Robert Pruneau

EEL5666C

Final Report

Robert Pruneau

EEL5666C

Final Written Report
08/08/06

Table of Contents
Abstract

3

Executive summary

3

Introduction

4
Integrated System

4

Mobile Platform

5
Actuation

6
Sensors

7
Behaviors

9
Conclusion

10
Appendix: Code

11
Abstract
The robot that I built this semester, Daedalus, is a maze solving robot. Daedalus can be placed at any location in the maze and he will search through the maze for an RF tag that could be placed at any point within the maze. Once Daedalus finds the object he was sent to look for he will signal, by stopping his search and saying “I found it” on a LCD. The maze that Daedalus is constructed of bricks which will be placed to form the walls of the maze. Daedalus will navigate the maze using the right turn rule, which dictates that every time it has the ability to it takes a right hand turn. IR is used to detect the distance of the walls to Daedalus, so it can tell if there is a wall present or not. Due to the limitations of this method the maze would have to be carefully constructed.

Executive Summary
Daedalus will be a maze solving robot employing the right hand rule for decisions about when to turn. This basically says that at any point in the maze where a right turn is available Daedalus will take it. This method can be run into problems when there is a loop in the maze at which the only way to exit it is a left hand turn; the maze will carefully be constructed so this situation never occurs however. The maze is constructed in order to show the different turning capabilities of Daedalus. There will be left hand turns that it passes up, right hand turns of all kinds and forced left hand turns.
The main tool which Daedalus uses to get around the maze is his IR sensors. There are 4 IR sensors that are placed on Daedalus, 1 in the front, two on the left hand side and one on the right hand side. The back sensor on the left, the front sensor and the sensor on the right are all used in order to determine the location of walls around the robot. If the sensor on the right, for instance, is a very low number (arbitrarily placed at less than 50) the robot knows that there is no wall to the direct right of it and it is free to turn to the right.

The two sensors on the left of the robot will be used together to wall follow along the maze. This is the only way that the robot can be sure that it is going forward the entire time without running into walls. A simple algorithm is used in order to compare the two values and adjust the robot so it continues to go in a basically straight direction.

There will be an RF tag placed at some point in the maze that signifies the end. A Parallax passive RF tag reader is mounted to the bottom of the robot so when it runs over the tag the tag will be read and the robot will stop moving. At this current time the number on the tag is not as important as the fact that a tag is there, so a falling edge interrupt is all that is needed for this portion.

Introduction
Daedalus will be a robot that will basically imitate a rat in a maze looking for cheese. He will be put in the maze and will look for some object within it and stop when he finds it. So my objectives for this project will be:

· Create/implement maze solving software. I plan on using the right turn method for solving the maze, but new algorithms can be implemented as needed.

· Create some need for a special sensor. This will probably be the sensor that is used to find the object. This could be a RF tag, barcode, or some object that I can look at and identify with a CMU cam.

· Create a maze environment for Daedalus to move.

· Time permitting creates a memory system for Daedalus so he can backtrack through a maze.

· Time permitting create a new algorithm that can solve for more complex mazes with loops and odd patterns.

Online there are plenty of sources with maze solving algorithms that I can use. Sites such as http://www.astrolog.org/labyrnth/algrithm.htm give algorithms and examples and there are sites where people talk about how they made their maze solving robots that could be of help. Several papers have been posted on the topic that I could look at and get ideas from.

The rest of this paper will go into the items that have been implemented in the robot and explain how they were done. I will cover every section of the robots construction and the reasons for all the decisions that were made regarding the building of the robot.
Integrated System
Daedalus consists of:

· Platform made of wood(TJ Model)

· 2 continuous rotation servos

· 1 Parallax Passive RF scanner

· 4 Sharp GP1D12 IR sensors

· 2 bump switches

· 1 16x2 LCD

· 1 on/off switch

· Various nuts and bolts

· Various resistors

· Wires and wire wrap

The flow chart for the integrated system is below:

[image: image1.png]Determines location
of walks inmaze.

[y

Miciprocessor

Microprocessor
determinds drection of

mavement. Stapping f

anRF tag s found, else.
‘wondering trough

Detects ftag s
presert or not

)

P veader

LCD displays noting in most
cases,displays "l found the
1o onos the RF reader
says so.

We can see from this system the basic outline of how the robot works. The IR sensor will detect how close an object is to them and pass that information to the microprocessor. The microprocessor will then decide how the robot should move. If there is a right turn available it will take it, if there is not then it will continue straight and if straight is not available it will turn to the left. This behavior will continue until the RF reader finds the RF tag on the ground at which time the microprocessor will stop and the LCD will output that it has found the tag.
Mobile Platform
There were very few concerns that went into the decision about the platform of my robot. The main factor that would influence it would be size, as the size of the robot got smaller the size of the maze that it traveled around in could decrease. For logistical reasons this was desirable. Other than that as long as everything could be placed on the robot any design would be usable. Due to this fact I decided to go with the already designed TJ style which was well made and suited my purposes.

While the TJ platform is not the smallest platform imaginable it suits is small enough to be able to work in the spaces that I require of it. I can make a suitable maze for it in a few feet of ground without having to worry about space considerations of the room I am in.

The TJ is also well designed to place all of the sensors that I am using. The square frame of the body is perfect for the IR sensors to be low to the ground so they can detect walls that are shorter than the robot is. I also built a bottom for the TJ since it did not have one and I attached the RF scanner to it. The TJ’s low profile allows the RF scanner to be close to the ground which is good since the RF reader has only about 3” of range. This made it so the robot could run over a tag and detect that it was there.
The circular top was also nice as it is a good indicator of the amount of space it will need in a turn. This means that the maze will not have to be made bigger than the size of the robot to account for turning, it can be made as big as the top of the robot and it will be fine.
While working on the platform of the robot I learned that a platform made from a rotary tool, no matter how carefully measured will not work. After several hours of cutting and sanding I found out that AutoCAD is still a better solution. I cost myself a week not just asking for a TJ in the first place.

Actuation
The only actuation that was used on Daedalus was two servo motors that were hacked for continuous rotation and used for locomotion of the platform. I decided to use servos in this case due to the light weight of my robot and the fact that there was no need for the Daedalus to move with any great speed. Servos are also simpler to use and cheaper so they made the most sense in all regards.
These servos were purchased from Acroname Robotics. They are Parallax servos that were hacked for continuous rotation before I got them. This servo weighs 45g and can push 3.4kg-cm of torque. At idle it takes 6V and 12mA of current. As my robot is small this is more than enough power to push it along a decently fast speed. Its speed is rated at .23sec/60 degrees, so this would convert to approximately 1.4 seconds per rotation.
Servos work by sending a periodic pulse of a certain length to an input pin. This is usually between 1ms and 2ms and is sent approximately every 30ms. For an unhacked servo the length of this pulse would dictate what position the servo should move to. A hacked servo acts a little differently however. When the pulse is sent to go to a certain angle a hacked servo will never get there so it will continue to rotate indefinitely. You can control both forward and backward movement using this method.

In order to generate the waveform needed for the servos to work I used the output compare function of the Atmega microcontroller. I used the Timer1 with the clock divided by 8 in order to get the basic timing that I desired. To create the waveform I set up an interrupt on overflow of the clock and in the overflow routine I set the output compare to set on compare, immediately forced a compare, and then set the compare to clear on compare. If I wanted to control the speed or direction of the wheels I just set the output compare timing registers to the appropriate value and the servos would rotate.

The actuation section of my robot ran pretty smoothly. There were no hardships in the design or coding and implementation.

Sensors

The sensors are the eyes and ears of the robot. This section will outline the use of the sensors that I have chosen and show how they are implemented to help my robot achieve the desired behavior. The four sensors that I have chosen to use are IR, Bump and RFID. RFID is my special sensor. The use and data for all of these sensors are described below.

Bump Sensors
Scope/Objectives

The bump sensors are used for collision detection. As my robot will be traversing a maze, the bump sensors will mainly be responsible for detecting if they run into a wall that the IR missed or something unnaturally blocks the path of the robot. This will hopefully not be utilized very much as it means something unexpected has happened or the IRs missed their mark.

Bump sensors work on the principle that when they hit something it closes and electrical connection between to points which creates a short and sends a voltage to the microprocessor where an interrupt is generated signaling a bump.

Application

These sensors are placed on the right and left sides of the top of my robot in order to detect bumps that hit around the circular top of Daedalus. If either one of the side bump sensors are hit the robot will slightly turn in order to correct its motion.

IR
Scope/Objectives

The IR sensors in my robot will be the sensors responsible for communicating the information necessary to navigate the maze, namely the location of walls. The readings taken from these sensors will determine how the robot decides to move around. The microprocessor will decide to turn around, make left and right turns or chose to go straight depending on the values of the IR.

An IR detector works by using infrared light. It will shoot the light out from an emitter which will then bounce back and be detected by the IR detector. The sensor will then output an analog voltage between the supply voltages that is determined by how close an object is to the IR. Once this voltage is output it can be fed into the A/D converter of the microprocessor. When this is converted into a digital value, tests can be done to see how the IR responds to objects placed different distances away. In this way the distance Daedalus is from something can be determined. If there is a very low number in the A/D converter we can assume that there is no wall present, whereas if a high voltage is present we know Daedalus is running along a wall.
Application

There will be 4 IR sensors on my robot. One pointed forward, one to the right and two to the left. Here is a table that dictates the robots decision for different sensor values.

	Case
	Front
	Left
	Right
	Decision

	#1
	No wall
	No wall
	No wall
	Turn right

	#2
	No wall
	No wall
	Wall
	Go straight

	#3
	No wall
	Wall
	No wall
	Turn right

	#4
	No wall
	Wall
	Wall
	Go straight

	#5
	Wall
	No wall
	No wall
	Turn right

	#6
	Wall
	No wall
	Wall
	Turn left

	#7
	Wall
	Wall
	No wall
	Turn right

	#8
	Wall
	Wall
	Wall
	Turn right

These outline all of the possible combinations for the sensors, and this behavior will cause the robot to wonder through the maze tracking the right hand wall.

Data

Here is a table of retrieved values from the IR sensors:

	Distance
	Reading(from 0 to 255)

	Nothing there
	49

	9 Inches
	28

	8 Inches
	34

	5 Inches
	52

	2.5 Inches
	98

	1 Inch
	145

	0.5 Inches
	94

RFID
Scope/Objective

The purpose of the RFID will be to signal the end of the maze. I will place an ID tag at some point in the maze and the robot will systematically search through the maze in order to locate it. When it locates the ID tag, using the RFID reader, it will indicate that it has found its goal by stopping and outputting to the LCD. This will signify that Daedalus has completed his task.
In the RF system that I am using there is an RFID reader and a passive RFID tag. The RFID reader will be powered up with 5V and it will emit RF waves. When the tag is in range of these it will take the power that is being output by the reader and convert it into parasitic power that it can use to power the on board microprocessor of the tag. When the tag gets power it will start outputting radio frequency waves that the reader will pick up and then turn into ASCII characters in order to be transmitted to the Atmega128 processor.

The RFID reader will use one way serial communication to talk to the microprocessor. The reader is configured to 2400 baud, 8 data bits, 1 stop bit and no parity bits. It will have output a ‘0A’ to the microprocessor as a start bit. It will then output 10 ASCII numbers which represent the ten digit ID for the tag that it is communicating with. To finish it will output a ‘0D’ as a stop bit. The microprocessor can then take this data and check it against already stored internal records to see if this is the tag that it was looking for.

Application

The RFID reader will be placed on the bottom of Daedalus so that it can run over the tags. A tag will be placed on the ground at some point in the maze so that Daedalus can run over it.
The default state for the RFID reader is FF and it will output this until it finds a tag in which it will start outputting the data associated with it. Due to this fortunate system and the fact that I only have to determine if a tag is there or not and not what its value is; I can hook the RF reader up to an interrupt pin that generates on a falling edge. Once the falling edge is detected the robot will stop and output to the LCD.
Behaviors
As my robot is supposed to navigate through a maze all of its behaviors will help achieve this goal. The main things that it will do are: wall follow, turn, stop and detect RFID.

Since it is next to impossible to exactly match motors to travel straight my robot has to wall follow. As it makes its way down the corridors of the maze, the wall following algorithm will be running so it can travel down the path without running into any walls. This will be the default state of the robot if there are walls to both sides. Wall following works by comparing two IRs that are on the left hand side of the robot and adjusting the movement direction of the servos. If the front IR is greater than the back IR the robot will try to adjust by turning slightly to the right. If the robot did not continue moving forward however, it would never get anywhere, so the way this is achieved is by putting the left motor at full speed and the right motor at half until the problem is fixed. The opposite will happen if the back IR is greater than the front.

The next most important behavior of the robot is turning. The robot will wall follow until it finds a turn it should make. The robot detects openings in the wall by checking the value of the IR sensors. If the value is a high number than it is assumed there is a wall nearby. If the value is a low number it is assumed that there is no wall and this location could be a candidate for a place to turn. The robot decides if it should turn or not by the matrix located above in the IR section.

If the robot decides that it should turn at this place it will control the servos to turn in place with one going all the way forward and one going all the way back for a calibrated amount of time. Once this turn is complete the robot might have to go straight for a second or so without wall following in order to catch a wall to find. Once it does this it begins wall following again.

The last two behaviors deal with each other. As the robot is going through the maze it will be waiting for a falling edge triggered interrupt on one of its pins. When this interrupt occurs it will signify the RFID being located and in the interrupt service routine the motors will be stopped and the LCD will be updated to say that Daedalus has found the tag. A while loop will continue this behavior forever.
Conclusion
The goal for Daedalus in the beginning was for him to be a maze solving robot. I think that I completed this task. He can execute the basic functions of being placed in a maze and navigating around it. He can identify when he has reached the end of the maze signaled by the RFID card that is placed on the ground.
There are several problems with the execution of the algorithms however. Due to the fact that the turning is calibrated by time, there is some chance that comes into play for turning. It often happens where Daedalus will turn too far and run into the walls. There is a limited amount of time where the sensors are of no use and he can get lost.

There are also some features that I would have liked to have included that were not in the robot. Due to time constraints I was not able to program Daedalus to return to the place that he started after he finds the tag. Learning ASTAR was a daunting task, and implementing it probably would have been even harder so as I was running out of time this could not be completed. I also was not able to have Daedalus play music once he got to the end of the maze. This was more due to my problems turning sheet music into real music than anything. Despite several attempts I could not get the timing down to sound like anything remotely familiar to what I wanted to, so rather than have my robot play random seeming notes for thirty seconds I opted to just display to the LCD once it finished.

Problems also arise in Daedalus when it has to do loops. There were some problems with the algorithms that I implemented in certain cases. The right hand turn rule for mazes only works if the maze is constructed in a particular fashion. It would easily be possible to make a maze where Daedalus would get stuck and would never be able to get to the end.
Turning can also be a big issue for Daedalus. As the motors are calibrated in order to turn for a specified amount of time turning is very dependent on the speed of the wheels. This means that changing from carpet to tile will make Daedalus probably not work. The batteries running low can also be an issue for Daedalus. As the servo batteries start to run out they turn slower and the time it takes to make a turn becomes greater. If not calibrated correctly he will not work.
Daedalus could be improved by implementing a better search algorithm that has memory in it. This would include encoders for the wheels to measure distance traveled and storing of turns and distance into the RAM of the microprocessor. A more obvious cue of the robot finishing its task would also be helpful.

If I were to start this project over I would definitely have not tried to make the body myself with a rotary tool. This cost a lot of time. I would have also made the platform first thing, as much work is hard to do without something to mount it on. I would also try to make the maze out of lines on paper and use photo reflectors to navigate around the maze. This would make it much easier to travel around with the mazes and make them a lot cheaper. While bricks worked well they were a little difficult to walk around with. I also might try to implement several different algorithms that could be changed between to see which of them yields the best results.

Appendix
Code
/***

This program was produced by the

CodeWizardAVR V1.24.6 Professional

Automatic Program Generator

© Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

e-mail:office@hpinfotech.com

Project :

Version :

Date : 7/27/2006

Author : F4CG

Company : F4CG

Comments:

Chip type : ATmega128

Program type : Application

Clock frequency : 14.745600 MHz

Memory model : Small

External SRAM size : 0

Data Stack size : 1024

***/

#include <mega128.h>

#include <delay.h>

// Alphanumeric LCD Module functions

#asm

 .equ __lcd_port=0x1B ;PORTA

#endasm

#include <lcd.h>

void straight(void);

void motor_left(int speedleft);

void motor_right(int speedright);

void turn_left(int time);

void turn_right(int time);

void wall_follow(void);

void stop(void);

void read_ir(void);

unsigned int eye_front=0, eye_leftback=0, eye_leftfront=0, eye_right=0, delayerleft = 0, delayerright = 0;

// External Interrupt 4 service routine

interrupt [EXT_INT2] void ext_int2_isr(void)

{

 stop();

 lcd_clear();

 lcd_putsf("I found the tag");

 while(1);}

interrupt [EXT_INT4] void ext_int4_isr(void)

{

 delay_ms(200);

 delayerleft = 1;

}

// External Interrupt 5 service routine

interrupt [EXT_INT5] void ext_int5_isr(void)

{

 delay_ms(200);

 delayerright = 1;

}

#define RXB8 1

#define TXB8 0

#define UPE 2

#define OVR 3

#define FE 4

#define UDRE 5

#define RXC 7

#define FRAMING_ERROR (1<<FE)

#define PARITY_ERROR (1<<UPE)

#define DATA_OVERRUN (1<<OVR)

#define DATA_REGISTER_EMPTY (1<<UDRE)

#define RX_COMPLETE (1<<RXC)

// Get a character from the USART1 Receiver

#pragma used+

char getchar1(void)

{

char status,data;

while (1)

 {

 while (((status=UCSR1A) & RX_COMPLETE)==0);

 data=UDR1;

 if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)

 return data;

 };

}

#pragma used-

// Timer 1 overflow interrupt service routine

interrupt [TIM1_OVF] void timer1_ovf_isr(void)

{

 TCNT1 = 0;

 TCCR1A = 0xF0;

 TCCR1C = 0xC0;

 TCCR1A = 0xA0;

}

#define ADC_VREF_TYPE 0x20

// Read the 8 most significant bits

// of the AD conversion result

unsigned char read_adc(unsigned char adc_input)

{

ADMUX=adc_input|ADC_VREF_TYPE;

// Start the AD conversion

ADCSRA|=0x40;

// Wait for the AD conversion to complete

while ((ADCSRA & 0x10)==0);

ADCSRA|=0x10;

return ADCH;

}

void main(void)

{

// Declare your local variables here

// Input/Output Ports initialization

// Port A initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTA=0x00;

DDRA=0x00;

// Port B initialization

// Func7=In Func6=Out Func5=Out Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=0 State5=0 State4=T State3=T State2=T State1=T State0=T

PORTB=0x00;

DDRB=0x60;

// Port C initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTC=0x00;

DDRC=0x00;

// Port D initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTD=0x00;

DDRD=0x00;

// Port E initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTE=0x00;

DDRE=0x00;

// Port F initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTF=0x00;

DDRF=0x00;

// Port G initialization

// Func4=In Func3=In Func2=In Func1=In Func0=In

// State4=T State3=T State2=T State1=T State0=T

PORTG=0x00;

DDRG=0x00;

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: Timer 0 Stopped

// Mode: Normal top=FFh

// OC0 output: Disconnected

ASSR=0x00;

TCCR0=0x00;

TCNT0=0x00;

OCR0=0x00;

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: 1843.200 kHz

// Mode: Normal top=FFFFh

// OC1A output: Clear

// OC1B output: Clear

// OC1C output: Discon.

// Noise Canceler: Off

// Input Capture on Falling Edge

// Timer 1 Overflow Interrupt: On

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR1A=0xA0;

TCCR1B=0x02;

TCNT1H=0x00;

TCNT1L=0x00;

ICR1H=0x00;

ICR1L=0x00;

OCR1AH=0x00;

OCR1AL=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

OCR1CH=0x00;

OCR1CL=0x00;

// Timer/Counter 2 initialization

// Clock source: System Clock

// Clock value: Timer 2 Stopped

// Mode: Normal top=FFh

// OC2 output: Disconnected

TCCR2=0x00;

TCNT2=0x00;

OCR2=0x00;

// Timer/Counter 3 initialization

// Clock source: System Clock

// Clock value: Timer 3 Stopped

// Mode: Normal top=FFFFh

// Noise Canceler: Off

// Input Capture on Falling Edge

// OC3A output: Discon.

// OC3B output: Discon.

// OC3C output: Discon.

// Timer 3 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

// Compare C Match Interrupt: Off

TCCR3A=0x00;

TCCR3B=0x00;

TCNT3H=0x00;

TCNT3L=0x00;

ICR3H=0x00;

ICR3L=0x00;

OCR3AH=0x00;

OCR3AL=0x00;

OCR3BH=0x00;

OCR3BL=0x00;

OCR3CH=0x00;

OCR3CL=0x00;

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

// INT2: On

// INT2 Mode: Falling edge

// INT3: Off

// INT4: On

// INT4 Mode: Falling Edge

// INT5: On

// INT5 Mode: Falling Edge

// INT6: Off

// INT7: Off

EICRA=0x20;

EICRB=0x0A;

EIMSK=0x34;

EIFR=0x34;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=0x04;

ETIMSK=0x00;

// USART1 initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity

// USART1 Receiver: On

// USART1 Transmitter: Off

// USART1 Mode: Asynchronous

// USART1 Baud rate: 2400

UCSR1A=0x00;

UCSR1B=0x10;

UCSR1C=0x06;

UBRR1H=0x01;

UBRR1L=0x7F;

// Analog Comparator initialization

// Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;

SFIOR=0x00;

// ADC initialization

// ADC Clock frequency: 115.200 kHz

// ADC Voltage Reference: AREF pin

// Only the 8 most significant bits of

// the AD conversion result are used

ADMUX=ADC_VREF_TYPE;

ADCSRA=0x87;

// LCD module initialization

lcd_init(16);

// Global enable interrupts

#asm("sei")

while (1)

 {

 if(delayerright == 1 || delayerleft == 1){

 if(delayerleft == 1){

 motor_left(100);

 motor_right(50);

 delay_ms(200);

 delayerleft = 0;}

 else if(delayerright == 1){

 motor_left(50);

 motor_right(100);

 delay_ms(200);

 delayerright = 0;}

 }

 read_ir();

 if(eye_front < 100){

 if(eye_right < 50){

 straight();

 delay_ms(200);

 turn_right(600);

 straight();

 delay_ms(1000);

 wall_follow();

 delay_ms(1000);}

 else if(eye_leftfront < 50 || eye_leftback < 50){

 straight();

 }

 else{

 wall_follow();}

 }

 else{

 if(eye_right > 75){

 turn_left(600);

 read_ir();

 if(eye_front < 100);

 straight();

 delay_ms(500);}

 else{

 turn_right(600);

 read_ir();

 if(eye_front < 100);

 straight();

 delay_ms(500);}

 }

 };

}

void motor_left(int speedleft){

 if(speedleft == 100)

 OCR1A=0x1500;

 else if(speedleft == 50)

 OCR1A=0x1050;

 else if(speedleft == 0)

 OCR1A=0x0FFF;

 else if(speedleft == -100)

 OCR1A=0x0A00;

 }

void motor_right(int speedright){

 if(speedright == 100)

 OCR1B=0x0AFF;

 else if(speedright == 50)

 OCR1B=0x0FAF;

 else if(speedright == 0)

 OCR1B=0x0FFF;

 else if(speedright == -100)

 OCR1B=0x1500;}

void straight(void){

 motor_left(100);

 motor_right(100);}

void stop(void){

 motor_left(0);

 motor_right(0);}

void turn_left(int time){

 motor_left(-100);

 motor_right(100);

 delay_ms(time);}

void turn_right(int time){

 motor_left(100);

 motor_right(-100);

 delay_ms(time);}

void wall_follow(void){

 if(eye_leftfront > eye_leftback){

 motor_left(100);

 motor_right(50); }

 if(eye_leftfront < eye_leftback){

 motor_left(50);

 motor_right(100);}

 }

void read_ir(void){

 eye_front = read_adc(0);

 eye_leftfront = read_adc(1);

 eye_leftback = read_adc(2);

 eye_right = read_adc(3);}

PAGE
3

