

Wassim Tawil
TAs: William Dubel

Steven Pickles
Instructors: A. A Arroyo

E. M. Schwartz

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

FINAL REPORT

JAMESBOT

The Voice Controlled Spying Robot

 2

Table of contents

1. Abstract………………………………………………………………………… 3

2. Executive Summary……………………………………………………………. 3

3. Introduction…………………………………………………………………….. 4

4. Integrated System……………………………………………………………. 5- 6

5. Mobile Platform………………………………………………………………… 7

6. Actuation……………………………………………………………………... 7 - 8

7. Sensors……………………………………………………………………… 8 – 12

8. Behaviors………………………………………………………………….. 12 – 13

9. Experimental Results……………………………………………………… 13 – 19

10. Conclusion………………………………………………………………… 19 – 20

11. References………………………………………………………………………. 21

12. Appendices………………………………………………………………… 22 - 33

 3

Abstract

JamesBot is an autonomous voice controlled spying robot. His behaviors include
avoiding obstacles, wall following, detecting dark areas, and voice recognition. This
paper will explain the idea behind this robot, and the steps taken to build it. It will give
details about the design, and each component used. Finally, it will explain how it was all
put together to bring the final product.

Executive Summary

There were many steps involved in building JamesBot. First, I had to design the

platform; I came up with a compact and original design. Then, I had to choose a

microcontroller, so the TAs recommended the Mavric because of its versatility. Once the

platform was cut out and put together, I attached the motors and the motor driver, and

wrote a software the get it moving. I needed to avoid obstacles, so I placed three bump

sensors and three IRs. I tested the IRs at different distances to measure its accuracy, and

then wrote the software for the obstacle avoidance. For the second part of the project, I

connected the photoresistors, and the voice circuit. I placed three photoresistors wrapped

in duct tape at the bottom of the robot to detect the change in light. For the voice circuit, I

tried many different commands until I found the ones with the most accuracy. I used a

wireless microphone to communicate with the circuit. Once it was all working, I wrote a

wall following software that used the left and front IRs. I then put all the software

together to get the final code.

 4

Introduction

 Is there someone close to you that’s now trustworthy? Were you ever tempted to

spy on them? Well, now you can with JamesBot. JamesBot is a voice controlled robot

whose main function is to enter an unknown area, find a place to hide, and then transmit

video and audio feedback. This would make a great toy for kids to play with around the

house with or it can even be made into a security robot for outside use.

I’ve always been interested in spy stories and gadgets, and this is how the idea

came about. I want a robot that can be controlled from distances and that can transmit

information back wirelessly. It also has to be inconspicuous. This report will give a

detailed explanation on the different features of JamesBot and the components used to

make him work. I will start with a general description of the system, then the platform

and actuation, and finally the sensors and behaviors.

 5

Integrated System

 The most important part of any robot is the microcontroller; it is the brain of the

robot, controlling all its behavior. This is why it’s important to choose one that will do

the required task. I chose the Mavric-IIB board from bdmicro.com which supports the

Atmega128 microprocessor. This is my first time working on robots and I wasn’t sure

which board I would need, so the TAs recommended the Mavric-IIB. It has all the

necessary components to build an autonomous robot and is programmable using C.

 JamesBot will need different kinds of sensors to accomplish his tasks

successfully. These sensors will gather data and send it to the microcontroller, which it

will use to output the next necessary behavior. For collision and obstacle avoidance,

bump switches and IR sensors are needed. IRs will also be employed for wall following.

Cds cells will be used to find the darkest area in a room. JamesBot will be voice

controlled, so he will use a speech recognition circuit which will be interfaced to my

board. Finally, I will have a wireless webcam for video and audio feedback which will

not be connected to the microcontroller. It will use its built-in transmitter to send the

video to the receiver, which in this case is my laptop. An LCD will also be used on the

robot for feedback.

 6

Fig.1: Mavric-IIB board

Fig.2: Interfacing sensors to board

 MAVRIC-IIB

CDS
cells

LCD

 IR

POWER

BUMP

SPEECH
CIRCUIT

 7

Mobile Platform

JamesBot needs to enter a room and not get noticed. He also needs to be able to

hide between furniture. For that I will try to make his platform as small as possible and

try to fit all his components in an efficient way. I will use balsa wood which is supplied

by the class to build the platform. I’m thinking of making a main body where all the

electronics and the motors will be placed and then have an upper layer covering the body

where the camera will be installed; it will be a very simple design. In the back I will place

the wireless receiver and the speaker. It’s still early to predict how the robot will look like

exactly because I don’t how big all the components are. As soon as I order them though, I

will have a better idea.

Actuation

 The only parts needed for the actuation of JamesBot are motors, a motor driver,

and wheels. I will use two independent DC gearhead motors with a 4mm shaft, 290 RPM

and 43:1 gear ratio. I think that should be enough to push my robot and all of his

electronics. To control the speed and direction of the motors I will need a motor driver.

Since I need to control each wheel separately, a dual H-Bridge motor driver will be

required. The one I’m using has dual channels, a range of 4.8v-12vdc, and a peak current

of 2A. This driver is capable of rotating clockwise, counterclockwise, and breaking a

wheel. It will connect directly to the motors and will get the necessary signals from the

microprocessor. The wheels I’m using are 2.25"D x 0.5"W Neoprene Tires and are

 8

connected to the motors using a 4mm mounting hub. All these accessories used for

actuation were purchased from lynxmotion.com.

Fig.3: Dual H-Bridge motor driver

Sensors

Bump switches

 This is the least expensive and most basic sensor I’ll be using. I actually got them

for free for IMDL lab, and they will only be used as backups for the IR sensors. They’ll

be used to inform the microcontroller whenever the robot hits an obstacle. The bump

switch is a digital sensor because it sends either a low or high voltage depending on the

situation. It’s basically a pull-up resistor, and whenever the bump is hit, it causes the

switch to close and make the input low. At all other times, the input stays high. On my

robot, I will use two switches in the front, about 90 degrees apart, and two in the back. I

 9

will then place a circular piece of wood all around connecting the four switches. I

included a figure below to give you an idea.

 Fig.4: Bump switches

IR

 I will use the Sharp GP2D12 sensors as they seem to be the most popular and

provide good distance measurement. On JamesBot, they will be used for obstacle

avoidance and wall following. The sensor has an emitter which sends out an IR pulse and

a receiver which records the reflected pulse. Depending on the received pulse, the sensor

can approximate the distance of the obstacle. The distance is reported as an analog

voltage with a range of 4’’ to 30’’. I’m thinking of using three of these sensors; one in the

front and two on the sides. An image of the sensor is provided below.

 Fig.5: Sharp GP2D12

 ROBOT

 10

CDS cells

 My robot will need to go into a room and hide in the darkest area. To be able to

accomplish this, he will be equipped with photoresistors. Photoresistors are a type of light

sensor, and can be described as variable resistors. Whenever there is a change in the light

level, the resistance is changed. The weaker the light reflected, the greater the resistance,

and vice versa. When it’s connected to the microcontroller, the resistance will have to be

converted to a voltage. This can be obtained by making a voltage divider circuit. An

example can be seen below (acroname.com). If R1 is the photoresistor, then the voltage

will increase with increasing light intensity.

 Fig. 6: Voltage divider for Photoresistor

 11

Voice Recognition

 The most useful feature of JamesBot is its voice recognition system. It will be

used to guide the robot to a specified location, and also in case his position needs to be

changed while he’s spying. I will be using the SR-07 Speech Recognition Kit from

imageco.com. This kit has numerous features; it can handle twenty different words and

can be programmed for either isolated or continuous speaking. It has non-volatile back up

memory and can be easily interfaced to external circuits. When a trained word is

recognized, the circuit outputs a digital number corresponding to this specific word. Since

my robot will be controlled in places where I can’t see it, I need to still be able to transmit

my voice commands. This will be arranged by using a pair of 2-way radios, and placing

one of them on the robot. Below I provided the SR-07’s circuit.

Fig. 7: Speech Recognition circuit

 12

Wireless camera

 Another addition to my robot will be a wireless camera. This is an important part

since my robot’s main task is to spy. I will use the X10 Nightwatch camera which is

equipped with special sensors to see in dim areas. Unlike my other sensors, this one will

not be connected to the microcontroller. Instead it will send video and audio feedback

using its built in transmitter directly to a receiver plugged into my laptop.

 Fig. 8: X10 wireless camera

Behaviors

 JamesBot’s behaviors include:

• Obstacle avoidance

• Speech recognition

• Wall following

• Detecting dark area

• Transmitting video and audio feedback

 13

Ideally, this is what I’d like my robot to do. First I will guide him to whichever room or

area I want him to spy using voice commands and a 2-way radio. Then, he will enter the

room and begin wall following until he finds a place that’s dark enough to hide in. Once

he finds his spot, he will stop and transmit video/audio feedback back to my laptop.

Experimental Results

Bump Switches

 I connected all my bumps to a common pin. I used a voltage divider circuit so that

each switch will output a different value. Since this value was between 0 and 5V, I had to

convert it to a digital value using the on board A/D converter. The Mavric is equipped

with eight A/D pins located on Port F. I used Pin 0 for the bump switches. This is a 10 bit

converter, so the outputted value was between 0 and 1024. Below I provided a table

showing the values obtained when I tested my switches.

 Figure 9

BUMP DIGITAL VALUE

Right 678

Front 484

Left 302

Right + Front 750

Left + Front 580

 14

IR

 I used three sensors on my robot, one in the front and one on each side. I tested

the IRs to see how well they work at different distances. I performed this test in a well lit

room, and I got values starting at one inch from the wall up to thirty five inches. I found

out that the range at which these sensors work best is between four and twenty eight

inches. Below that range, the values seem to increase very fast, and above that, they stop

changing. JamesBot will not need to see that far; he will only avoid obstacles and do wall

following which require up to six inches of detection, and in which case, these IRs work

fine. For my obstacle avoidance, I programmed him to avoid anytime he gets a value

greater than 300, and it worked perfectly. Below, I provided a table with all the value that

I obtained in my tests, as well as a graph.

Distance (inches) Digital Value

1 192

2 382

3 551

4 480

5 405

6 334

7 301

8 250

 15

9 233

10 209

11 199

12 182

13 172

14 160

15 141

16 138

17 131

18 123

19 114

20 112

21 107

22 103

23 96

24 95

25 92

26 94

27 95

28 101

29 120

30 127

31 130

 16

32 130

33 130

34 130

35 130

 Figure 10

Disantce (in)

D
ig

ita
l V

al
ue

y

x

 Figure 11

CDS Cells

 I covered the cells with duct tape to isolate the light received. JamesBot is

equipped with three photoresistors. One is placed in the front, and two behind the tires. I

 17

wanted to make sure his whole platform is in the dark before he stops; that’s why I placed

these sensors this way. Whenever all three sensors detect the dark area, he will stop wall

following, and begin spying. If only one or two of the sensors detect the dark area, then

he keeps moving, until all three agree. I tested these sensors in my room, and found all

the typical places that JamesBot could hide under. I then placed him in these areas and

read the value. I got values under a chair, a desk, and under the bed. I connected the

photoresistor to a voltage divider circuit with a 15Kohms resistor, and connected the

changing voltage to a pin on the A/D converter. Here are the value that I obtained.

JamesBot position Digital Value

Not hiding 640

Under chair 550

Under desk 450

Under bed 140

 Figure 12

Voice Recognition

 This was the most difficult sensor I worked on because it had many factors. While

testing this sensor, I had to account for such things as the tone of voice, the word length,

outside noise, and the placement of the microphone with respect to my mouth. Since I

was using a two way radio to send the commands, my voice came out less clear, which

meant I had to be even more careful with my choice of words. The circuit can recognize

forty 0.96s words or twenty 1.92s words. I configured it to twenty so that I can get more

 18

choices for words, and because I will only be using about six or seven words. I first

tested out the kit in my room with the door shut and without the two way radio. After

trying many different words, I found out that the circuit works much better with words

that have more than one syllable. For example, words like “left” or “right” were

sometimes confused. I then used my two way radio instead, and noticed that the

recognition accuracy slightly decreased. It was still good enough though. I also found out

that the distance between the microphone and the radio is very important. When I moved

the radio away, the circuit would not recognize the commands as well. Another crucial

factor is the tone of the voice. The accuracy got much better when each word was trained

with a different tone of voice. The tricky part though is that every word had to be spoken

with the same level of excitement as when it was trained. For example, if I trained the

word “forward” in a happy voice and then repeated that same word with a sad voice, the

circuit would not recognize it. So, to get the highest accuracy possible, the words need to

have more than one syllable, they need to have a different tone, and they have to be

repeated with that same tone, and the radio has to be kept the same distance from the

microphone. I had some of my friends try to speak into the circuit to test if it recognized

their voice, and it came out that it depended on the person. My brother, for example, who

sounds like me, was able to get the circuit to recognize his voice most of the time. As for

the other persons, the circuit would sometimes recognize their voice, depending on the

word. The final test was to try the circuit while there was outside noise, like the

television. The kit was placed inside the robot, so it was shut from outside interferences.

When I spoke into radio though, and the noise was loud enough, the circuit would

 19

sometimes capture that noise mixed with my voice and get very confused. That was the

worst case scenario, and even then, it still had more than fifty percent accuracy.

I ended up using a wireless microphone that I ordered form Ebay, because it works much

better than the two way radio.

Conclusion

At the end, I was satisfied with the performance of my robot; it was very close to

what I was expecting. He responds well to different commands, and when he enters a

room, he never fails to find the dark area. I wrote a simple wall following program that

works very well, and is the best feature on my robot. The only downfall is that it wasn’t

very smooth, but that could have been fixed in software if I had more time. The voice

circuit was the most irritating sensor to work on. I would not recommend it to anybody

looking for a hundred percent accuracy. It responded to my commands about ninety

percent of the time; that was the best that I could get from it. The IRs used in this project

worked very well, and in different lighting condition. They also perform perfectly at short

distances. I had no problems with the photoresistors detecting change in light, as long as

you isolate the light received. That can be accomplished by wrapping duct tape around

the photoresisor. I was not satisfied with the bump sensors though; whenever the robot hit

a wall, they occasionally got activated. I got them from the IMDL lab for free, so I’m not

complaining. If I were to start over with the project, I would make some slight changes.

First, I would redesign the platform and try to make the components fit nicer, and be a

 20

little more organized. I would also use better bump sensors. This has definitely been the

hardest class I’ve taken at UF; it’s very time consuming and very stressful. The

advantages though, are that you gain valuable experience, and it looks great on your

resume. I would, without a doubt, recommend this class.

 21

References

- www.acroname.com

- www.bdmicro.com

- www.imagesco.com

- www.lynxmotion.com

- www.x10.com

 22

Appendices

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include "LCD.h"
#include "motor.h"
#include "ADC.h"

#define OCR_1MS 125

volatile uint16_t ms_count;

/*
 * ms_sleep() - delay for specified number of milliseconds
 */
void ms_sleep(uint16_t ms)
{
 TCNT0 = 0;
 ms_count = 0;
 while (ms_count != ms)
 ;
}

/*
 * millisecond counter interrupt vector
 */
SIGNAL(SIG_OUTPUT_COMPARE0)
{
 ms_count++;
}

void init_timer0(void)
{
 TCCR0 = 0;
 TIFR |= _BV(OCIE0)|_BV(TOIE0);
 TIMSK |= _BV(TOIE0)|_BV(OCIE0); /* enable output compare interrupt */
 TCCR0 = _BV(WGM01)|_BV(CS02)|_BV(CS00); /* CTC, prescale = 128; 16Mhz /
128 = 8us */

 23

 TCNT0 = 0;
 OCR0 = OCR_1MS; /* 8us * 125 = 1 ms */
}

uint8_t input;
uint16_t irm;
uint16_t irl;
uint16_t irr;
uint16_t bump;
uint16_t prm;
uint16_t prr;
uint16_t calr;
uint16_t calm;
uint16_t setr;
uint16_t setm;

int main(void)
{
 int value;
 int avoid;

 //INITIALIZATIONS
 LCD_init();
 init_timer0();
 motors_init();
 fdevopen(LCD_sendByte,NULL,0);
 adc_init();
 PORTC = 0x00;
 DDRC = 0x00;
 sei();

 bump = adc_readn(0, 5);

 while (bump < 350) // Photoresistors calibration
 {
 bump = adc_readn(0, 5);
 calr = adc_readn(4, 5);
 calm = adc_readn(5, 5);

 setr = calr;
 setm = calm;

 LCD_clearScreen();

 24

 LCD_delayLong();

 printf("%d", setm);
 printf(" ");
 printf("%d",setr);
 ms_sleep(1000);
 }

 while (1) // Main code
 {
 input = PINC;
 input &= 0x0F;

 if (input == 0x01)
 {
 slight_left();

 LCD_clearScreen();
 LCD_delayLong();
 printf("T");
 LCD_delayLong();
 printf("u");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("n");
 LCD_delayLong();

 while (input == 0x01) {

 input = PINC;
 input &= 0x0F;
 }
 }

 else if (input == 0x02)
 {

 LCD_clearScreen();
 LCD_delayLong();
 printf("F");
 LCD_delayLong();
 printf("o");
 LCD_delayLong();
 printf("r");

 25

 LCD_delayLong();
 printf("w");
 LCD_delayLong();
 printf("a");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("d");
 LCD_delayLong();

 while (input == 0x02) {

 input = PINC;
 input &= 0x0F;

 irm = adc_readn(1, 5);
 irl = adc_readn(2, 5);
 irr = adc_readn(3, 5);
 bump = adc_readn(0, 5);

 //if (bump >= 250)
 // {
 //avoid = 7;
 // }

 if (irm > 300 && irl < 300 && irr < 300)
 // front sensor
 {
 avoid = 1;
 }

 else if (irm > 300 && irl > 300 && irr < 300)
 // front and left sensor
 {
 avoid = 2;
 }

 else if (irm > 300 && irl < 300 && irr > 300)
 // front and right sensor
 {
 avoid = 3;
 }

 else if (irm < 300 && irl > 300 && irr < 300)
 // left sensor
 {

 26

 avoid = 4;
 }

 else if (irm < 300 && irl < 300 && irr > 300)
 // right sensor
 {
 avoid = 5;
 }

 else if (irm > 300 && irl > 300 && irr > 300)
 // all sensors
 {
 avoid = 6;
 }

 else
 {
 avoid = 0;
 }

 if (avoid == 1)
 {
 motors_brake();
 ms_sleep(100);
 drive_backward();
 ms_sleep(400);
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(irm);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 }

 else if (avoid == 2)
 {
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 }

 27

 else if (avoid == 3)
 {
 motors_brake();
 ms_sleep(100);
 turn_left();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 }

 else if (avoid == 4)
 {
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 }

 else if (avoid == 5)
 {
 motors_brake();
 ms_sleep(100);
 turn_left();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 }

 else if (avoid == 6)
 {
 motors_brake();
 ms_sleep(100);
 drive_backward();
 ms_sleep(400);
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(700);
 motors_brake();
 ms_sleep(100);
 drive_forward();

 28

 }

 else if (avoid == 7)
 {
 motors_brake();
 ms_sleep(100);
 drive_backward();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(500);
 motors_brake();
 ms_sleep(100);
 }

 else
 {
 drive_forward();
 }
 }

 }

 else if (input == 0x03)
 {
 drive_backward();

 LCD_clearScreen();
 LCD_delayLong();
 printf("R");
 LCD_delayLong();
 printf("e");
 LCD_delayLong();
 printf("v");
 LCD_delayLong();
 printf("e");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("s");
 LCD_delayLong();
 printf("e");
 LCD_delayLong();

 while (input == 0x03) {

 29

 input = PINC;
 input &= 0x0F;

 }
 }

 else if (input == 0x08)
 {
 motors_brake();

 LCD_clearScreen();
 LCD_delayLong();
 printf("S");
 LCD_delayLong();
 printf("t");
 LCD_delayLong();
 printf("o");
 LCD_delayLong();
 printf("p");
 LCD_delayLong();

 while (input == 0x08) {

 input = PINC;
 input &= 0x0F;
 }

 }

 else if (input == 0x04)
 {
 LCD_clearScreen();
 LCD_delayLong();
 printf("S");
 LCD_delayLong();
 printf("e");
 LCD_delayLong();
 printf("a");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("c");
 LCD_delayLong();
 printf("h");
 LCD_delayLong();

 30

 printf("i");
 LCD_delayLong();
 printf("n");
 LCD_delayLong();
 printf("g");
 LCD_delayLong();
 printf(".");
 LCD_delayLong();
 printf(".");
 LCD_delayLong();
 printf(".");
 LCD_delayLong();

 while (input == 0x04) {

 input = PINC;
 input &= 0x0F;
 bump = adc_readn(0, 5);
 irm = adc_readn(1, 5);
 irl = adc_readn(2, 5);
 irr = adc_readn(3, 5);
 prr = adc_readn(4, 5);
 prm = adc_readn(5, 5);

 if (prm <= setm && prr <= setr)
 {
 value = 7;
 }

 //else if (bump >= 200 && bump < 600)
 // {
 // value = 6;
 // }

 else if (irl > 150 && irl < 450 && irm < 300)
 // Left sensor sees wall
 {
 value = 1;
 }

 else if (irl < 150) // Left sensor too far
 {
 value = 2;
 }

 31

 else if (irl > 450 && irm < 300) // Left sensor
too close
 {
 value = 3;
 }

 else if (irl > 450 && irm > 300) // Left and
middle sensor too close
 {
 value = 4;
 }

 else if (irl < 450 && irm > 300) // Middle
sensor too close
 {
 value = 5;
 }

 if (value == 1)
 {
 drive_forward();
 }

 else if (value == 2)
 {
 motors_brake();
 ms_sleep(100);
 turn_left();
 ms_sleep(200);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 ms_sleep(450);
 }

 else if (value == 3)
 {
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(100);
 motors_brake();
 ms_sleep(100);
 drive_forward();
 ms_sleep(400);

 32

 }

 else if (value == 4 || value == 5)
 {
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);

 }

 else if (value == 6)
 {
 motors_brake();
 ms_sleep(100);
 drive_backward();
 ms_sleep(350);
 motors_brake();
 ms_sleep(100);
 turn_right();
 ms_sleep(150);
 motors_brake();
 ms_sleep(100);
 }

 else if (value == 7)
 {
 motors_brake();
 //ms_sleep(100);
 //turn_right();
 //ms_sleep(500);
 //motors_brake();

 }

 else
 {
 drive_forward();
 }

 }
 }
 else
 {

 33

 motors_brake();

 LCD_clearScreen();
 LCD_delayLong();
 printf("E");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 printf("o");
 LCD_delayLong();
 printf("r");
 LCD_delayLong();
 }

 }

 return 0;
}

