Turn on blue LED

 int i = 0;

 while (1)

 {

 int16_t metal = analogRead(&ADCB,1);

 if (metal < metal_threshold){i++;}

 if (i == 10){break;}

 //printf("metal=%d\r",metal);

 setMotorEffort(1,0, MOTOR_DIR_NEUTRAL);

 setMotorEffort(2,0, MOTOR_DIR_NEUTRAL);

 setMotorEffort(3,0, MOTOR_DIR_NEUTRAL);

 setMotorEffort(4,0, MOTOR_DIR_NEUTRAL);

 setMotorEffort(5,0, MOTOR_DIR_NEUTRAL);

 setMotorEffort(6,0, MOTOR_DIR_NEUTRAL);

 PORTC_OUTTGL = 0x30; // Blink both LEDs

 _delay_ms(100);

 }

}

18

/***

Reverse_three_by_three subroutine

 Description: This program performs reverse action of robot

***/

void reverse_three_by_three(){

PORTC_OUTCLR = 0x10; // Turn off blue LED

PORTC_OUTSET = 0x20; // Turn on red LED

setMotorEffort(1,700, MOTOR_DIR_BACKWARD);int16_t m1_state = 1;

setMotorEffort(2,700, MOTOR_DIR_BACKWARD);int16_t m2_state = 1;

setMotorEffort(5,650, MOTOR_DIR_BACKWARD);int16_t m5_state = 1;

setMotorEffort(3,200, MOTOR_DIR_FORWARD);

setMotorEffort(4,200, MOTOR_DIR_FORWARD);

int16_t m3_state = 0;

int16_t m4_state = 0;

int16_t m6_state = 0;

_delay_ms(200);

int i = 0; // count 3 cycles then jump out of "reverse" subroutine

while (1)

{

 /******Stuck Prevention******/

 if (delayOver == 1){recover_stance();}

 if (i == 3){recover_stance();break;} // perform "reverse" for three times

 adcChannelMux(&ADCA,0,0);_delay_ms(1);int16_t m5 = analogRead(&ADCA,0);

 adcChannelMux(&ADCA,0,1);_delay_ms(1);int16_t m2 = analogRead(&ADCA,0);

 int16_t m1 = analogRead(&ADCA,2);

 if (m1 < leg_threshold && m1_state == 1) {setMotorEffort(1,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(1,200,

MOTOR_DIR_FORWARD);m1_state = 2;}

 if (m2 < leg_threshold && m2_state == 1) {setMotorEffort(2,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(2,200,

MOTOR_DIR_FORWARD);m2_state = 2;}

 if (m5 < leg_threshold && m5_state == 1) {setMotorEffort(5,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(5,0,

MOTOR_DIR_FORWARD);m5_state = 2;}

 if (m1_state == 2 && m2_state == 2 && m5_state == 2 && m3_state == 0 && m4_state

== 0 && m6_state == 0){

 _delay_ms(1000);

19

 setMotorEffort(3,700, MOTOR_DIR_BACKWARD);m3_state = 1;setMotorEffort(4,750,

MOTOR_DIR_BACKWARD);m4_state = 1;setMotorEffort(6,650,

MOTOR_DIR_BACKWARD);m6_state = 1;m1_state = 0; m2_state = 0; m5_state =0;

 _delay_ms(150);

 }

 adcChannelMux(&ADCA,1,2);_delay_ms(1);int16_t m3 = analogRead(&ADCA,1);

 adcChannelMux(&ADCA,1,3);_delay_ms(1);int16_t m6 = analogRead(&ADCA,1);

 int16_t m4 = analogRead(&ADCA,3);

 if (m4 < leg_threshold){RTC_Delay_ms(5000);} //Using real time clock to count the

time that leg gets stuck

 if (m3 < leg_threshold && m3_state == 1) {setMotorEffort(3,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(3,200,

MOTOR_DIR_FORWARD);m3_state = 2;}

 if (m4 < leg_threshold && m4_state == 1) {setMotorEffort(4,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(4,200,

MOTOR_DIR_FORWARD);m4_state = 2;}

 if (m6 < leg_threshold && m6_state == 1) {setMotorEffort(6,1000,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(6,0,

MOTOR_DIR_FORWARD);m6_state = 2;}

 if (m3_state == 2 && m4_state == 2 && m6_state == 2 && m1_state == 0 && m2_state

== 0 && m5_state == 0){

 _delay_ms(1000);

 setMotorEffort(1,700, MOTOR_DIR_BACKWARD);m1_state = 1;setMotorEffort(2,700,

MOTOR_DIR_BACKWARD);m2_state = 1;setMotorEffort(5,650,

MOTOR_DIR_BACKWARD);m5_state = 1;m3_state = 0; m4_state = 0; m6_state =0;

 _delay_ms(150);

 i++;

 }

}

}

20

/***

Turn_right subroutine

 Description: This program performs right turn action of robot

***/

void turn_right(){

 PORTC_OUTCLR = 0x20; // Turn off red LED

 PORTC_OUTSET = 0x10; // Turn on blue LED

 setMotorEffort(1,750, MOTOR_DIR_FORWARD);int16_t m1_state = 1;

 setMotorEffort(2,750, MOTOR_DIR_FORWARD);int16_t m2_state = 1;

 setMotorEffort(5,750, MOTOR_DIR_BACKWARD);int16_t m5_state = 1;

 _delay_ms(200);

 int i = 0; // counter

 setMotorEffort(3,300, MOTOR_DIR_FORWARD);

 setMotorEffort(4,300, MOTOR_DIR_FORWARD);

 RTC_Delay_ms(10000); //Using real time clock to limit turning time

 while (1)

 {

 /******Stuck Prevention******/

 if (delayOver == 1){recover_stance();break;}

 adcChannelMux(&ADCA,0,0);_delay_ms(1);int16_t m5 = analogRead(&ADCA,0);

 adcChannelMux(&ADCA,0,1);_delay_ms(1);int16_t m2 = analogRead(&ADCA,0);

 int16_t m1 = analogRead(&ADCA,2);

 if (m1 < leg_threshold && m1_state == 1) {setMotorEffort(1,800,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(1,0,

MOTOR_DIR_BACKWARD);m1_state = 2;}

 if (m2 < leg_threshold && m2_state == 1) {setMotorEffort(2,800,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(2,0,

MOTOR_DIR_BACKWARD);m2_state = 2;}

 if (m5 < leg_threshold && m5_state == 1){setMotorEffort(5,800,

MOTOR_DIR_FORWARD);_delay_ms(20);setMotorEffort(5,0,

MOTOR_DIR_FORWARD);m5_state = 2;}

 if (m1_state == 2 && m2_state == 2 && m5_state == 2){

 i++;

 if (i==5){recover_stance();break;}

 _delay_ms(1000);

 setMotorEffort(1,700, MOTOR_DIR_FORWARD);m1_state =

1;setMotorEffort(2,700, MOTOR_DIR_FORWARD);m2_state = 1;setMotorEffort(5,700,

MOTOR_DIR_BACKWARD);m5_state = 1;

 _delay_ms(150);

 }}}

21

/***

Forward_three_by_three subroutine

 Description: This program performs forward three_by_three walking gait

***/

void forward_three_by_three(){

PORTC_OUTCLR = 0x20; // Turn off red LED

PORTC_OUTSET = 0x10; // Turn on blue LED

setMotorEffort(1,700, MOTOR_DIR_FORWARD);int16_t m1_state = 1;

setMotorEffort(2,700, MOTOR_DIR_FORWARD);int16_t m2_state = 1;

setMotorEffort(5,650, MOTOR_DIR_FORWARD);int16_t m5_state = 1;

setMotorEffort(3,100, MOTOR_DIR_BACKWARD);

setMotorEffort(4,100, MOTOR_DIR_BACKWARD);

int16_t m3_state = 0;

int16_t m4_state = 0;

int16_t m6_state = 0;

_delay_ms(200);

int metal_counter = 0;

int IR_counter = 0;

while (1)

{

 /******Metal Detector Interruption******/

 int16_t metal = analogRead(&ADCB,1);

 if (metal > metal_threshold){metal_counter++;}

 if (metal_counter == 10){three = 1; break;} // If metal detector senses metal for ten times,

then break the forward loop */

 /******IR Interruption******/

 adcChannelMux(&ADCB,0,2);_delay_ms(1);int16_t IR_right = analogRead(&ADCB,0);

 adcChannelMux(&ADCB,0,3);_delay_ms(1);int16_t IR_left = analogRead(&ADCB,0);

 printf("IR_right=%d,IR_left=%d\r",IR_right,IR_left);

 if (IR_right > IR_threshold || IR_left > IR_threshold) {IR_counter++;}

 if(IR_counter == 10) {three = 1;break;}

 /******Stuck Prevention******/

 if (delayOver == 1)

 {three_stuck=1;break;}

 /******Sequence Walking******/

 adcChannelMux(&ADCA,0,0);_delay_ms(1);int16_t m5 = analogRead(&ADCA,0);

 adcChannelMux(&ADCA,0,1);_delay_ms(1);int16_t m2 = analogRead(&ADCA,0);

22

 int16_t m1 = analogRead(&ADCA,2);

 if (m1 < leg_threshold && m1_state == 1) {setMotorEffort(1,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(1,100,

MOTOR_DIR_BACKWARD);m1_state = 2;}

 if (m2 < leg_threshold && m2_state == 1) {setMotorEffort(2,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(2,100,

MOTOR_DIR_BACKWARD);m2_state = 2;}

 if (m5 < leg_threshold && m5_state == 1) {setMotorEffort(5,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(5,0,

MOTOR_DIR_BACKWARD);m5_state = 2;}

 if (m1_state == 2 && m2_state == 2 && m5_state == 2 && m3_state == 0 && m4_state

== 0 && m6_state == 0){

 _delay_ms(1000);

 setMotorEffort(3,750, MOTOR_DIR_FORWARD);m3_state = 1;setMotorEffort(4,750,

MOTOR_DIR_FORWARD);m4_state = 1;setMotorEffort(6,650,

MOTOR_DIR_FORWARD);m6_state = 1;m1_state = 0; m2_state = 0; m5_state =0;

 _delay_ms(150);

 }

 adcChannelMux(&ADCA,1,2);_delay_ms(1);int16_t m3 = analogRead(&ADCA,1);

 adcChannelMux(&ADCA,1,3);_delay_ms(1);int16_t m6 = analogRead(&ADCA,1);

 int16_t m4 = analogRead(&ADCA,3);

 if (m3 < leg_threshold){RTC_Delay_ms(5000);} //Using real time clock to count the

time that leg gets stuck

 if (m3 < leg_threshold && m3_state == 1) {setMotorEffort(3,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(3,100,

MOTOR_DIR_BACKWARD);m3_state = 2;}

 if (m4 < leg_threshold && m4_state == 1) {setMotorEffort(4,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(4,100,

MOTOR_DIR_BACKWARD);m4_state = 2;}

 if (m6 < leg_threshold && m6_state == 1) {setMotorEffort(6,1000,

MOTOR_DIR_BACKWARD);_delay_ms(20);setMotorEffort(6,0,

MOTOR_DIR_BACKWARD);m6_state = 2;}

 if (m3_state == 2 && m4_state == 2 && m6_state == 2 && m1_state == 0 && m2_state

== 0 && m5_state == 0){

 _delay_ms(1000);

 setMotorEffort(1,700, MOTOR_DIR_FORWARD);m1_state = 1;setMotorEffort(2,700,

MOTOR_DIR_FORWARD);m2_state = 1;setMotorEffort(5,650,

MOTOR_DIR_FORWARD);m5_state = 1;m3_state = 0; m4_state = 0; m6_state =0;

 _delay_ms(150);

 }

}

}

23

/***

Forward_six_by_six subroutine

 Description: This program performs forward six_by_six walking gait

***/

void butterfly_forward(){

 setMotorEffort(1,600, MOTOR_DIR_FORWARD);int16_t m1_state = 1;

 setMotorEffort(2,600, MOTOR_DIR_FORWARD);int16_t m2_state = 1;

 setMotorEffort(3,600, MOTOR_DIR_FORWARD);int16_t m3_state = 1;

 setMotorEffort(4,600, MOTOR_DIR_FORWARD);int16_t m4_state = 1;

 setMotorEffort(5,500, MOTOR_DIR_FORWARD);int16_t m5_state = 1;

 setMotorEffort(6,500, MOTOR_DIR_FORWARD);int16_t m6_state = 1;

 _delay_ms(200);

 int counter = 0;

 int IR_counter = 0;

 while (1)

 {

 if (delayOver == 1){six_stuck=1;break;} // When leg is stuck for more

than 2 seconds, break while loop and wait for recover stance

 adcChannelMux(&ADCA,1,2);_delay_ms(1);int16_t m3 =

analogRead(&ADCA,1);

 if (m3 < leg_threshold) {RTC_Delay_ms(2000);counter++;

_delay_ms(200);} // Every time photo-interrupter reads a value, re-set counting down and add

counter

 if (counter == 5){six = 1;break;}

 /******IR Interruption******/

 adcChannelMux(&ADCB,0,2);_delay_ms(1);int16_t IR_right =

analogRead(&ADCB,0);

 adcChannelMux(&ADCB,0,3);_delay_ms(1);int16_t IR_left =

analogRead(&ADCB,0);

 printf("IR_right=%d,IR_left=%d\r",IR_right,IR_left);

 if (IR_right > IR_threshold || IR_left > IR_threshold) {IR_counter++;}

 if(IR_counter == 10) {six = 1;break;}

 }

 }

24

/***************Metal Detector Interruption**********************/

 int16_t metal = analogRead(&ADCB,1);

 if (metal > metal_threshold){emergency_stop();_delay_ms(500);recover_stance();}

 //printf("metal=%d\r",metal);

/***************IR Interruption************************************/

 adcChannelMux(&ADCB,0,2);_delay_ms(1);int16_t IR_right = analogRead(&ADCB,0);

 adcChannelMux(&ADCB,0,3);_delay_ms(1);int16_t IR_left = analogRead(&ADCB,0);

 //printf("IR_right=%d,IR_left=%d\r",IR_right,IR_left);

 if ((IR_right > IR_threshold || IR_left > IR_threshold) && IR_left >

IR_right){recover_stance();reverse_three_by_three();turn_right();}

 if ((IR_right > IR_threshold || IR_left > IR_threshold) && IR_left <

IR_right){recover_stance();reverse_three_by_three();turn_left();}

 //if (IR_right > IR_threshold || IR_left > IR_threshold && six

==1){_delay_ms(1000);butterfly_reverse();}

 if (IR_right < IR_threshold && IR_left < IR_threshold && three == 1)

{forward_three_by_three();} // continue three_by_three gait if previously flagged as three

 if (IR_right < IR_threshold && IR_left < IR_threshold && three_stuck

==1){recover_stance();reverse_three_by_three();turn_left();three_stuck = 0; three = 1;} //

recover stance if robot is stuck during forward_three_by_three gait

 if (IR_right < IR_threshold && IR_left < IR_threshold && six

==1){butterfly_forward();} // continue six_by_six gait if previously flagged as six

 if (IR_right < IR_threshold && IR_left < IR_threshold && six_stuck

==1){recover_stance();reverse_three_by_three();turn_left();six_stuck = 0; six = 1;} // recover

stance if robot is stuck during six_by_six gait

