GPS Packet Structure

The Lassen iQ GPS Receiver uses a proprietary communicates via serial communication. The serial stream of data from the receiver is broken into bytes that form packets of varying length, which can be decoded into a command with data. The receiver uses a proprietary packet structure, which was developed by the manufacturer, called Trimble Standard Interface Protocol (TSIP). According to the datasheet, the packet structure is as follows:
"TSIP packet structure is the same for both commands and reports. The packet format is:
<DLE> <id> <data string bytes> <DLE> <ETX>
Where:

- <DLE> is the byte $0 x 10$
- <ETX> is the byte 0x03
- <id> is a packet identifier byte, which can have any value excepting $<$ ETX $>$ and $<$ DLE $>$.

The bytes in the data string can have any value. To prevent confusion with the frame sequences <DLE> <ID> and <DLE> <ETX>, every <DLE> byte in the data string is preceded by an extra $<$ DLE $>$ byte ('stuffing'). These extra < DLE $>$ bytes must be added ('stuffed') before sending a packet and removed after receiving the packet. Notice that a simple <DLE> <ETX> sequence does not necessarily signify the end of the packet, as these can be bytes in the middle of a data string. The end of a packet is $<$ ETX $>$ preceded by an odd number of <DLE> bytes.

Multiple-byte numbers (integer, float, and double) follow the ANSI/IEEE Std. 754 IEEE Standard for binary Floating-Point Arithmetic. They are sent most-significant byte first. This may involve switching the order of the bytes as they are normally stored in Intel based machines.

Specifically:

- UINT8 = Byte: An 8 bit unsigned integer.
- UINT16 = Word: A 16 bit unsigned integer.
- INT16 = Integer: A 16 bit integer.
- INT32 = Long: A 32 bit integer.
- UINT32 = ULong: A 32 bit unsigned integer.
- Single - Float, or 4 byte REAL has a precision of 24 significant bits, roughly 6.5 digits.
- Double - 8 byte REAL has a precision of 52 significant bits. It is a little better than 15 digits" (Lassen 87).

The following pages reference packets which were recorded during a capture of all output from the GPS receiver in the early morning of July 12, 2005. Due to the amount of data recorded, only the excerpts are presented here. Please contact the author for a digital copy of the complete data capture.

Report Packet 0x41-GPS Time

From the data stream, we will examine the following packet:
1041484423 1D 0533415000001003

- GPS Time of Week - Bytes $0-3$ - This is given as the number of seconds (SINGLE) from 12:00:00 am on Sunday. If this were to be negative, it would denote the time is not yet known.

From the packet, bits 0:3, 0x48 4423 1D, is 01001000010001000010001100011101 in binary. This equals $2^{\wedge}(10010000-0111$ 1111) * 1.1000100001000110001 1101, which rounded is 110001000010001100 or 200,844.

- Extended GPS Week Number - Bytes $4-5$ - This is the number of weeks (INT16) since January 6, 1980.

From the packet, bits 4:5, $0 x 0533$, equals 1,331 decimal. Given there are 1331 weeks and two days between the recording date and January, 6 1980, this result is as expected.

- GPS UTC Offset - Bytes 6-9 - This is the offset in seconds (SINGLE) to calculate

From the packet, bits 6:9, 0x41 500000 , is

Report Packet 0x4A - GPS Position Fix (20 Byte Format)

10 4A 3F 04 5F 0E BF B8 09 A9 425869 D0 C7 EF BF 4A 484421 C0 1003

The following map was generated from entering the GPS coordinates derived from the data stream, converted to degrees, at Jeff Boulter's website. As you can see this exactly pinpoints my apartment in Windmeadows.

- Latitude - Bytes 0:3 - This is the latitude radians (SINGLE) of the current GPS coordinate, with positive for north latitude and negative for south latitude.

Hex: 3F 04 5F 0E
Binary (float): 00111111000001000101111100001110
Sign $=0, \operatorname{Exp}=0111$ 1110, Mantissa $=1.00001000101111100001110$
$=(\operatorname{Sign} ?(-1):(1)) * 2^{\wedge}(\operatorname{Exp}-127) *$ Mantissa
= Mantissa with binary point shifted left 1 place
= 0.100001000101111100001110
$=\sim 0.517075$ radians north latitude.

- Longitude - Bytes 4:7 - This is the longitude radians (SINGLE) of the current GPS coordinate, with positive for east longitude and negative for west longitude.

Hex: BF B8 09 A9
Binary (float): 10111111101110000000100110101001
Sign = 1, Exp = 0111 1111, Mantissa $=1.01110000000100110101001$
$=(\operatorname{Sign} ?(-1):(1)) * 2^{\wedge}(\operatorname{Exp}-127) *$ Mantissa
= Sign bit denotes negative
= Mantissa with binary point shifted 0 places
= 1.01110000000100110101001
$=\sim 1.437795$ radians west longitude.

Report Packet 0x56 - Velocity Fix, East-North-Up (ENU)

105600000000000000000000000043 2D 9153484423001003

- East velocity is bytes 0:3 and of type SINGLE. It is in meters / second and positive for east and negative for west.

Since the receiver could not be in motion at the time of testing this value is zero.

- North velocity is bytes 4:7 and of type SINGLE. It is in meters / second and positive for north and negative for south.

Since the receiver could not be in motion at the time of testing this value is zero.

- Up velocity is bytes 8:11 and of type SINGLE. It is in meters / second and positive for up and negative for down.

Since the receiver could not be in motion at the time of testing this value is zero.

- Clock Bias Rate is bytes 12:15 and of type SINGLE. It is in meters per second.

Hex: 43 2D 9153
Binary (float): 01000011001011011001000101010011
Sign = 0, Exp = 1000 0110, Mantissa $=1.01011011001000101010011$
$=(\operatorname{Sign} ?(-1):(1)) * 2 \wedge(\operatorname{Exp}-127) *$ Mantissa
$=$ Mantissa with binary point shifted right 7 places
= 10101101.1001000101010011
$=\sim 173$ decimal seconds difference.

- Time of Fix is bytes 16:19 and of type SINGLE. It is in GPS seconds and is the time of the fix that produced the data packed occurred.

Hex : 48442300
Binary (float): 01001000010001000010001100000000
Sign = 0, Exp = 1001 0000, Mantissa $=1.10001000010001100000000$
$=(\operatorname{Sign} ?(-1):(1)) * 2^{\wedge}(\operatorname{Exp}-127) *$ Mantissa
$=$ Mantissa with binary point shifted right 17 places
$=110001000010001100.000000$
$=200,844$ decimal seconds from midnight Sunday of the week, or about 7:45 am.

Calculating Distance

Once I had written a program to output the GPS coordinates to the LCD of Mr. 2-Bots, I performed an experiment to ascertain how much change in the coordinate corresponded to a given distance of movement.

	Lat	L	
Left 12'	3F04 5F35		0992
Center	3F04 5F3E		09A0
Right 12’	3F04 5F3C		09A4
Latitude:	001111110	Sign $=0$	Exponent $=126$
Longitude:	101111111	Sign $=1$	Exponent $=127$
$=(\operatorname{Sign} ?(-1):(1)) * 2 \wedge(\operatorname{Exp}-127) *$ Mantissa			
$\begin{aligned} & \text { Center - Left: } \\ & \text { Center - Right: } \end{aligned}$	$\operatorname{sqrt}\left((9 \gg 1)^{\wedge} 2+14 \wedge 2\right)=\sim 15$		
	$\operatorname{sqrt}((2 \gg 1) \wedge 2+4 \wedge 2)=\sim 5$		

Works Cited

- Lassen iQ GPS Receiver System Designer Reference Manual. February 2005. Trimble Navigation Limited. 15 July 2005.
<http://www.sparkfun.com/datasheets/GPS/Lassen\ iQ_Reference\ Manual.p df $>$.
- GPS Coordinate Converter. 2005. Jeff Boulter. 15 July 2005. http://boulter.com/gps/

