Elements of Machine Intelligence (3) Prereq: Senior or graduate standing. Engineering and hardware concepts pertaining to the design of intelligent computer systems.

Textbook(s): LISP, Winston & Horn, 3rd edition or later, 0-201-08319-1

Optional References: Nilsson, Principles of Artificial Intelligence, Tioga, ‘80, 0-934613-10-9
Winston, Artificial Intelligence, Addison-Wesley, 1993, 0-201-53377-4


Goals: An in-depth look at Machine Intelligence, both classical and modern, with a view toward grounding in reality. To implement Machine Learning Algorithms in autonomous robots. To provide an “engineering approach” to the emerging field of MI, to impart a conceptual foundation on the principles behind the current MI technology.

Prerequisites by Topic:

1. Data Representation
2. Engineering Programming
3. Digital computer principles

Topics: [Tentative]

2. Search in State-Spaces: Agents that Plan, Uninformed Search, Heuristic Search, Planning, Acting and Learning, Alternative Search, Adversarial Search
3. Problem Representation and Reasoning: Propositional Calculus, Resolution, Predicate Calculus, Knowledge-Based Systems, Representing Commonsense Knowledge
4. Rule-Based Deduction: forward & backward reasoning, rule-based systems, logic programming, expert systems.
5. AI Communication and Integration
6. AI Programming: LISP, Prolog (an overview).
7. An overview of animal learning and simulation.
8. Robot Learning and Q-Learning (time permitting)

Computer Usage:

Bi-weekly programming assignments using a PC/MAC-based LISP (shareware). One major and one minor problem from the examples discussed in class will be assigned as projects. Homework and programs are worth 34% of the course grade.

Laboratory Projects:

No formal labs required.

Grading

Two in-class exams (2 x 33%) 66%, homework assignments & programs 34%