

Robot Report 3
Final Written Report

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Student name: Julian Ramlal
Robot name: Pino
Date: 7/7/2007

Instructors name(s): Dr. A. Antonio Arroyo
 Dr. Eric M. Schwartz

TA name(s): Adam Barnett
 Kevin Claycomb

 2

Table of Contents

1. Abstract ..3
2. Introduction..4
3. Integrated System...5

3.1. System Description...5
3.2. Theory of Operation ...5
3.3. System Layout ..6

3.3.1. Sensors ...6
3.3.2. Motors ..6
3.3.3. Motor/Power Board ...6

3.3.3.1. Battery Monitor..6
3.3.3.2. Optical Isolators ...7
3.3.3.3. Motor Driver ..7

4. Mobile Platform...9
5. Actuation..10

5.1. Thrust Fans ...10
5.2. Lift Fan ...10

6. Sensors ...11
6.1. Sonar ...11
6.2. Infrared ...12
6.3. Optical Mouse Sensor...12
6.4. Compass..12
6.5. Integration...13

7. Behaviors ...14
7.1. Collision Avoidance ...14
7.2. Sprint...14
7.3. 360 Turn..14
7.4. Algorithms ..15

8. Experimental Layout and Results ..16
8.1. Sensors..16

8.1.1. Infrared...16
8.1.2. Sonar ..16
8.1.3. Digital Compass...17
8.1.4. Optical Mouse..18

9. Conclusion ...19
10. Documentation...20
11. Appendices...21

11.1. Code Snippets ...21
11.1.1. Infrared...21
11.1.2. Sonar ..21
11.1.3. Motor Control ..22
11.1.4. LCD..22
11.1.5. Optical Mouse..23

 3

1. Abstract

Pino is an autonomous ACV (Air Cushion Vehicle) based off a toy R/C hovercraft. It
glides over a thin frictionless film of air and propels itself by using fans mounted at the
rear of the craft. Pino’s purpose is to demonstrate that a robot can perform collision
avoidance even when working with a frictionless surface with drift. Additionally, Pino
will demonstrate special maneuvering required for navigating a frictionless surface such
as 360 degree turning and reversing. Pino’s main behavior is a full sprint to a dead stop
where the ACV propels itself forward at maximum speed only to stop inches away from
any stationary obstacle in front.

 4

2. Introduction
Hovercrafts succumb to the challenges inherent in moving along a frictionless surface
much like a hockey puck moving across ice. This presents an interesting navigational
problem as even when the hovercraft itself turns it may still be drifting in another
direction so it is up to the microcontroller to perform the necessary actions to compensate
for that drift so that the hovercraft can turn and maneuver as well as or better than a
typical speed boat.

Typical recreational hovercrafts are able to perform 360 degree turning by shifting their
weight as well as turning the hovercraft quickly in the direction. With enough skill the
pilot will be able to turn the craft completely about and eventually start going in the other
direction. As this is not a trivial maneuver it presents an interesting challenge to include
this maneuver in the design of a robot hovercraft.

This robot project, named Pino, is able to overcome the navigational challenges of ACVs
(Air Cushion Vehicles) and use its newfound frictionless freedom to perform non-trivial
maneuvers without colliding with objects in its environment.

This paper attempts to fully detail Pino’s abilities and behaviors and what it uses to
accomplish the aforementioned tasks/behaviors. Pay close attention to the limitations of
the sensor information provided to the robot and the software techniques used to
compensate. Near the end of the paper is a comprehensive section detailing experiment
results from the Pino project, these are off particular importance as they detail the success
and capabilities of the finished project.

 5

3. Integrated System

3.1. System Description
The robot is organized to be a completely reactive system whereby the
microcontroller, Mavric IIB with ATmega128 [1], collects data from the sensors and

processes it into signals to be sent to the
motors. Avoidance sensors are mounted on the
periphery of the vehicle (Figure 1.) and include
a digital compass that, in combination with the
IR and sonar, cooperates to perform collision
avoidance. In addition to these avoidance
sensors is an optical mouse sensor that is used
to supplement the sensor data from the other
three sensors. After sampling the sensor data,
the microcontroller will send signals to the
motors so as to control the speed and heading
of the vehicle as well as the direction of the
sweeping sonar. This flow of information and
control can be seen quite clearly in Figure 2.

below.

3.2. Theory of Operation
One of the more important aspects of
the system integration is the operation
of the hovercraft itself. Basically, a
hovercraft glides on a thin film of air
and propels itself using the two fans in
the back. Navigating the hovercraft
entails reducing the power of a fan on
either side of the craft to make it go in
the opposite direction and reversing
the thrust altogether to slow the craft
down.

One of the biggest problems with
navigating is that frictionless thin film
of air that causes the craft to drift
while turning. To improve system
navigation, the robot is fitted with a
compass and optical mouse sensor that
will indicate the current heading of the
craft which it will use to compensate
for the discrepancy between the craft

Figure 1. Peripheral sensor locations on
the toy hovercraft upon which the robot
will be based.

Sensors

Figure 2. Flow diagram for data and control within the
system.

Sensors

MicrocontrollerMotor
Driver

Motors

da
ta

co
nt

ro
l

control

 6

heading and the direction of motion. This feature, combined with the side IR sensors
and front sonar will allow the craft ample collision avoidance at high speeds.

The robots’ primary behavior is collision avoidance whereby the robot attempts to
avoid obstacles while even traveling at high speeds. Its secondary behavior is the 360
degree turn that the robot performs when avoiding obstacles and when sprinting. The
sprint maneuver is apart of the secondary behavior profile and involves the robot
moving at a high speed and stopping on a dime using the 360 turn.

When considering how the robot will complete its goals and behaviors in the scheme
of the system structure it is important to realize that they are the central driving forces
behind the robots’ logic. The sensors feed the microcontroller all the data it needs so
that the behaviors will be able to come up with control instructions to supply the
motor driver and although the structure is relatively simple, it is this constant flow of
information and control that allows the robot to function.

3.3. System Layout
3.3.1. Sensors
Pino’s avoidance sensor profile includes two front-facing medium-ranged sonar,
two side-facing wide-angled medium-ranged infrared sensors, a central digital
compass and an optical mouse sensor located beneath the vehicle. This sensor
layout, Figure 3, also shows the sensor ranges and overlaps of the directional
sensor. The optical mouse sensor is placed beneath the hovercraft and is fitted to
the base resulting in a small amount of drag on the hovercraft. This effect is
negligible especially in comparison with the benefits.
3.3.2. Motors
Similarly, a close look at the motor system in Figure 4. reveals two similar
divisions with only one stepper motor in the exploratory division. That motor is
used to sweet the sonar and PIR sensor array 360 degrees around the robot. The
remaining motors include three 12V DC Axial fans and one 12V DC Impeller [2].
The robot uses the axial fans for steering and propulsion and the impeller, or
centrifugal fan, is used to provide lift, i.e. fill the small chamber of air beneath the
craft. The reason for using a centrifugal fan that they are more capable of
producing higher air pressures than axial fans.

3.3.3. Motor/Power Board
The motors require a large amount of current and, therefore, cannot be run on the
same battery supply as the electronics. To route power through the system we had
to use a high amperage n-channel MOSFET [3] and interface the two battery
supplies via optical isolators.

3.3.3.1. Battery Monitor
We used a LM393 low-voltage comparator [4] to check the voltage of the
batteries to see if they drop below a certain level. Pino uses Lithium
Polymer batteries, which can be volatile when over discharged. As a

 7

measure of sanity a small amount of hysteresis was also included into the
circuitry so that the light does not flicker as much when the voltage
reaches the danger point [5] [6] [7]. The change to the comparator was a
minor one an included only adding a positive feedback resistor between
the output and the input reference voltage, allowing for a buffer zone
between high and low comparator readings.

3.3.3.2. Optical Isolators
H11B1 Motorola optical isolators with Darlington [8] [9] output were used
to communicate between the two different battery planes and to ensure a
constant +5V input to the isolators as well as the comparator and motor
driver, we added a voltage regulator to the circuit, the LM7805 1A +5V
voltage regulator [10]. The Darlington output is a bit slow but for our
purposes they will serve quite well as our motors won’t be doing that
much switching.

3.3.3.3. Motor Drivers
To drive our motors we decided on the SN754410NE dual half H-bridge
chips from Texas Instruments (TI). The relatively simple chip design only
required us to sent it a signal and it would provide the motor with the
necessary power to move.

 8

so
na

r

so
na

r

Infrared Infrared

compass

Optical
Mouse

0.7m

4m4m

0.7m

thrust fan

thrust fan

 Figure 4. Motor layout on the hovercraft. The thrust fans are directed behind the craft.

Figure 3. Sensor array layout with ranges and detection zones. The front sonar do overlap so as to
have three detection zones: left, middle and right.

 9

4. Mobile Platform
The robots platform is constructed in the likeness of a typical hovercraft and will look
something like the shape in Figure 5. with the Mavric IIB board mounted on the front and

the motor driver board on the back. The batteries
are typically inside the craft on the platform on
either side of the lift fan or wherever else they need
to be placed in order to balance out the weight of
the craft so that the center of gravity is in the middle
of the lift fan. Our aim with placing the batteries is
so that no side of the hovercraft is closer to the
ground than the other since this could cause undue
drift. In addition to increasing stability, the purpose
of this mounting is also to place all electromagnetic
equipment as far away from the compass as possible
in order to reduce interference and prevent any
damage to the sensor.

With this simple platform design the robot
maintains the likeness of a hovercraft as well as the
stability garnered from its wide base of
approximately 6”. The
lift fan has a height of
approximately 2”
resulting in a platform
height of around 2.5”.
The height has little
effect on stability given
that it is within a
reasonable range. The length adds to the stability of

the craft since it increases the area of the air pocket beneath the craft. All these factors
come together to form the platforms dimensions, 11.5”x6”x2.5”.

The platform is cut out of 1/8” Birchwood, a
relatively lightweight and study material.
Mounted on the top of this base are the
Mavric IIB, the lift fan and the motor driver
board. Mounted on the bottom of the
platform are two plastic frames, Figure 6,
that are used for attaching the skirt to the
platform. These pieces are also the main
channels through which air leaves the
vehicle and enters the skirt and the air
pocket below.

Figure 5. Platform layout with the
shaded areas indicating printed
circuit boards.

Figure 6. Skirt attachment frame that is
fixed to the platform base.

 10

5. Actuation
Actuation takes place through three motors, all of which are fans. Two fans mounted on
the rear robot platform to provide thrust and steering for the hovercraft. One fan mounted
at the craft’s center of gravity and is used to provide lift. The rear fans are driven by a
custom motor driver board that contains several motor drivers and the lift fan is powered
by a high-current MOSFET.

5.1. Thrust Fans
The forward thrust fan is one 12V DC AFB1212SHE PC fan from Delta, 120mm x
38mm, that runs at 1050mA and outputs 151CFM and the rear thrust fans consist of two
12V DC EFB1212VHE PC fans from Delta, 120mm x 38mm, that run at 800mA and
output 142CFM. Both are axial fans capable of producing an air pressure of about 0.5 in
H2O but, due to their high axial airflow, are better off used as propulsion.

5.2. Lift Fan
The lift fan is a 12V DC Diplomat - DD402112K1R Impeller from Comair Rotron [2],

101.6mm x 55.9mm, that runs at 2750mA and
outputs 115CFM. This is a centrifugal fan
capable of producing an air pressure of about
2.010 in H2O. Since this fan can operate at a
greater air pressure it is perfect for use as a lift
fan.

 11

6. Sensors
The robot is fitted with a complete array of avoidance sensors including sonar, infrared, a
digital compass and a optical mouse sensor. Avoidance sensors provide the
microcontroller with data that it can use to avoid obstacles. The avoidance sensors can be
found around the periphery of the craft

6.1. Sonar
The first type of sonar is the Devantech SRF05 (left) medium range sonar (0.03m to 4m)

that operates at 40kHz on 5V and outputs range via an analog
signal that must be timed by the microcontroller for an
accurate reading. That reading,
taken with the speed of sound, is
converted to distance. These sonar
are mounted on the front of the craft
and provide the robot with full range
obstacle detection in front.

The second type of sonar is the Devantech SRF02 (right) long
range sonar (0.15m to 6m) that operates at 40kHz on 5V at

4mA and outputs range
digitally over I2C. This
sonar is mounted on the
back of the vehicle and is
used to aid the craft in
making 360 degree turns
and any maneuver that
requires the craft to move
backwards. This sonar has a
very long range and a very
fast refresh rate,
approximately one ranging
every 75ms, allowing for
speed measurement, the
secondary purpose of this
sensor.

so
na

r

so
na

r

4m4m

 12

6.2. Infrared
These infrared ranging sensors are

Sharp
GP2Y0A21YK
short range
(10cm to 80cm),
wide angle

distance measuring sensors that run
at 5V on 30mA with a response
time for 40ms and output in
analog. These sensors are mounted
on the sides of the craft and
provide the robot with wide angle
object ranging on the sides and
work together with the front sonar
for obstacle avoidance. One
important thing to note about these
sensors and the mounting is that
they are cross-mounted, which
means that they face across from each other, effectively reducing the already short range
from 10cm – 80cm to 0cm – 70cm.

6.3. Optical Mouse Sensor
The optical mouse sensor was obtained from a General Electric optical mouse. This
sensor requires direct contact with the ground in order to work thus
making the data somewhat unreliable. Nevertheless, with
supplementary information from the other sensors we can filter out
extraneous data. This sensor provides its information serially over a
data line in the form of X and Y coordinates. All the optical mouse
sensor information, including surface quality (SQUAL) values and the
surface image are stored inside registers on the sensor.

6.4. Compass
This sensor is a Devantech R117-COMPASS compass and it uses a magnetic field sensor
to detect the Earth’s magnetic field resulting in a digital reading that indicates the

direction of the vehicle. It works at 5V on 20mA with 0.1
degree resolution and 3-4 degree accuracy and a digital output
over I2C. The compass is used to determine the direction of the
vehicle so that it can compensate for any discrepancy between
the vehicles direction and its heading, the direction it is moving
in, and is considered part of the robots’ obstacle avoidance
sensor package. It is mounted in the middle of the craft, as far

Infrared Infrared0.7m 0.7m

 13

away from any magnetic interference as possible so that the reading is not skewed while
the robot is active and so that any strong magnetic fields do not damage the sensor itself
as the magnetic field sensor is very sensitive to even the slightest magnetic fields.

6.5. Integration
All the sensors send their data directly to the microcontroller where all the behaviors are
sorted out. The sensor data drives behaviors and these behaviors are arbitrated within the
microcontroller resulting in motor control signals. Typically there are only two of these
kinds of signals since the craft only has to modulate the speed of the rear fans in order to
navigate. Primary sensor information comes from the infrared and sonar sensors with
supplementary data from the digital compass and optical mouse sensor. These secondary
sensors are used to verify the primary sensor data as well as attempt to provide
information such as speed, direction and heading. The optical mouse sensor is responsible
for speed and direction while the digital compass takes care of heading.

 14

7. Behaviors

7.1. Collision Avoidance
Collision avoidance behavior is as simple as it sounds – the microcontroller processes the
data from the avoidance sensor package and uses it to detect and avoid obstacles. Within
that package is sensor data from the digital compass and that is used as temperance on the
ranging sensors such that the robot is able to know that it still needs to speed up or slow
down even though the ranging sensors might say differently. For example, once an
obstacle is detected the craft could make a 360 degree turn but still be drifting in the same
direction. At this point the ranging sensors would no longer detect an obstacle but by
using the craft direction, provided by the compass, the controller will know that it still
needs to speed up in order to slow down. Speed and direction data provided by the optical
mouse sensor will also help to guide the craft but will be more of a supplement as it is
less reliable.

7.2. Sprint
While in the spring behavior, the craft will move forward at full speed and make a full
stop only inches from the nearest stationary obstacle. This behavior is coupled with the
360 Turn behavior that it uses to perform the full stop. Consequently, the craft will be
facing in the opposite direction when it reaches the obstacle.

7.3. 360 Turn
This behavior requires the craft to be moving and have ample room in front in order for it
to succeed. Essentially, the craft will shut down one of its propulsion fans, causing it to
drift into a turn while still moving in the previous direction. After completing the turn,
the craft will be facing the opposite direction and at this point the craft can either
continue drifting for backwards movement or begin moving forward for reverse/braking.

7.2. Algorithms
Pino uses a form a fuzzy logic to define its behavior and data representation. Sensor data
is collected by the system then divided out into categories for distance and speed.

IRR Distance
IRL

VF F C VC
VF TR TR TL TL
F TR TR TL TL
C TL TL S S
VC TL TL S S
Table 1. Fuzzy Logic Table that is used to generate the algorithm that drives the robot. The table is laid out in
the form of a K-Map with each cell being an action recommendation. robot should take.

 15

Distance and speed result from sonar and infrared readings and translate into either Very
Far, Far, Close or Very Close [VF, F, C, VC] for distance and Very Fast, Fast, Slow and
Very Slow [VF, F, S, VS] for speed. Each fuzzy value is represented by a binary value
from 00 to 11 for use when calculating logic equations from the fuzzy logic tables. The
fuzzy logic table in Table 1 is used for the distance calculations for the IR sensors during
the turning behavior.

Using the binary values for the fuzzy logic values in the table we can derive equations for
each action recommendation (TR = Turn Right, TL = Turn Left, F = Forward, S = Stop).
For example, from Table 1 above we can derive logic equations dependent directly on the
sensor results.

Consequently, with this and several other logic tables we can derive upwards of twenty
logic equations to define the behavior of the system. From there the robot just carries out
the action recommendations directly by turning, accelerating or stopping.

Values Results
VF = 00 TL = Turn Left

F = 01 TR = Turn Right
C = 11 F = Forward

VC = 10 S = Stop
Table 2. The binary representations for the fuzzy logic values are displayed on the left and the action
recommendations or results are displayed on the right.

TR = ~IRL1 && ~IRR1
TL = IRL1 && ~IRR1 or ~IRL1 && IRR1
S = IRL1 && IRR1

 16

8. Experimental Layout and Results
8.1. Sensors
All sensors were experimentally laid out against an accurate metric in order to gauge
what range of values they would produce during operation.

8.1.1. Infrared
The IR sensor experiment consisted of one IR sensor lined up against a tape measure. A
flat non-reflective relatively dense sheet of paper was moved towards the sensor in
increments of 10cm. The sensor readings were recorded and are plotted on the graph
below.

8.1.2. Sonar
The Sonar underwent the same treatment as the IR whereby the sensor was sensor lined
up against a tape measure. A flat non-reflective relatively dense sheet of paper was
moved towards the sensor in increments of 10cm. The sensor readings were recorded and
are plotted on the graph below. The programmed equation used to convert the actual
sensor reading to the recorded values was mathematically derived using basic physics
equations – distance_cm = (SensorValue/58)-26. The reason we are dividing the sensor
value by 58 is because the sensor value indicates the time in microseconds between when
the sonar echo was sent and the time it was received by the sensor. We then subtract 26 to
bias the readings so that 0cm indicates a position directly in front of the sensor.

Infrared Value vs. Actual Distance

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

Actual Distance (cm)

In
fra

re
d

V
al

ue

 17

8.1.3. Digital Compass
Experimentally testing the digital compass was a fairly simple ordeal and involved
simply moving the sensor, while keeping it as flat as possible, in a clockwise fashion over
a real compass. The sensor values were then read off and compared to the actual values.
Any noted deviation from the actual value can be contributed to either human error or a
lack of calibration of the sensor. Nevertheless, the compass does not need to find north,
only the difference in values between readings is significant.

Sonar Distance vs. Actual Distance

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

Actual Distance (cm)

So
na

r D
is

ta
nc

e
(c

m
)

Actual Degree Compass Value Compass Degree Difference
1 0 11 1.1 1.1
2 45 455 45.5 0.5
3 90 911 91.1 1.1
4 135 1352 135.2 0.2
5 180 1783 178.3 1.7
6 225 2219 221.9 3.1
7 270 2683 268.3 1.7

Standard Deviation 1.3428571

 18

8.1.4. Optical Mouse
The optical mouse was similarly straightforward, the sensor was moved across a suitable
surface in strict X and Y directions. Any deviations in the readings indicate strictly
human error and are apparent in the oscillations in the readings since the device registers
the change in position from the last reading. Experimental comparison with actual
movement values was unnecessary as the sensor would primarily be used to determine
the direction of movement and not so much the distance.

Interfacing between the Mavric IIB and the optical mouse sensor was a challenge since
the sensor works on an open collector interface. To send the mouse a low signal we could
output low like normal but to output a high level we had to set the port pin to input and
activate it’s internal pull-up resistors. This interface actually works quite nicely since the
communication is bi-directional and the host can take charge of the communication
channel at any time. All the information that I used to implement this interface was
gathered form internet sites detailing the PS/2 mouse protocol [11] [12]. A small sample
of the important code for the optical mouse interface is included in the appendix section.

Mouse Sensor Movement
Left (X, Y) Right (X, Y) Up (X, Y) Down (X, Y)

Left X Left Y Right X Right Y Up X Up Y Down X Down Y
1 50 5 136 127 0 15 133 147
2 72 4 134 0 127 20 127 159
3 78 145 133 1 127 24 5 157
4 68 129 135 128 129 10 0 175
5 66 133 135 2 128 13 3 167
6 55 135 134 3 0 22 135 138
7 60 140 137 0 130 28 5 131
8 62 143 142 127 127 37 128 144
9 61 0 129 0 129 25 128 138

10 66 129 131 0 135 26 128 141

 19

9. Conclusion

This was a challenging project due in part to the high level of engineering that
goes into building these vehicles. Although their design seems simple it is by no means
trivial. A lot of thought and hard work went into designing and balancing these vehicles
so that they can float even with the weight of the battery. In the end Pino was fully
functional and able to move around autonomously. The movement, however, was a bit
sluggish as modifying the craft introduced indeterminate flaws that impaired its
movement. The modified version did not inflate its skirt or create nearly as much lift as
the original and even the rear fans seemed a bit sluggish. Nevertheless, the craft was
eventually able to glide across a frictionless surface of air and navigate by controlling the
two rear fans. The movement was a bit sloppy but that is to be expected most humans
have trouble completely controlling a hovercraft.

In retrospect, the design could have been improved significantly and if I ever had
the chance to work on a similar project again it surely would turn out a much better
product than the result of this project.

 20

10. Documentation

[1] Atmel Corporation. “8-Bit AVR Microcontroller with 128K Bytes In-System
Programmable Flash ATmega128,” October 2006,
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

[2] COMAIR ROTRON, “Diplomat DD4021 Series 100mm Brushless DC Motorized
Impeller,” May 2007,
http://www.comairrotron.com/images/drawings/newpdf/DD4021.pdf

[3] SGS-THOMSON MICROELECTRONICS, “N - CHANNEL ENHANCEMENT

MODE POWER MOS TRANSISTORS,” September 1996,
https://www.jameco.com/Jameco/Products/ProdDS/210526.pdf

[4] National Semiconductor, “LM393 - Low Power Low Offset Voltage Dual
Comparators,” August 2002, http://cache.national.com/ds/LM/LM193.pdf

[5] R. Moghimi, “Curing Comparator Instability with Hysteresis,” December, 2000,
http://www.analog.com/library/analogDialogue/archives/34-07/comparators/

[6] R. Paisley, “Voltage Comparator Information And Circuits,” June 01, 2007,

http://home.cogeco.ca/~rpaisley4/Comparators.html

[7] D. V. Ess, “Comparator Hysteresis in a Nutshell,” March 2007,

http://www.analogzone.com/acqt0327.pdf

[8] Electus Distribution, “OPTOCOUPLERS – WHEN AND HOW TO USE

THEM,” August 2001,
http://www1.jaycar.com.au/images_uploaded/optocoup.pdf

[9] Motorola Semiconductor, “6-PIN DIP Optoisolators Darlington Output (Low

Input Current),” May 1995,
http://www.ortodoxism.ro/datasheets/motorola/H11B3.pdf

[10] FAIRCHILD SEMICONDUCTOR, “LM7805 - 3-Terminal 1A Positive Voltage

Regulator,” June 2007, http://www.fairchildsemi.com/pf/LM/LM7805.html

[11] T. Engdahl and G. Ries, “Mouse (PS/2) pinout and signals,” June 25, 2005,
http://pinouts.ru/Inputs/PS2Mouse_pinout.shtml

[12] A. Chapweske, “The PS/2 Mouse/Keyboard Protocol,” May 9, 2003,
http://www.computer-engineering.org/ps2protocol/

[13] BDMICRO, “Sample Source Code for the MAVRIC / MAVRIC-II Mega128

Board,” August 2007, http://www.bdmicro.com/code/

 21

11. Appendices

11.1. Code Snippets
A fair amount of code can be contributed to outside sources such as the I2C interface
utility and the digital compass software [13]. Other code that concerns the behaviors and
the other sensors are completely custom written.

11.1.1. Infrared
void initIR() {
 // Enable ADC, Free Running, with frequency of 250kHz
 ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIE) | _BV(ADPS2) |
_BV(ADPS1) | _BV(ADPS0);

 // Left Adjusted ADC and Channel 0
 ADMUX = _BV(ADLAR) | _BV(REFS0);

}

// ADMUX is used to multiplex the ADC between IR1 & IR2
void capture_ir1() {
 ADMUX = _BV(ADLAR) | _BV(REFS0);
 ADCSRA |= _BV(ADSC);
}

void capture_ir2() {
 ADMUX = _BV(ADLAR) | _BV(REFS0) | _BV(MUX0);
 ADCSRA |= _BV(ADSC);
}

SIGNAL(SIG_ADC) {
 ir = ADCL;
 ir = ADCH;
}

11.1.2. Sonar
void initSonarSRF05(void) {
 SONAR1DDR |= SONAR1IO;
 SONAR2DDR |= SONAR2IO;

 TIFR |= _BV(ICF1);
 TCCR1B |= _BV(CS11); /* CTC, prescale = 8 */
 TCNT1 = 0;
 TIMSK |= _BV(TICIE1);
 SONAR1 |= SONAR1POWER;
}

void capture_sonar1() {
 ACSR &= ~_BV(ACIC);
 TIFR |= _BV(ICF1);

 SONAR1 ^= SONAR1TP;
 ms_sleep(1);
 SONAR1 ^= SONAR1TP;

 22

 TCNT1 = 0;
}

SIGNAL(SIG_INPUT_CAPTURE1) {
 sonar1_ping = ICR1;
 sonar1_ping = (sonar1_ping/58)-26;
}

11.1.3. Motor Control
void initPWM() {
 MOTORSDDR |= MOTORIO;

 TCCR3A |= _BV(COM3B1) | _BV(COM3B0) | _BV(COM3C1) |
 _BV(COM3C0) | _BV(WGM31) | _BV(WGM30);
 TCCR3B |= _BV(WGM33) | _BV(WGM32) |
_BV(CS31); // TOP in ICR1 and prescale = 8
 OCR3A = 200;
 OCR3B = 100;
 OCR3C = 50;
 TCNT3 = 0;
}

11.1.4. LCD
void writeLCD_D(unsigned char d) {
 static unsigned char send;

 send = d & 0xF0;

 LCD = LCD_DATA_H | send;
 LCD = LCD_DATA_L | send;
 us_sleep(LCD_DELAY);

 d &= 0x0F;
 d <<= 4;

 LCD = LCD_DATA_H | d;
 LCD = LCD_DATA_L | d;
 us_sleep(LCD_DELAY);
}

void writeLCD_C(unsigned char d) {
 static unsigned char send;

 send = d & 0xF0;

 LCD = LCD_COMMAND_H | send;
 LCD = LCD_COMMAND_L | send;
 ms_sleep(LCD_DELAY);

 d &= 0x0F;
 d <<= 4;

 LCD = LCD_COMMAND_H | d;
 LCD = LCD_COMMAND_L | d;

 23

 ms_sleep(LCD_DELAY);
}

11.1.5. Optical Mouse
void initOptical(void) {
 OPTICAL_DDR |= OPTICAL_IO;

 OPTICAL |= OPTICAL_POWER;

 // IDLE
 SET(OPTICAL, OPTICAL_DATA); // float data high
 SET(OPTICAL, OPTICAL_CLOCK); // float clock high

 UNSET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is input
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input
}

/** Open Collector Operation:
 *
 * High - DDRx.y = 0, PORTx.y = 1
 * Low - DDRx.y = 1, PORTx.y = 0
 */

/**
 * Device States:
 *
 * 1. Idle: CLK line and DATA line are floating high.
 * In this mode, the mouse may start transmitting data
 * at any time.
 *
 * 2. Inhibit: DATA line is floating high, CLK line is drawn
 * low by the host to prevent the mouse from initiating any
 * transmission. The mouse will buffer its data until the
 * line is Idle again.
 *
 * 3. Request to send: CLK line is floating high, host draws
 * DATA line low so that the mouse will prepare to receive
 * a command packet.
 */

/**
 * Pre: Device State = IDLE
 * Post: Device State = INHIBIT
 */
void mouseRecieveByte(void) {
 uint8_t parity = 0;
 m_rcv = 0;

 // INHIBIT
 SET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is output
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 SET(OPTICAL, OPTICAL_DATA); // float data high
 UNSET(OPTICAL, OPTICAL_CLOCK); // pull clock low, float data high

 24

 // IDLE
 SET(OPTICAL, OPTICAL_DATA); // float data high
 SET(OPTICAL, OPTICAL_CLOCK); // float clock high

 UNSET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is input
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT0);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT1);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT2);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT3);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT4);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT5);
 parity++;
 }

 25

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT6);
 parity++;
 }

 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();
 if (recieve & OPTICAL_DATA) {
 SET(m_rcv, BIT7);
 parity++;
 }

 waitUntilClockLow();
 parity = OPTICAL & OPTICAL_DATA;
 waitUntilClockHigh();

 // stop bit
 waitUntilClockLow();
 recieve = OPTICAL;
 waitUntilClockHigh();

 // INHIBIT
 SET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is output
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 SET(OPTICAL, OPTICAL_DATA); // float data high
 UNSET(OPTICAL, OPTICAL_CLOCK); // pull clock low
}

/**
 * Pre: Device State = INHIBIT
 * Post: Device State = INHIBIT
 */
void mouseSendByte(uint8_t m_snd) {
 uint8_t parity = 1;
 OPTICAL_DDR = OPTICAL_IO;
 OPTICAL = 0x04;

 // INHIBIT
 SET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is output
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 SET(OPTICAL, OPTICAL_DATA); // float data high
 UNSET(OPTICAL, OPTICAL_CLOCK); // pull clock low

 // sleep for 150us
 us_sleep(15);

 // Host Request to Send
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is input

 26

 SET(OPTICAL_DDR, OPTICAL_DATA); // data is output

 UNSET(OPTICAL, OPTICAL_DATA); // float clock high, pull data low
 SET(OPTICAL, OPTICAL_CLOCK); // float clock high

 if (m_snd & BIT0) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;

 while(1) {
 tmp = OPTICAL_PIN & 0x0f;

 if (tmp != 4)
 break;
 }
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);

 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT1) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT2) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT3) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT4) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);

 27

 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT5) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT6) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 waitUntilClockLow();
 if (m_snd & BIT7) {
 SET(OPTICAL, OPTICAL_DATA);
 parity++;
 }
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 // Parity Bit
 waitUntilClockLow();
 if (parity & BIT0)
 SET(OPTICAL, OPTICAL_DATA);
 else
 UNSET(OPTICAL, OPTICAL_DATA);
 waitUntilClockHigh();

 // IDLE/stop bit
 waitUntilClockLow();
 UNSET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is input
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 SET(OPTICAL, OPTICAL_DATA); // float data high
 SET(OPTICAL, OPTICAL_CLOCK); // float clock high
 waitUntilClockHigh();

 waitUntilClockLow();
 waitUntilClockHigh();

 // INHIBIT
 SET(OPTICAL_DDR, OPTICAL_CLOCK); // clock is output
 UNSET(OPTICAL_DDR, OPTICAL_DATA); // data is input

 SET(OPTICAL, OPTICAL_DATA); // float data high
 UNSET(OPTICAL, OPTICAL_CLOCK); // pull clock low

