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1. Abstract 
 
Pino is an autonomous ACV (Air Cushion Vehicle) based off a toy R/C hovercraft. It 
glides over a thin frictionless film of air and propels itself by using fans mounted at the 
rear of the craft. Pino’s purpose is to demonstrate that a robot can perform collision 
avoidance even when working with a frictionless surface with drift. Additionally, Pino 
will demonstrate special maneuvering required for navigating a frictionless surface such 
as 360 degree turning and reversing. Pino’s main behavior is a full sprint to a dead stop 
where the ACV propels itself forward at maximum speed only to stop inches away from 
any stationary obstacle in front.
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2. Introduction 
Hovercrafts succumb to the challenges inherent in moving along a frictionless surface 
much like a hockey puck moving across ice. This presents an interesting navigational 
problem as even when the hovercraft itself turns it may still be drifting in another 
direction so it is up to the microcontroller to perform the necessary actions to compensate 
for that drift so that the hovercraft can turn and maneuver as well as or better than a 
typical speed boat. 
 
Typical recreational hovercrafts are able to perform 360 degree turning by shifting their 
weight as well as turning the hovercraft quickly in the direction. With enough skill the 
pilot will be able to turn the craft completely about and eventually start going in the other 
direction. As this is not a trivial maneuver it presents an interesting challenge to include 
this maneuver in the design of a robot hovercraft. 
 
This robot project, named Pino, is able to overcome the navigational challenges of ACVs 
(Air Cushion Vehicles) and use its newfound frictionless freedom to perform non-trivial 
maneuvers without colliding with objects in its environment.  
 
This paper attempts to fully detail Pino’s abilities and behaviors and what it uses to 
accomplish the aforementioned tasks/behaviors. Pay close attention to the limitations of 
the sensor information provided to the robot and the software techniques used to 
compensate. Near the end of the paper is a comprehensive section detailing experiment 
results from the Pino project, these are off particular importance as they detail the success 
and capabilities of the finished project. 
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3. Integrated System 

3.1. System Description 
The robot is organized to be a completely reactive system whereby the 
microcontroller, Mavric IIB with ATmega128 [1], collects data from the sensors and 

processes it into signals to be sent to the 
motors. Avoidance sensors are mounted on the 
periphery of the vehicle (Figure 1.) and include 
a digital compass that, in combination with the 
IR and sonar, cooperates to perform collision 
avoidance. In addition to these avoidance 
sensors is an optical mouse sensor that is used 
to supplement the sensor data from the other 
three sensors. After sampling the sensor data, 
the microcontroller will send signals to the 
motors so as to control the speed and heading 
of the vehicle as well as the direction of the 
sweeping sonar. This flow of information and 
control can be seen quite clearly in Figure 2. 

below. 

3.2. Theory of Operation 
One of the more important aspects of 
the system integration is the operation 
of the hovercraft itself. Basically, a 
hovercraft glides on a thin film of air 
and propels itself using the two fans in 
the back. Navigating the hovercraft 
entails reducing the power of a fan on 
either side of the craft to make it go in 
the opposite direction and reversing 
the thrust altogether to slow the craft 
down.  

One of the biggest problems with 
navigating is that frictionless thin film 
of air that causes the craft to drift 
while turning. To improve system 
navigation, the robot is fitted with a 
compass and optical mouse sensor that 
will indicate the current heading of the 
craft which it will use to compensate 
for the discrepancy between the craft 

Figure 1. Peripheral sensor locations on 
the toy hovercraft upon which the robot 
will be based. 

Sensors 

Figure 2. Flow diagram for data and control within the 
system. 
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heading and the direction of motion. This feature, combined with the side IR sensors 
and front sonar will allow the craft ample collision avoidance at high speeds. 

The robots’ primary behavior is collision avoidance whereby the robot attempts to 
avoid obstacles while even traveling at high speeds. Its secondary behavior is the 360 
degree turn that the robot performs when avoiding obstacles and when sprinting. The 
sprint maneuver is apart of the secondary behavior profile and involves the robot 
moving at a high speed and stopping on a dime using the 360 turn.  

When considering how the robot will complete its goals and behaviors in the scheme 
of the system structure it is important to realize that they are the central driving forces 
behind the robots’ logic. The sensors feed the microcontroller all the data it needs so 
that the behaviors will be able to come up with control instructions to supply the 
motor driver and although the structure is relatively simple, it is this constant flow of 
information and control that allows the robot to function. 

3.3. System Layout 
3.3.1. Sensors 
Pino’s avoidance sensor profile includes two front-facing medium-ranged sonar, 
two side-facing wide-angled medium-ranged infrared sensors, a central digital 
compass and an optical mouse sensor located beneath the vehicle. This sensor 
layout, Figure 3, also shows the sensor ranges and overlaps of the directional 
sensor. The optical mouse sensor is placed beneath the hovercraft and is fitted to 
the base resulting in a small amount of drag on the hovercraft. This effect is 
negligible especially in comparison with the benefits.  
3.3.2. Motors 
Similarly, a close look at the motor system in Figure 4. reveals two similar 
divisions with only one stepper motor in the exploratory division. That motor is 
used to sweet the sonar and PIR sensor array 360 degrees around the robot. The 
remaining motors include three 12V DC Axial fans and one 12V DC Impeller [2]. 
The robot uses the axial fans for steering and propulsion and the impeller, or 
centrifugal fan, is used to provide lift, i.e. fill the small chamber of air beneath the 
craft. The reason for using a centrifugal fan that they are more capable of 
producing higher air pressures than axial fans. 

3.3.3. Motor/Power Board 
The motors require a large amount of current and, therefore, cannot be run on the 
same battery supply as the electronics. To route power through the system we had 
to use a high amperage n-channel MOSFET [3] and interface the two battery 
supplies via optical isolators. 

3.3.3.1. Battery Monitor 
We used a LM393 low-voltage comparator [4] to check the voltage of the 
batteries to see if they drop below a certain level. Pino uses Lithium 
Polymer batteries, which can be volatile when over discharged. As a 
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measure of sanity a small amount of hysteresis was also included into the 
circuitry so that the light does not flicker as much when the voltage 
reaches the danger point [5] [6] [7]. The change to the comparator was a 
minor one an included only adding a positive feedback resistor between 
the output and the input reference voltage, allowing for a buffer zone 
between high and low comparator readings. 

3.3.3.2. Optical Isolators 
H11B1 Motorola optical isolators with Darlington [8] [9] output were used 
to communicate between the two different battery planes and to ensure a 
constant +5V input to the isolators as well as the comparator and motor 
driver, we added a voltage regulator to the circuit, the LM7805 1A +5V 
voltage regulator [10]. The Darlington output is a bit slow but for our 
purposes they will serve quite well as our motors won’t be doing that 
much switching. 

3.3.3.3. Motor Drivers 
To drive our motors we decided on the SN754410NE dual half H-bridge 
chips from Texas Instruments (TI). The relatively simple chip design only 
required us to sent it a signal and it would provide the motor with the 
necessary power to move. 
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 Figure 4. Motor layout on the hovercraft. The thrust fans are directed behind the craft. 

Figure 3. Sensor array layout with ranges and detection zones. The front sonar do overlap so as to 
have three detection zones: left, middle and right.  
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4. Mobile Platform 
The robots platform is constructed in the likeness of a typical hovercraft and will look 
something like the shape in Figure 5. with the Mavric IIB board mounted on the front and 

the motor driver board on the back. The batteries 
are typically inside the craft on the platform on 
either side of the lift fan or wherever else they need 
to be placed in order to balance out the weight of 
the craft so that the center of gravity is in the middle 
of the lift fan. Our aim with placing the batteries is 
so that no side of the hovercraft is closer to the 
ground than the other since this could cause undue 
drift. In addition to increasing stability, the purpose 
of this mounting is also to place all electromagnetic 
equipment as far away from the compass as possible 
in order to reduce interference and prevent any 
damage to the sensor. 

With this simple platform design the robot 
maintains the likeness of a hovercraft as well as the 
stability garnered from its wide base of 
approximately 6”. The 
lift fan has a height of 
approximately 2” 
resulting in a platform 
height of around 2.5”. 
The height has little 
effect on stability given 
that it is within a 
reasonable range. The length adds to the stability of 

the craft since it increases the area of the air pocket beneath the craft. All these factors 
come together to form the platforms dimensions, 11.5”x6”x2.5”. 

The platform is cut out of 1/8” Birchwood, a 
relatively lightweight and study material. 
Mounted on the top of this base are the 
Mavric IIB, the lift fan and the motor driver 
board. Mounted on the bottom of the 
platform are two plastic frames, Figure 6, 
that are used for attaching the skirt to the 
platform. These pieces are also the main 
channels through which air leaves the 
vehicle and enters the skirt and the air 
pocket below.  

 

Figure 5. Platform layout with the 
shaded areas indicating printed 
circuit boards. 

Figure 6. Skirt attachment frame that is 
fixed to the platform base. 
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5. Actuation 
Actuation takes place through three motors, all of which are fans. Two fans mounted on 
the rear robot platform to provide thrust and steering for the hovercraft. One fan mounted 
at the craft’s center of gravity and is used to provide lift. The rear fans are driven by a 
custom motor driver board that contains several motor drivers and the lift fan is powered 
by a high-current MOSFET.  

5.1. Thrust Fans 
The forward thrust fan is one 12V DC AFB1212SHE PC fan from Delta, 120mm x 
38mm, that runs at 1050mA and outputs 151CFM and the rear thrust fans consist of two 
12V DC EFB1212VHE PC fans from Delta, 120mm x 38mm, that run at 800mA and 
output 142CFM. Both are axial fans capable of producing an air pressure of about 0.5 in 
H2O but, due to their high axial airflow, are better off used as propulsion. 

  

5.2. Lift Fan 
The lift fan is a 12V DC Diplomat - DD402112K1R Impeller from Comair Rotron [2], 

101.6mm x 55.9mm, that runs at 2750mA and 
outputs 115CFM. This is a centrifugal fan 
capable of producing an air pressure of about 
2.010 in H2O. Since this fan can operate at a 
greater air pressure it is perfect for use as a lift 
fan. 
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6. Sensors 
The robot is fitted with a complete array of avoidance sensors including sonar, infrared, a 
digital compass and a optical mouse sensor. Avoidance sensors provide the 
microcontroller with data that it can use to avoid obstacles. The avoidance sensors can be 
found around the periphery of the craft 

6.1. Sonar 
The first type of sonar is the Devantech SRF05 (left) medium range sonar (0.03m to 4m) 

that operates at 40kHz on 5V and outputs range via an analog 
signal that must be timed by the microcontroller for an 
accurate reading. That reading, 
taken with the speed of sound, is 
converted to distance. These sonar 
are mounted on the front of the craft 
and provide the robot with full range 
obstacle detection in front. 

The second type of sonar is the Devantech SRF02 (right) long 
range sonar (0.15m to 6m) that operates at 40kHz on 5V at 

4mA and outputs range 
digitally over I2C. This 
sonar is mounted on the 
back of the vehicle and is 
used to aid the craft in 
making 360 degree turns 
and any maneuver that 
requires the craft to move 
backwards. This sonar has a 
very long range and a very 
fast refresh rate, 
approximately one ranging 
every 75ms, allowing for 
speed measurement, the 
secondary purpose of this 
sensor. 
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6.2. Infrared 
These infrared ranging sensors are 

Sharp 
GP2Y0A21YK 
short range 
(10cm to 80cm), 
wide angle 

distance measuring sensors that run 
at 5V on 30mA with a response 
time for 40ms and output in 
analog. These sensors are mounted 
on the sides of the craft and 
provide the robot with wide angle 
object ranging on the sides and 
work together with the front sonar 
for obstacle avoidance. One 
important thing to note about these 
sensors and the mounting is that 
they are cross-mounted, which 
means that they face across from each other, effectively reducing the already short range 
from 10cm – 80cm to 0cm – 70cm. 

 

6.3. Optical Mouse Sensor  
The optical mouse sensor was obtained from a General Electric optical mouse. This 
sensor requires direct contact with the ground in order to work thus 
making the data somewhat unreliable. Nevertheless, with 
supplementary information from the other sensors we can filter out 
extraneous data. This sensor provides its information serially over a 
data line in the form of X and Y coordinates. All the optical mouse 
sensor information, including surface quality (SQUAL) values and the 
surface image are stored inside registers on the sensor. 

 

6.4. Compass 
This sensor is a Devantech R117-COMPASS compass and it uses a magnetic field sensor 
to detect the Earth’s magnetic field resulting in a digital reading that indicates the 

direction of the vehicle. It works at 5V on 20mA with 0.1 
degree resolution and 3-4 degree accuracy and a digital output 
over I2C. The compass is used to determine the direction of the 
vehicle so that it can compensate for any discrepancy between 
the vehicles direction and its heading, the direction it is moving 
in, and is considered part of the robots’ obstacle avoidance 
sensor package. It is mounted in the middle of the craft, as far 

Infrared Infrared0.7m 0.7m
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away from any magnetic interference as possible so that the reading is not skewed while 
the robot is active and so that any strong magnetic fields do not damage the sensor itself 
as the magnetic field sensor is very sensitive to even the slightest magnetic fields. 

6.5. Integration 
All the sensors send their data directly to the microcontroller where all the behaviors are 
sorted out. The sensor data drives behaviors and these behaviors are arbitrated within the 
microcontroller resulting in motor control signals. Typically there are only two of these 
kinds of signals since the craft only has to modulate the speed of the rear fans in order to 
navigate. Primary sensor information comes from the infrared and sonar sensors with 
supplementary data from the digital compass and optical mouse sensor. These secondary 
sensors are used to verify the primary sensor data as well as attempt to provide 
information such as speed, direction and heading. The optical mouse sensor is responsible 
for speed and direction while the digital compass takes care of heading.  
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7. Behaviors 

7.1. Collision Avoidance 
Collision avoidance behavior is as simple as it sounds – the microcontroller processes the 
data from the avoidance sensor package and uses it to detect and avoid obstacles. Within 
that package is sensor data from the digital compass and that is used as temperance on the 
ranging sensors such that the robot is able to know that it still needs to speed up or slow 
down even though the ranging sensors might say differently. For example, once an 
obstacle is detected the craft could make a 360 degree turn but still be drifting in the same 
direction. At this point the ranging sensors would no longer detect an obstacle but by 
using the craft direction, provided by the compass, the controller will know that it still 
needs to speed up in order to slow down. Speed and direction data provided by the optical 
mouse sensor will also help to guide the craft but will be more of a supplement as it is 
less reliable. 

7.2. Sprint 
While in the spring behavior, the craft will move forward at full speed and make a full 
stop only inches from the nearest stationary obstacle. This behavior is coupled with the 
360 Turn behavior that it uses to perform the full stop. Consequently, the craft will be 
facing in the opposite direction when it reaches the obstacle.  

7.3. 360 Turn 
This behavior requires the craft to be moving and have ample room in front in order for it 
to succeed. Essentially, the craft will shut down one of its propulsion fans, causing it to 
drift into a turn while still moving in the previous direction. After completing the turn, 
the craft will be facing the opposite direction and at this point the craft can either 
continue drifting for backwards movement or begin moving forward for reverse/braking. 

7.2. Algorithms  
Pino uses a form a fuzzy logic to define its behavior and data representation. Sensor data 
is collected by the system then divided out into categories for distance and speed. 

IRR Distance
IRL

VF F C VC
VF TR TR TL TL
F TR TR TL TL
C TL TL S S
VC TL TL S S
Table 1. Fuzzy Logic Table that is used to generate the algorithm that drives the robot. The table is laid out in 
the form of a K-Map with each cell being an action recommendation. robot should take. 
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Distance and speed result from sonar and infrared readings and translate into either Very 
Far, Far, Close or Very Close [VF, F, C, VC] for distance and Very Fast, Fast, Slow and 
Very Slow [VF, F, S, VS] for speed. Each fuzzy value is represented by a binary value 
from 00 to 11 for use when calculating logic equations from the fuzzy logic tables. The 
fuzzy logic table in Table 1 is used for the distance calculations for the IR sensors during 
the turning behavior. 

Using the binary values for the fuzzy logic values in the table we can derive equations for 
each action recommendation (TR = Turn Right, TL = Turn Left, F = Forward, S = Stop). 
For example, from Table 1 above we can derive logic equations dependent directly on the 
sensor results. 

 

Consequently, with this and several other logic tables we can derive upwards of twenty 
logic equations to define the behavior of the system. From there the robot just carries out 
the action recommendations directly by turning, accelerating or stopping. 

  

Values Results
VF = 00 TL = Turn Left

F = 01 TR = Turn Right
C = 11 F = Forward

VC = 10 S = Stop
Table 2. The binary representations for the fuzzy logic values are displayed on the left and the action 
recommendations or results are displayed on the right. 

TR = ~IRL1 && ~IRR1
TL = IRL1 && ~IRR1 or ~IRL1 && IRR1
S = IRL1 && IRR1
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8. Experimental Layout and Results 
8.1. Sensors 
All sensors were experimentally laid out against an accurate metric in order to gauge 
what range of values they would produce during operation. 
 
8.1.1. Infrared 
The IR sensor experiment consisted of one IR sensor lined up against a tape measure. A 
flat non-reflective relatively dense sheet of paper was moved towards the sensor in 
increments of 10cm. The sensor readings were recorded and are plotted on the graph 
below. 

 
8.1.2. Sonar 
The Sonar underwent the same treatment as the IR whereby the  sensor was sensor lined 
up against a tape measure. A flat non-reflective relatively dense sheet of paper was 
moved towards the sensor in increments of 10cm. The sensor readings were recorded and 
are plotted on the graph below. The programmed equation used to convert the actual 
sensor reading to the recorded values was mathematically derived using basic physics 
equations – distance_cm = (SensorValue/58)-26. The reason we are dividing the sensor 
value by 58 is because the sensor value indicates the time in microseconds between when 
the sonar echo was sent and the time it was received by the sensor. We then subtract 26 to 
bias the readings so that 0cm indicates a position directly in front of the sensor. 
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8.1.3. Digital Compass 
Experimentally testing the digital compass was a fairly simple ordeal and involved 
simply moving the sensor, while keeping it as flat as possible, in a clockwise fashion over 
a real compass. The sensor values were then read off and compared to the actual values. 
Any noted deviation from the actual value can be contributed to either human error or a 
lack of calibration of the sensor. Nevertheless, the compass does not need to find north, 
only the difference in values between readings is significant. 
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# Actual Degree Compass Value Compass Degree Difference
1 0 11 1.1 1.1
2 45 455 45.5 0.5
3 90 911 91.1 1.1
4 135 1352 135.2 0.2
5 180 1783 178.3 1.7
6 225 2219 221.9 3.1
7 270 2683 268.3 1.7

Standard Deviation 1.3428571
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8.1.4. Optical Mouse 
The optical mouse was similarly straightforward, the sensor was moved across a suitable 
surface in strict X and Y directions. Any deviations in the readings indicate strictly 
human error and are apparent in the oscillations in the readings since the device registers 
the change in position from the last reading. Experimental comparison with actual 
movement values was unnecessary as the sensor would primarily be used to determine 
the direction of movement and not so much the distance. 

 
Interfacing between the Mavric IIB and the optical mouse sensor was a challenge since 
the sensor works on an open collector interface. To send the mouse a low signal we could 
output low like normal but to output a high level we had to set the port pin to input and 
activate it’s internal pull-up resistors. This interface actually works quite nicely since the 
communication is bi-directional and the host can take charge of the communication 
channel at any time. All the information that I used to implement this interface was 
gathered form internet sites detailing the PS/2 mouse protocol [11] [12]. A small sample 
of the important code for the optical mouse interface is included in the appendix section. 
 

Mouse Sensor Movement
# Left (X, Y) Right (X, Y) Up (X, Y) Down (X, Y)

Left X Left Y Right X Right Y Up X Up Y Down X Down Y
1 50 5 136 127 0 15 133 147
2 72 4 134 0 127 20 127 159
3 78 145 133 1 127 24 5 157
4 68 129 135 128 129 10 0 175
5 66 133 135 2 128 13 3 167
6 55 135 134 3 0 22 135 138
7 60 140 137 0 130 28 5 131
8 62 143 142 127 127 37 128 144
9 61 0 129 0 129 25 128 138

10 66 129 131 0 135 26 128 141
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9. Conclusion 

This was a challenging project due in part to the high level of engineering that 
goes into building these vehicles. Although their design seems simple it is by no means 
trivial. A lot of thought and hard work went into designing and balancing these vehicles 
so that they can float even with the weight of the battery. In the end Pino was fully 
functional and able to move around autonomously. The movement, however, was a bit 
sluggish as modifying the craft introduced indeterminate flaws that impaired its 
movement. The modified version did not inflate its skirt or create nearly as much lift as 
the original and even the rear fans seemed a bit sluggish. Nevertheless, the craft was 
eventually able to glide across a frictionless surface of air and navigate by controlling the 
two rear fans. The movement was a bit sloppy but that is to be expected most humans 
have trouble completely controlling a hovercraft. 

In retrospect, the design could have been improved significantly and if I ever had 
the chance to work on a similar project again it surely would turn out a much better 
product than the result of this project. 
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11. Appendices 

11.1. Code Snippets 
A fair amount of code can be contributed to outside sources such as the I2C interface 
utility and the digital compass software [13]. Other code that concerns the behaviors and 
the other sensors are completely custom written. 
 
11.1.1. Infrared 
void initIR() { 
 // Enable ADC, Free Running, with frequency of 250kHz 
 ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIE) | _BV(ADPS2) | 
_BV(ADPS1) | _BV(ADPS0); 
 
 // Left Adjusted ADC and Channel 0 
 ADMUX = _BV(ADLAR) | _BV(REFS0); 
 
} 
 
// ADMUX is used to multiplex the ADC between IR1 & IR2 
void capture_ir1() { 
 ADMUX = _BV(ADLAR) | _BV(REFS0); 
 ADCSRA |= _BV(ADSC); 
} 
 
void capture_ir2() { 
 ADMUX = _BV(ADLAR) | _BV(REFS0) | _BV(MUX0); 
 ADCSRA |= _BV(ADSC); 
} 
 
SIGNAL(SIG_ADC) { 
 ir = ADCL; 
 ir = ADCH;  
} 
 
11.1.2. Sonar 
void initSonarSRF05(void) { 
  SONAR1DDR |= SONAR1IO; 
  SONAR2DDR |= SONAR2IO; 
  
  TIFR  |= _BV(ICF1); 
  TCCR1B  |= _BV(CS11); /* CTC, prescale = 8 */ 
  TCNT1    = 0; 
  TIMSK  |= _BV(TICIE1);     
  SONAR1 |= SONAR1POWER; 
} 
 
 
void capture_sonar1() { 
 ACSR &= ~_BV(ACIC); 
 TIFR |= _BV(ICF1); 
 
 SONAR1 ^= SONAR1TP; 
 ms_sleep(1); 
 SONAR1 ^= SONAR1TP; 
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 TCNT1 = 0; 
} 
 
SIGNAL(SIG_INPUT_CAPTURE1) { 
 sonar1_ping = ICR1; 
 sonar1_ping = (sonar1_ping/58)-26; 
} 
 
11.1.3. Motor Control 
void initPWM() { 
 MOTORSDDR |= MOTORIO; 
 
 TCCR3A  |= _BV(COM3B1) | _BV(COM3B0) | _BV(COM3C1) |
 _BV(COM3C0) | _BV(WGM31) | _BV(WGM30); 
 TCCR3B   |= _BV(WGM33)  | _BV(WGM32)  | 
_BV(CS31); // TOP in ICR1 and prescale = 8 
 OCR3A   = 200; 
 OCR3B   = 100; 
 OCR3C   = 50; 
 TCNT3   = 0; 
} 
 
11.1.4. LCD 
void writeLCD_D(unsigned char d) { 
 static unsigned char send; 
 
 send = d & 0xF0; 
 
 LCD = LCD_DATA_H | send;  
 LCD = LCD_DATA_L | send;  
 us_sleep(LCD_DELAY); 
 
 d &= 0x0F; 
 d <<= 4; 
 
 LCD = LCD_DATA_H | d; 
 LCD = LCD_DATA_L | d; 
 us_sleep(LCD_DELAY); 
} 
 
 
void writeLCD_C(unsigned char d) { 
 static unsigned char send; 
 
 send = d & 0xF0; 
 
 LCD = LCD_COMMAND_H | send; 
 LCD = LCD_COMMAND_L | send;  
 ms_sleep(LCD_DELAY); 
 
 d &= 0x0F; 
 d <<= 4; 
 
 LCD = LCD_COMMAND_H | d; 
 LCD = LCD_COMMAND_L | d; 
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 ms_sleep(LCD_DELAY); 
} 
 
 
11.1.5. Optical Mouse 
void initOptical(void) { 
 OPTICAL_DDR |= OPTICAL_IO; 
 
 OPTICAL |= OPTICAL_POWER; 
 
 // IDLE 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 SET(OPTICAL, OPTICAL_CLOCK);   // float clock high 
 
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is input 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
} 
 
/** Open Collector Operation: 
 * 
 * High - DDRx.y = 0, PORTx.y = 1 
 * Low  - DDRx.y = 1, PORTx.y = 0 
 */ 
 
/** 
 * Device States: 
 * 
 * 1. Idle: CLK line and DATA line are floating high.  
 * In this mode, the mouse may start transmitting data  
 * at any time. 
 * 
 * 2. Inhibit: DATA line is floating high, CLK line is drawn 
 * low by the host to prevent the mouse from initiating any 
 * transmission. The mouse will buffer its data until the 
 * line is Idle again. 
 * 
 * 3. Request to send: CLK line is floating high, host draws  
 * DATA line low so that the mouse will prepare to receive  
 * a command packet.  
 */ 
 
/** 
 * Pre:  Device State = IDLE 
 * Post: Device State = INHIBIT 
 */ 
void mouseRecieveByte(void) { 
 uint8_t parity = 0; 
 m_rcv = 0; 
 
 // INHIBIT 
 SET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is output 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 UNSET(OPTICAL, OPTICAL_CLOCK); // pull clock low, float data high 
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 // IDLE 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 SET(OPTICAL, OPTICAL_CLOCK);   // float clock high 
 
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is input 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT0); 
  parity++; 
 } 
   
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT1); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT2); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT3); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT4); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT5); 
  parity++; 
 } 
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 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT6); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 if ( recieve & OPTICAL_DATA ) { 
  SET(m_rcv, BIT7); 
  parity++; 
 } 
 
 waitUntilClockLow(); 
 parity = OPTICAL & OPTICAL_DATA; 
 waitUntilClockHigh(); 
 
 // stop bit   
 waitUntilClockLow(); 
 recieve = OPTICAL; 
 waitUntilClockHigh(); 
 
 // INHIBIT 
 SET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is output 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 UNSET(OPTICAL, OPTICAL_CLOCK);  // pull clock low 
} 
 
 
/** 
 * Pre:  Device State = INHIBIT 
 * Post: Device State = INHIBIT 
 */ 
void mouseSendByte(uint8_t m_snd) { 
 uint8_t parity = 1; 
 OPTICAL_DDR = OPTICAL_IO; 
 OPTICAL = 0x04; 
 
 
 // INHIBIT 
 SET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is output 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 UNSET(OPTICAL, OPTICAL_CLOCK);  // pull clock low 
 
 // sleep for 150us 
 us_sleep(15);    
 
 // Host Request to Send 
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is input 
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 SET(OPTICAL_DDR, OPTICAL_DATA); // data is output 
 
 UNSET(OPTICAL, OPTICAL_DATA); // float clock high, pull data low 
 SET(OPTICAL, OPTICAL_CLOCK); // float clock high 
 
 if ( m_snd & BIT0 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 
  while(1) { 
  tmp = OPTICAL_PIN & 0x0f; 
 
 
  if ( tmp != 4 ) 
  break; 
  } 
 } 
  else  
  UNSET(OPTICAL, OPTICAL_DATA); 
  
 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT1 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT2 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT3 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT4 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
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 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT5 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT6 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 waitUntilClockLow(); 
 if ( m_snd & BIT7 ) { 
  SET(OPTICAL, OPTICAL_DATA); 
  parity++; 
 } 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 // Parity Bit 
 waitUntilClockLow(); 
 if ( parity & BIT0  ) 
  SET(OPTICAL, OPTICAL_DATA); 
   else 
  UNSET(OPTICAL, OPTICAL_DATA); 
 waitUntilClockHigh(); 
 
 // IDLE/stop bit 
 waitUntilClockLow(); 
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is input 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 SET(OPTICAL, OPTICAL_CLOCK);   // float clock high 
 waitUntilClockHigh(); 
 
  
 waitUntilClockLow(); 
 waitUntilClockHigh(); 
 
 // INHIBIT 
 SET(OPTICAL_DDR, OPTICAL_CLOCK);  // clock is output 
 UNSET(OPTICAL_DDR, OPTICAL_DATA);  // data is input 
 
 SET(OPTICAL, OPTICAL_DATA);   // float data high 
 UNSET(OPTICAL, OPTICAL_CLOCK);  // pull clock low 


