
University of Florida
Intelligent Machine Design Lab

Card Shark
(final report)

Kevin E. Kane
ID # 72860210
Dr. A. Arroyo

 2

Table of Contents

Abstract ……………………………………………………………………………….3
Executive Summary …………………………………………………………………..3

Introduction …………………………………………………………………………...4
Integrated System ……………………………………………………………………..4

Mobile Platform ………………………………………………………………………5
Actuation ……………………………………………………………………………...5

Sensors ………………………………………………………………………………..6
 Barcode scanner
 Photo-resistors
Behaviors ……………………………………………………………………………..6

Conclusion …………………………………………………………………………….7

Acknowledgements ……………………………………………………………………8

Appendix ……………………………………….……………………………………9-?

Complete Code
 Line tracking circuit

 3

Abstract

Card Shark is an autonomous professional card-playing robot specializing in blackjack
play. Using its own deck of cards with barcodes on them the robot can place bets, read
its cards and the dealer’s cards, and then makes the proper mathematical play for best
long run results. An excite toy for everyone to watch, Card Shark’s uses of entertainment
could even be used directly in casinos.

Executive Summary

In an attempt to better educate the gambling community about the simple, yet exciting
game of blackjack, I’ve designed Card Shark. Card Sharks uses are completely for
entertainment and spectator enjoyment for now. In the flashy world of Gambling and
card tables, a simple robot playing a traditionally human game would be an attention
grabber. Many would most likely what to even play next to the robotic gambling marvel.
It does seem that future designs could also be build with more of an education/training
purpose in mind. Card Sharks could be used for teaching the game to complete novices
and be a fun table companion at the same time.

Card Shark is designed to function as a completely autonomous blackjack player. Card
Shark has three main behavior functions that it performs, while in combination they
create a false sense of intelligence. It follows a highly contrast line track counter
clockwise. As it performs this task, it scans the barcodes on playing cards laid out before
it. By reading and inputting these card values (or instructions as it maybe considered)
Card Shark makes a blackjack playing choice. Doubling down, splitting, hitting or
standing is all part of a standard repertoire for this gambling machine. In split and
doubling down situations Card Shark’s current design drops a colored chips to better
express its desires. Complete hands are displayed on the LCD screen readable to either
the dealer or observers.

With the ability to play one hand after another, and never become mentally tired, Card
Shark is the first truly perfect Blackjack player. Fun to watch and possibly even learn
from, Card Shark may bring an ever more positive light to the some times intimidating
game of blackjack. If casinos desires are to keep patrons entertained and on the gaming
floor having a couple Card Sharks in their casino may have the potential to bring more
business and bets then before.

 4

Introduction

Card Shark is the first autonomous blackjack-playing robot ever (at lest I think so). It is
mostly for fun in its current form, as no serious casino would allow a robot to play its
blackjack tables. However, warehouses or other shipping companies can use the basic
programming level of Card Shark’s decision-making and barcode reading to move
organize and distribute products. With a computerized system to organize and place
goods in/out of storage, a company can expect exact and dependable work.

Integrated System

At the heart of Card Shark is an ATMEL Atmega32L micro-controller mounted on a
STK500 testing board. This micro controller directly interfaces with the following
devices:

 2 “hacked” servos for mobility around the playing table
 2 “arm” servos for placing bets
 1 LCD for feedback to the dealer and operator
 2 photo resistor circuits for basic line following
 1 KaneScan barcode scanner for playing card reading

There are two movement servos that are used to drive Card Shark around the table while
following the black line. These two servos are used to help it turn left or right. An
interesting aspect of Card Shark is how wide it is. As a result, in order to make sharp
turns I wrote code that sets one wheel in reverse (although it is slow) in order to make
tight turns as I desired. This makes the Card Shark’s turns/movements appear jerky at
times; however the advantages of a smaller track can then be utilized.

The “arms” are the most internal part of my design and are used to drop different colored
chips from inside the chip holder areas. These chips are pushed to the cutout holes at the
bottom of the platform. These servos are not hacked and are used to move one way and
then back to their resting positions.

The LCD is used to inform the dealer and operator what Card Shark wishes to do with its
decision; hit, stand, double down, or split. It is located on the top of Card Shark.

The photo resistors are used to follow a black line. They are incorporated in a circuit
designed to give a digital (1 = white, 0 = black line) output. This keeps Card Shark in the
proper place for reading the cards in order.

The Barcode scanner is used to recognize the actual card values. Each card has a barcode
on it that is scanned and input to Card Shark as it drives by. A basic Code 39 is used for

 5

the scanner and barcodes. The nice thing about this is that numbers are sent in ASCII
form. These means that after reading in the value the code could subtract $30 and have
the correct hexadecimal value to be used. (Notice that Aces = $01 and Tens = $00)

Mobile Platform

The platform I designed in AutoCAD and cutout with the T-tech was quite large with
dimensions of 13” x 8”. It holds the batteries and scanner on one side and the chips on
the other, while still carrying the full STK500 in the middle. That is the scanner is on the
left and playing cards are on the right when facing the same direction as Card Shark. The
LCD is located on top next to the board and faces the back of Card Shark. This seemed
to be the best location for both the operator and the dealer to see what Card Shark’s
playing choice is. An area was built to hold ten AA batteries to power the robot. On top
of it is velcro to hold the scanner in place during operation. In this design velcro is the
only choice as glue means you’d be unable to replace Card Shark’s batteries and anything
less would not hold the scanner in place. Along with the wooden frame are two separate
“arms” for moving chips from their holding locations to the holes cut out in the bottom
layer of the platform. A hole large enough to drop one chip bets as either the original,
double down, or splitting bets. The frame is held together using screws; in this way the
separate layers of the platform can be taken apart and line following circuits
potentiometers may be adjusted and the betting “arms” inside can be inspected.

Actuation

Card Shark moves vie two servos, one for each driving wheel. The other two servos are
independently used for the betting “arms” inside the robot’s platform. These servos are
moved in three different patterns to displace three different bets; first bet, doubling down,
and splitting bets. For this reasons two of the used were bought as “hacked” servos while
the remained standard servos.

As a funny side note, two of my original servos (non-hacked) were destroyed when I put
an excess amount of crazy glue on the dowels placed inside the rotating shafts of the
servos. They were glued stiff and wouldn’t move!

 6

Sensors

Sensor: KaneScan Barcode Scanner (just happens to have my last name in it)
Part number: 02001291
Qty: 1
Discussion: The KaneScan barcode scanner is an affordable ($85) highly accurate (4
mils) barcode scanner. Each card in Card Shark’s deck has a barcode on the top
corresponding to its value in blackjack. Aces are coded with the number 1 and are
handled by the software as either 1 or 11 like in all blackjack casino games. Tens are
given a value of 0 by the barcoding scheme but fixed in the programming code. The
barcode scanner is mounted on the left with it scanning done behind the drive wheels.
The scanner is interfaced via an RS-232 into an extra UART port built into the micro-
controller.

Sensor: Photo resistors
Part number: none
Qty: 2
Discussion: Card Shark uses two photo resistant cells for following a black line. There
have been many projects that have done similarly and I followed those designs tightly. I
used the same circuit design given in a report on line tracking by William the TA. By
following a black line Card Shark is sure to stay on track and read all the playing cards in
proper order and then place the bets in the same general locations.

Behaviors

First Card Shark places its starting bet to be in the hand. Card Shark then follows the
black line track around to scan the dealer’s cards and then its own cards. It then makes
the choice to hit, stand, double down, or split. Card Shark displays this decision on its
LCD screen (preceded by the card’s value read) and if needed drops the correct betting
chip for doubling down or splitting. Card Shark then continues around the track prepared
to read the next card if a hit or split was the play, or ready to read the next hand if
doubling down or standing was the play.

These behaviors major components were worked on separately (line tracking, barcode
reading, and betting) and then I tried to blend them together. I discovered many issues to
deal with when these behaviors were brought together. One was the power needed to
fully supply the STK500 board, 4 separate servos, two photo resistor circuits and one
barcode scanner was a lot. I used 10 rechargeable Energizer 2300 mAh batteries and this
was barely enough. (Notice: for the teacher/TA demo I tried different batteries with very
bad results, including a very jumpy robot that wouldn’t follow a line) Another issue with
blending these behaviors is that scanning the cards is easy by hand but while driving
exact alignment is needed. Slight changes in approach angles result in unread cards.

 7

Conclusion

Card Shark is a fully functional blackjack-playing robot. I know how to read/scan cards
calculate its best betting solution and drop the proper chip for that decision. It is of
course only for fun and possibly for training yourself at home. However, the basic ideas
behind Card Shark are far reaching. They could be used in moving and dropping off
supplies (chips) to different location in a specified track or warehouse. By having
interchangeable barcodes, operators (dealers) can layout different patterns or objectives
for an army of robots without actually changing the robots themselves. This system
would save a lot of time and effort if many such robots were in operation at a warehouse,
factory, distribution center, or any other quickly changing (yet robotically feasible)
manual labor locations.

There are many, many problems with this first design of Card Shark. I will explain a
couple now, but many more improvements should be made in any next generation
designs. First of all my original plans were to have Card Shark carry many doubling
down bet and splitting bet chips with it as it moved. It was to drop one at a time and still
hold a supply of extra chips for following hands. The problem was the material used in
the internal “arms” was wood. Everything was laid out in AutoCAD and finely designed
to coordinate tightly with one another; however, the wood was quick to warp and bend,
making my dream system impossible to utilize. I was left sanding, carving, gluing and
praying only to get it holding and dropping one chip at a time (I’m clearly not a
mechanical engineer). Second I never clearly laid a plan to make Card Shark stop and
wait/drop bets at an exact location. One black tab and a third photo-resistor would have
solved this issue. Instead, I the dealer, guessed the location of the last playing card so the
bet chips would stay in the same general area.

I believed the easiest part of my project would be writing the code for playing the “basic”
strategy laid out in books and online. This wasn’t the case and what I expect to be a
couple days work turned into assembly code over 400 words in length, and even then it
was far from perfect. “Arrays” and “lookup tables” coded in a higher-level language are
the only ways of doing this. I tried indirect indexing but faced more problems then I was
able to tackle. The result is a maze of code through branching and jump commands. (I
challenge any normal human being to try and follow it)

I would say that although Card Shark does not act completely to my desires or even
correctly 100% of the time, I’m still proud of the work and effort I put into it. The code
is huge, all available PWMs were used, I almost ran out of ports on the STK500, and I
burned, destroyed and lost more components then I’d like to admit. It was all a learning
experience. The fact is, I learned more practical things in this short summer then any
other class at UF.

 8

Acknowledgements

One thing I learned in this course was not to just know the right people, but to know the
right questions to ask those people! With that I’d like to thank, Steven Pickels for his
extensive help with my many barcode scanner questions, William Dubel for direction
with the line tracking and power supply circuits, Max Koessick for cutting out my
platform and teaching me AVR assembly code. In addition I’d like to thank a couple
students in the class as well, Jeffery Cohan for the photo-resistors, Stephen Corbett for
sending me PWM example code, and the builder of “please-don’t-suck-bot” for the servo
wheels he offered me in my time of need.

Last I’d like to thank A. A. Arroyo and E. M. Schwartz for the opportunity they gave us
to take this class. Thanks to their efforts and teachings the world of robotics has been
opened to us all.

 9

Appendix

Completed Code:

; *****************************
; ** Kevin E Kane **
; ** 7/28/2004 **
; ** EEL 5666, UF **
; ** Card Shark 2.d **
; ***
; * Program Discription: Is the second try at intergrating the blackjack *
; * playing program of Card Shark with the actuation fuctions. These *
; * actuations include the servos used for driving, sensors for line *
; * detection and additional servos for placing bets (starting, splitting *
; * and doubling down. *
; ***

; ***********Notes To Yourself*****************
; 1) PortA is for LCD screen!
; 2) PortB is for anything (pin 3 is a timer PWM output, OC0)
; 3) PortC is for LEDs (NOTE: only pins 7, 6, 1, and 0 seem to work)
; 4) PortD is for TX(transmiter), RX(resiever), V0, V1(eyes),
; PWM0, PWM1 (wheels), OC2 (splitting/dd pin)
; 5) @@@@@@ = means these lines may be removed but are used for trouble shooting

.nolist
.include "C:\Program Files\Atmel\AVR Tools\AvrAssembler\Appnotes\m32def.inc"
.list

;***** Declarations ***************************
.def temp0 =r16 ; Temporary register 0
.def temp1 =r17 ; Temporary register 1 (for UART I/O)
.def temp2 =r18 ; Temporary register 2 (for LCD screen/PortA)
.def temp3 =r19 ; Temporary register 3
.def Delay1 =r20 ; Delay variable 1
.def Delay2 =r21 ; Delay variable 2
.def Delay3 =r22 ; Delay variable 3
.def mpr =r23 ; "Multi-Purpose Register" (used for servos)
.def mpr2 =r24 ; "Multi-Purpose Register", number 2 (used for servos)

;***** Interrupt Vectors ******************************
.org $000
 rjmp Init ; Starting Line (jump to Init)
.org $01A
 rjmp Scan ; UART Receive Complete Interrupt Vector Address ($01A)

;**
;***** INITIALIZATIONS!!! *****************************
Init:
; ****Port Setups****
 ser temp0
 out DDRA,temp0 ; Set PORTA to all outputs
 out DDRB,temp0 ; Set PORTB to all outputs
 ldi temp0,0b10111111
 out DDRC,temp0 ; Set PORTC to all outputs except pin6 input
 ldi temp0,0b10110000
 out DDRD,temp0 ; Set PORTD pins 4, 5 and 7 as outputs, all others are
inputs

 clr temp0
 out PortA,temp0 ; Set no "pullups" for PortA
 out PortB,temp0 ; Set no "pullups" for PortB
 out PortC,temp0 ; Set no "pullups" for PortC
 ldi temp0,0b10110000 ; Set pins 4 and 5 as high initially,...
 out PortD,temp0 ; ...no other "pullups" for PortD
; ****Enable Output Compare, 8-bit Timers (arms, mode 4)****
 ldi mpr,0b01110100 ; (timer 0) ; mode 1 PWM, "set" on rise and...

 10

 out TCCR0,mpr ; ..."clear" on fall, prescaler equals 256
 ldi mpr,$EF ; compare value
 out OCR0,mpr ; $EF = starting position
 ldi mpr,0b01110110 ; (timer 2) ; mode 1 PWM, "set" on rise and...
 out TCCR2,mpr ; ..."clear" on fall, prescaler equals 256
 ldi mpr,$EC ; compare value = $EC (changed back at the end of init.)
 out OCR2,mpr ; NOTE:Place first bet, before LCD delays...
 ; ...and before Card Shark starts moving
; ****START****
polling: ; polling for Port C, pin6 to be pushed
 out PORTB,temp0
 sbis PINC,0x06 ; If (Port C, pin6 ==0)
 rjmp Start ; then jump to "start" and finish Initializations
 inc temp0 ; else inc temp0 value and...
no_start:
 dec Delay1
 brne no_start
 dec Delay2
 brne no_start
 rjmp polling
Start:
; ****Stack Pointer setup****
 ldi temp0,high(Ramend)
 out SPH,temp0
 ldi temp0,low(Ramend)
 out SPL,temp0 ; Stack pointer points to end of RAM ($085F)
; ****Drop first bet****
 ldi mpr,$F6 ; compare value = $F6 (changed back at the end of init.)
 out OCR2,mpr ; NOTE:Place first bet, before LCD delays...
; ****Enable Output Compare, 16-bit Timer (Wheel PWMs, mode 8)****
 ldi mpr,0b11110000 ; mode 8 PWM, "set" on rise and "clear" on fall
 out TCCR1A,mpr
 ldi mpr,0b00010100 ; mode 8 PWM, prescaler equals 256
 out TCCR1B,mpr
 ldi mpr,$01
 ldi mpr2,$38
 out ICR1H,mpr ; Set "TOP" equal to $138
 out ICR1L,mpr2 ; 20.0ms
; ****UART setup****
 ldi temp1,0b00000000
 out UBRRH,temp1
 ldi temp1,51 ; Set UART for 9600 baud rate
 out UBRRL,temp1
 ldi temp1,0b10000000 ; Receive complete flag
 out UCSRA,temp1
 ldi temp1,0b10010000 ; Enable UART Receiver, and Receive Interrupt
 out UCSRB,temp1
 ldi temp1,0b10000110 ; Enable Asynchronous UART operation,
 out UCSRC,temp1 ; 8-bit data packs, and no parity
; ****Prepare LCD screen****
 ldi temp2,$00 ; Set "enable" bit low/off
 out PORTA,temp2
; (4-bit enable)
 ldi temp2,$03
 call LCDdelay
 ldi temp2,$03
 call LCDdelay
 ldi temp2,$03
 call LCDdelay
 ldi temp2,$02
 call LCDdelay
; (2-line enable)
 ldi temp2,$02
 call LCDdelay
 ldi temp2,$08
 call LCDdelay
; (Display, Cursor, Blink)
 ldi temp2,$00
 call LCDdelay
 ldi temp2,$0F

 11

 call LCDdelay
; (Clear Home)
 ldi temp2,$00
 call LCDdelay
 ldi temp2,$01
 call LCDdelay ; L.C.D. SCREEN READY!!!!
; ldi temp0,$99 ;@@@@@@@@
; out PORTB,temp0 ;@@@@@@@@
; ****Set Starting Variable Values****
 ldi temp0,$02
 sts final_card_number,temp0
 clr temp0
 sts card_number,temp0
 sts dealer_card,temp0
 sts players_hand_count,temp0
; ****betting arm returns to starting position****
 call servo_delay ; delay longer for "arm" to finish its first move
 ldi mpr,$ED ; compare value = $ED
 out OCR2,mpr

 ldi temp0,$1F ;@@@@@@@@@@@@@
 out PORTB, temp0 ;@@@@@@@@@@@@@
; ****Interrupt setup****
 sei ; enable interrupts
; ****Lights signaling end of Init****
; ldi temp0,$AA ;@@@@@@@@@@
; out PORTC,temp0 ;@@@@@@@@@@
;***

;***
;***********START OF MAIN PROGRAM!!!!***********
;* This program follows a line while *
;* staying in the "mainloop" program. *
Mainloop: ;***Start of Mainloop program*******
 sbis PIND,0x02 ; is Pin number 2 of Port D (white) low?
 rjmp turn_left ; if so then jump to "turn_left"
 sbis PIND,0x03 ; is Pin number 3 of Port D (white) low?
 rjmp turn_right ; if so then jump to "turn_right"
straight:
 ldi mpr,$01
 ldi mpr2,$1C
 out OCR1AH,mpr ; value $11C (middle forward)
 out OCR1AL,mpr2 ; about 1.75ms
 ldi mpr,$01
 ldi mpr2,$025 ; (right tire)
 out OCR1BH,mpr ; value $125 (middle forward)
 out OCR1BL,mpr2 ; 1.25ms
 ldi temp0,$C3 ;@@@@@@@@
 out PortB,temp0 ;@@@@@@@@
 ldi Delay3,$10
 call DLY
 rjmp mainloop
turn_left:
 ldi mpr,$01
 out OCR1AH,mpr
 ldi mpr,$21 ; value $119 (small reverse)
 out OCR1AL,mpr ; 1.45ms
 ldi mpr,$01
 out OCR1BH,mpr
 ldi mpr,$30 ; value $130 (big forward)
 out OCR1BL,mpr ; 1.0ms
 ldi temp0,$0F ;@@@@@@@@
 out portB,temp0 ;@@@@@@@@
 ldi Delay3,$10
 call DLY
 rjmp mainloop
turn_right:
 ldi mpr,$01
 out OCR1BH,mpr
 ldi mpr,$20 ; value $122 (small reverse)

 12

 out OCR1BL,mpr ; 1.40ms
 ldi mpr,$01
 out OCR1AH,mpr
 ldi mpr,$10 ; value $110 (big forward)
 out OCR1AL,mpr ; 1.0ms
 ldi temp0,$F0 ;@@@@@@@@
 out portB,temp0 ;@@@@@@@@
 ldi Delay3,$10
 call DLY
 rjmp mainloop
;***

;*SUBROUTINES AND ENDS TO INTERRUPT ROUTINES!!**
;**************Subroutines**********************

;**********LCDdelay subroutine******************
LCDdelay: ; toggle PortA's pin 6 (enable pin to LCD)
 out PORTA,temp2 ; load portA onto temp2
 ori temp2,0b01000000 ; force pin 6 to be high/on
 out PORTA,temp2 ; output new value to PortA
 andi temp2,0b10111111 ; force pin 6 to be low/off
 out PORTA,temp2 ; output new value to PortA
Del: ; create delay
 dec Delay1
 brne Del
 dec Delay2
 brne Del
 ret ; return from "LCDdelay" subroutine
;**********servo_delay subroutine******************
servo_delay:
 ldi Delay3,$18
DLY:
 dec Delay1
 brne DLY
 dec Delay2
 brne DLY
 dec Delay3
 brne DLY
 ret
;**********dealer_card subroutine******************
dealer_card_sub1: ; store value from ZL into dealer_card (dealer's shown card)
 sts dealer_card,ZL
 ldi temp3,$0F ;@@@@@
 out PortB,temp3 ;@@@@@
 inc temp0 ; increament the card number your looking at ($00 --> $01)
 sts card_number,temp0 ; load new value into "card_number" (value = $01)
 ldi temp2,$87 ; (line up and down)
 call LCDdelay
 ldi temp2,$8C
 call LCDdelay
 ldi temp2,$82 ; (blank)
 call LCDdelay
 ldi temp2,$80
 call LCDdelay
 reti ; return from UART interrupt
;**********player_card_one subroutine******************
player_card_one1: ; store value of your first card into "players_hand_count"
 sts players_hand_count,ZL
 ldi temp3,$F0 ;@@@@@
 out PortB,temp3 ;@@@@@
 inc temp0 ; increament the card number your looking at ($01 --> $02)
 sts card_number,temp0 ; load new value into "card_number" (value = $02)
 reti ; return from UART interrupt
;**********do_Split subroutine******************
do_Split1: ; rountine that actually calls to "Split"
 ldi mpr,$ED
 out OCR0,mpr ; move 1 of split bet pattern
; (S)
 ldi temp2,$85
 call LCDdelay

 13

 ldi temp2,$83
 call LCDdelay
; (p)
 ldi temp2,$87
 call LCDdelay
 ldi temp2,$80
 call LCDdelay
; (l)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$8C
 call LCDdelay
; (i)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$89
 call LCDdelay
; (t)
 ldi temp2,$87
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
 call servo_delay ; delay longer for "arm" to finish its first move
 ldi mpr,$EF
 out OCR0,mpr ; move 2 of split bet pattern
 rjmp recheck
;**********do_Double subroutine******************
do_double1: ; rountine that actually calls to Double Down ("DD")

 ldi mpr,$F1
 out OCR0,mpr ; move 1 of Doubling Down bet pattern
; (D)
 ldi temp2,$84
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
; (D)
 ldi temp2,$84
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
 call servo_delay ; delay longer for "arm" to finish its first move
 ldi mpr,$EF
 out OCR0,mpr ; move 2 of Doubling Down bet pattern
 rjmp done
 ;**********do_Hit subroutine******************
do_hit1: ; rountine that actually calls to "Hit"
; (H)
 ldi temp2,$84
 call LCDdelay
 ldi temp2,$88
 call LCDdelay
; (i)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$89
 call LCDdelay
; (t)
 ldi temp2,$87
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
 rjmp recheck
;**********do_Stand subroutine******************
do_Stand1: ; rountine that actually calls to "Stand"
; (S)
 ldi temp2,$85
 call LCDdelay
 ldi temp2,$83
 call LCDdelay

 14

; (t)
 ldi temp2,$87
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
; (a)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$81
 call LCDdelay
; (n)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$8E
 call LCDdelay
; (d)
 ldi temp2,$86
 call LCDdelay
 ldi temp2,$84
 call LCDdelay
 rjmp done

;*************JUMPING ZONE #1 !!!!*************
dealer_card_sub:
 rjmp dealer_card_sub1
recheck:
 rjmp recheck1
player_card_one:
 rjmp player_card_one1
;**

;*********INTERRUPT SERVICE ROUTINE!!!*********
;******Scanner!!! (start of card anylasis)*****
Scan: ; Card has just been read
 in ZL,UDR ; reads data in and stores it in Low 8-bit Z register
 subi ZL,0x30 ; subtract $30 from data read (change from ASCII to card value)

 rjmp output_number

back:
 ldi temp2,$82 ; (blank)
 call LCDdelay
 ldi temp2,$80
 call LCDdelay
 cpi ZL,$00 ; compare ZL to $00, if ZL is not $00,...
 brne not_10 ; ...then skip next line
 ldi ZL,$0A ; replace $00 with $0A in ZL register (10 value)
not_10: lds temp0,card_number ; load temp0 with "card_number"
 cpi temp0,$00 ; is this the dealer's card?
 breq dealer_card_sub ; if so, then jump to "dealer_card_sub"
 cpi ZL,$01 ; compare ZL to $01, if ZL is not $01,...
 brne not_Ace ; ...then skip next two lines
 ldi temp3,$01
 sts soft,temp3 ; flag for going to the soft table later
not_Ace: cpi temp0,$01 ; is this the player's first card?
 breq player_card_one ; if so, then jump to "player_card_one"
 cpi temp0,$02 ; is this the player's second card?
 brne no_split_no_dd1 ; if NOT, then jump to "no_split_no_dd1"
 lds temp0,players_hand_count ; is this card value the same as...
 cp temp0,ZL ; ...the first card (i.e. current hand count)
 breq question_split ; is so then jump to "question_split"
; lds temp0,players_hand_count ;@@@@@@?@@@????
 cpi temp0,$01 ; is the first card an Ace?
 breq question_double2 ; if so, then check for doubling down
 cpi ZL,$01 ; is the second card an Ace?
 breq question_double2 ; if so, then check for doubling down
 add temp0,ZL ; add values and see if total equals 9, 10, 11
 cpi temp0,$0B ; is it 11?
 breq do_double ; if so, then ALWAYS double down!
 cpi temp0,$0A ; is it 10?

 15

 breq question_double ; is so then check for doubling down
 cpi temp0,$09 ; is it 9?
 breq question_double ; is so then check for doubling down

no_split_no_dd1: ; NO special bets! only soft or hard...
 lds temp3,card_number
 inc temp3 ; increment "card_number"
 sts card_number,temp3

 lds temp0,players_hand_count
 add temp0,ZL ; NOTE: adding must be done here (again),...
 sts players_hand_count,temp0 ; ...incase above adding was skipped

 lds temp0,final_card_number ; load temp0 with number of cards player has (i.e. 2 -> 3 -> 4...)
 out PortB,temp3 ; @@@@@@
 dec temp3 ; NOTE: temp3 = "card_number" value from above
 cp temp0,temp3 ; compare final card with (card_number - 1)
 breq hard_or_soft ; if equal then no more players cards to read, so jump to
hard_or_soft
 reti ; return from UART interrupt
hard_or_soft: ; go to hard table or soft table?
 lds temp3,soft
 cpi temp3,$01 ; checking if "soft flag" is set
 breq soft_table ; if so then branch to "soft_table"
 rjmp hard_table ; else jump to "hard_table"

;***************JUMP ZONE #2 !!!!**************
do_split:
 jmp do_split1
do_double:
 jmp do_double1
do_hit:
 jmp do_hit1
do_stand:
 jmp do_stand1
question_double2:
 jmp question_double21
no_split_no_dd:
 jmp no_split_no_dd1
;***

;***********BASIC PLAY TABLES/SYSTEMS*********
; ****Split Table***
question_split: ; Checking to split or not to split,... that is the question
 lds temp0,dealer_card ; load the dealer's card into temp0 for studying
 cpi ZL,$00 ; compare ZL to $00, Is it a 10, J, Q, K?
 breq no_split_no_dd ; if so then jump to "no_split_no_dd"
 cpi ZL,$01 ; compare ZL to $01, Is it a Ace?
 breq do_split ; if so then jump to "do_split"
 cpi ZL,$02 ; compare ZL to $02, Is it a 2?
 breq do_split ;+++++++++
 cpi ZL,$03 ; compare ZL to $03, Is it a 3?
 breq do_split ;+++++++++
 cpi ZL,$04 ; compare ZL to $04, Is it a 4?
 breq do_split ;+++++++
 cpi ZL,$05 ; compare ZL to $05, Is it a 5?
 brne s6 ; if not then check for 6's
 lds temp0,players_hand_count ; if 5, then...
 add temp0,ZL ; ...add temp0 and players_hand_count,...
 rjmp question_double ; ...then jump to question_double!
s6: cpi ZL,$06 ; compare ZL to $06, Is it a 6?
 breq do_split ;+++++++++
 cpi ZL,$07 ; compare ZL to $07, Is it a 7?
 breq do_split ;+++++++
 cpi ZL,$08 ; compare ZL to $08, Is it a 8?
 breq do_split

 cpi ZL,$09 ; compare ZL to $09, Is it a 9?
 breq do_split ;+++++++
 reti ; NOTE: not a valied card number! (leave)

 16

; ****Double Down Table***
; Checking to double or not to double,... that is the question
question_double: ; player has 9 or 10 total, find out if player should double down
 lds temp3,dealer_card ; loads the dealers card into temp3 for choosing
 cpi temp3,$0A ; if dealers card is a 10
 breq no_split_no_dd ; then don't dd (leave)
 cpi temp3,$0B ; if dealer's card is an Ace
 breq no_split_no_dd ; then don't dd (leave)
 cpi temp0,$0A ; compare temp0 to $10, Is total 10?
 breq do_double ; if you have 10, then dd
 cpi temp3,$09 ; if...$09
 breq no_split_no_dd ; then don't dd (leave)
 cpi temp3,$08 ; if...$08
 breq no_split_no_dd ; then don't dd (leave)
 cpi temp3,$08 ; if...$07
 breq no_split_no_dd ; then don't dd (leave)
 rjmp do_double ; dealers card must be less then 7, player must have 9 (DD)
question_double21: ;****player has an A in first two cards, should he/she double?****
 lds temp3,dealer_card ; loads the dealer's card into temp3 for studying
 rjmp do_double ;++++++++

; ****Soft table (no DD option)***
soft_table:
 inc temp0
 sts final_card_number,temp0
 lds temp0,players_hand_count
 ldi temp0,$55
 out PortB,temp0
 rjmp do_stand ;++++++

; ****Hard table (no DD option)***
hard_table:
 inc temp0
 sts final_card_number,temp0
 lds temp0,players_hand_count
 cpi temp0,$10
 breq h16
 andi temp0,0b11110000
 cpi temp0,0b00010000
 breq d_stand ;++++++
h16:
 rjmp do_hit ;++++++

;***************JUMP ZONE #2 !!!!**************
d_stand:
 rjmp do_stand1
;**

;*************CLOSING HAND!*******************
recheck1: ; end of your choice (Hit/Split)
 clr temp0
 sts card_number,temp0
 sts dealer_card,temp0
 sts soft,temp0
 sts players_hand_count,temp0
; ldi temp3,$18 ;@@@@@
; out PortB,temp3 ;@@@@@
 reti ; leave interrupt service routine

done: ; end of your hand (DD/Stand)
 ldi temp0,$02
 sts final_card_number,temp0
 clr temp0
 sts card_number,temp0
 sts dealer_card,temp0
 sts soft,temp0
 sts players_hand_count,temp0
; ldi temp0,$99 ;@@@@@@@@
; out PORTB,temp0 ;@@@@@@@@

 17

 reti ; leave interrupt service routine

output_number:
 lds temp0,card_number ; load temp0 with "card_number"
 cpi temp0,$00 ; is this the dealer's card?
 brne no_clear
 ldi temp2,$00 ; (Clear Home)
 call LCDdelay
 ldi temp2,$01
 call LCDdelay
no_clear:
 cpi ZL,0x00 ; compare ZL to $00, if
 breq zero ; ZL(data - $30) is $00 then jump to zero
 cpi ZL,0x01
 breq one
 cpi ZL,0x02
 breq two
 cpi ZL,0x03
 breq three
 cpi ZL,0x04
 breq four
 cpi ZL,0x05
 breq five
 cpi ZL,0x06
 breq six
 cpi ZL,0x07
 breq seven7
 cpi ZL,0x08
 breq eight8
 cpi ZL,0x09
 breq nine9
 reti ;(note not a valied card number!) ; leave interrupt service routine
seven7:
 jmp seven
eight8:
 jmp eight
nine9:
 jmp nine
zero:
 ldi temp2,$83 ; (10)
 call LCDdelay
 ldi temp2,$81
 call LCDdelay
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$80
 call LCDdelay
 rjmp back ; leave interrupt service routine
one:
 ldi temp2,$84
 call LCDdelay
 ldi temp2,$81
 call LCDdelay
 rjmp back ; leave interrupt service routine
two:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$82
 call LCDdelay
 rjmp back ; leave interrupt service routine
three:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$83
 call LCDdelay
 rjmp back ; leave interrupt service routine
four:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$84

 18

 call LCDdelay
 rjmp back ; leave interrupt service routine
five:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$85
 call LCDdelay
 rjmp back ; leave interrupt service routine
six:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$86
 call LCDdelay
 rjmp back ; leave interrupt service routine
seven:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$87
 call LCDdelay
 rjmp back ; leave interrupt service routine
eight:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$88
 call LCDdelay
 rjmp back ; leave interrupt service routine
nine:
 ldi temp2,$83
 call LCDdelay
 ldi temp2,$89
 call LCDdelay
 rjmp back ; leave interrupt service routine

;***
;**************Variables Defined!!**************************************
.org $500
.dseg
card_number: .byte 1 ; The number of the player's card being looked at/next,
 ; Note: the dealer's card is "card_number" zero ($00)
dealer_card: .byte 1 ; value of dealer's card
players_hand_count: .byte 1 ; players total hand count
final_card_number: .byte 1 ; holds the value that card_number is counting up to!
soft: .byte 1 ; pin-0 is used as a flag for when player's hand is soft

Line tracking ciruit:

(from William Dubel’s report on line tracking)

Circuit outputs logic high when a black line is detected.

