EEL5840: Elements of Machine Intelligence

Announcements

- Reading Assignment:
 > Nilsson chapter 9
- Announcements:
 > Tentative 2nd Exam Date:
 - 12/03/15 (Thursday)
 > LISP Project due 12/01/15
- Today’s Handouts in WWW:
 > Outline Class 20
- Web Site
 > www.mil.ufl.edu/eel5840
 > Software and Notes

EEL5840: Elements of Machine Intelligence

Today’s Menu

- Finish Class 19 Slides 23-31
- Heuristic Search (Chapter 9)
 \[\Rightarrow \text{Algorithm A*} \]
 \[\Rightarrow \text{Admissibility of A*} \]
PROCEDURE GRAPH-SEARCH
1. Create a search graph, G, consisting solely of the start node, s. Put s on a list called OPEN.
2. Create a list called CLOSED that is initially empty.
3. LOOP: if OPEN is empty, exit with failure.
4. Select the first node on OPEN, remove it from OPEN, and put it on CLOSED. Call this node n.
5. If n is a goal node, exit successfully with the solution obtained by tracing a path along the pointers from n to s in G. (see step 7.)
6. Expand node n, generating the set, M, of its successors and install them as successors of n in G.
7. Establish a pointer to n from those members of M that were not already in G (i.e., not already on either OPEN or CLOSED). Add these members of M to OPEN. For each member of M that was already on OPEN or CLOSED, decide whether or not to redirect its pointer to n. For each member of M already on CLOSED, decide for each of its descendants in G whether or not to redirect its pointer.
8. Reorder the list OPEN, either according to some arbitrary scheme or according to heuristic merit.
9. GO LOOP
ALGORITHM A
Let $f(n) = g(n) + h(n)$ in step 8 of GRAPH-SEARCH where
$g(n):$ estimate of the cost of a minimum length path $s \rightarrow n$
$h(n):$ estimate of the cost of a minimum length path $n \rightarrow t$
also, step 7 guarantees that $g(n)$ can never increase.
{See slides 24-25 in class 19, we only keep the minimum path to the start node, path $n \rightarrow s$}

In the example:
$c(n_1,n_2) =$ cost from $n_1 \rightarrow n_2$
$g(n) =$ $c(n_1,n) = c(n_1,n_2) + c(n_2,n) = c_1 + c_2$
$h^*(n) =$ cost from $n \rightarrow t$ (the actual but unknown cost from $n \rightarrow t$)
h(n) is an estimate of $h^*(n)$. When we are at node n we have not finished the problem and we do not yet have the real $c(n,t)$. We say that $f(n)$ is the cost of a minimal cost path constrained through node n.
Here, $c_6 < c_3$ and $c_3 \leq c_6 + c_7$ by the triangle inequality.

DEFINITIONS
- $f(n):$ estimate of the cost of a path $s \rightarrow t$ through node n
 $c(s,t)=c(s,n)+c(n,t)$
- $k(n_i,n_j):$ actual cost of a minimal-cost path $n_i \rightarrow n_j$
- $h^*(n):$ cost of a minimal cost path from node n to a goal, i.e.,
 $\min(k(n,t_1), k(n,t_2), \ldots, k(n,t_i))$ and any node that achieves $h^*(n)$ is a node in the optimal path.
- $g^*(n):$ cost of an optimal path from $s \rightarrow n$ (the shortest path $s \rightarrow n$)
 $= k(s,n) \forall n$ accessible from s
- $f^*(n):$ (actual cost of an optimal path $s \rightarrow n$) + (cost of an optimal path $n \rightarrow t$) {the path $s \rightarrow t$ is constrained to go through n}
- $f(n) = g(n) + h(n) \forall n$ and $f^*(n) = g^*(n) + h^*(n) \forall n$

Now when $n=s$;
- $f^*(s) = g^*(s) + h^*(s) = h^*(s)$ since by definition $g^*(s)=0=k(s,s)$
- $h^*(s):$ actual cost of an unconstrained path $s \rightarrow t$
EEL5840: Elements of Machine Intelligence

Algorithm A

Let $g(n)$ be an estimate of $g^*(n)$ and $h(n)$ be an estimate of $h^*(n)$. Then $f(n)$ will be an estimate of $f^*(n)$ and further let

\[E \{f(n) - f^*(n)\} = 0 \quad \text{and} \quad \text{Variance}\{f(n)\} \text{ be non-increasing} \]

We say that $f(n)$ is a consistent estimate of $f^*(n)$ and we expect algorithm A to yield good results.

Q: Are there any properties of f, g, or h that insure optimal results?

We also note:

- If $h(n)=0$ and $g(n)=\text{depth}(n)$ algorithm A yields BFS.
- If $g(n)=0$ algorithm A yields pure heuristic search (DFS).
- $f(n) = \alpha g(n) + \beta h(n) = \alpha \{\text{breadth component}\} + \beta \{\text{depth component}\}$
- And $\{\alpha, \beta\}=1$ in Algorithm A but it can be more general.

Algorithm A*

ALGORITHM A*

Let $f(n) = g(n) + h(n)$ in step 8 of GRAPH-SEARCH where:

- $g(n)$: estimate of the cost of a minimum length path $s \rightarrow n$
- $h(n)$: estimate of the cost of a minimum length path $n \rightarrow t$

and $0 \leq h(n) \leq h^*(n)$ and step 7 guarantees that $g^*(n) \leq g(n)$

- Algorithm A* always finds the optimal path from $s \rightarrow t$.
- Notice that $h(n) \leq h^*(n)$ means that $h(n)$ underestimates the actual optimal cost $h^*(n)$ and thus, $h(n)$ is a conservative estimate of $h^*(n)$.
- Since $h(n)=0$ is an underestimate of $h^*(n)$ then A* with $g(n)=\text{depth}(n)$ always finds the optimal path $s \rightarrow t$. That is, BFS, is optimal.
- On the other hand $g(n) = 0$, that is heuristic search (DFS), does not carry the same guarantee as we will see later.
EEL5840: Elements of Machine Intelligence

Admissibility of A*

Admissible: An algorithm is admissible if for any graph it always terminates in an optimal path from \(s \rightarrow t \) if such a path exists. Admissibility implies GRAPH-SEARCH must terminate!

Result 1 GRAPH-SEARCH always terminates for finite graphs

Proof: In every cycle of the algorithm we remove a node from OPEN and only a finite number of new successors are added. Since the graph is finite, we ultimately run out of new successors and we will either terminate in step 5 by finding a goal or in step 3 by running out of nodes.

Can we show that A* terminates even for infinite graphs if a path from \(s \rightarrow t \) exists?

Suppose A* does not terminate, that is we never quit adding nodes to OPEN. Then even the smallest \(f(n) \) will eventually grow to \(\infty \).

Why? \(f(n) = g(n) + h(n) \) & since \(g(n) \) is a depth component \(g(n) \rightarrow \infty \) as \(n \rightarrow \infty \) {infinite graphs have infinite depth}

Recall by definition \(c(n_i, n_j) \geq e > 0 \) (\(e \) is a small positive number) and step 7 of GRAPH-SEARCH guarantees that \(g(n) \geq g^*(n) \) or \(g^*(n) \leq g(n) \) and \(0 \leq h(n) \leq h^*(n) \) in A*

Let \(d'(n) \): length of the shortest path \(s \rightarrow n \)

\[\therefore g(n) \geq g^*(n) \geq d'(n)e \] and since \(f(n) = g(n) + h(n) \) and \(h(n) \geq 0 \)

then \(f(n) \geq g(n) \geq d'(n)e \)

{every node \(n \) on OPEN is at least as large as \(d'(n)e \)}
Admissibility of A*

But if A* does not terminate and we never quit adding nodes to OPEN, then \(f(n) \to \infty \) since \(d(n) \to \infty \) as \(n \to \infty \). These are large \(f \)-value nodes added to the existing nodes in OPEN.

To show A* terminates we will now show that there is always one node \(n' \) on OPEN that has a finite value given by \(f(n) \leq f^*(s) \)

Let a path \(s \to n_k \) be optimal and ordered, that is

\[
\text{path}^*(s \to n_k) = \{ s=n_0, n_1, n_2, \ldots, n_{k-1}, n_k \}
\]

Before termination let \(n' \) be the 1st node on OPEN that is a member of the path \(s \to n_k \).

Q: Is there such a member \(n' \)?
A: Yes! Why? To start with \(s=n_0 \) is a member of OPEN and after we enter the loop \(n_k \) cannot be a member of CLOSED (else we’ve terminated!)

Algorithm A*

Example:

Let \(a's=\{0.5\} \ b's=\{1.2, 1, 1.5\} \ c's=\{1, 0.5, 0.75\} \)

Initially: OPEN =\{s\} CLOSED=\{\}

1st Pass: Expand s,
M=\(\Gamma(s)=\{l_1,m_1,r_1\} \)
OPEN =\{l_1,m_1,r_1\}
G=\{s, l_1, m_1, r_1\}
Pointers=\{nil, s, s, s\}
CLOSED=\{s\}
\{0.5,1,1.2\}
\therefore \text{ Expand } l_1

Example:

Let \(a's=\{0.5\} \ b's=\{1.2, 1, 1.5\} \ c's=\{1, 0.5, 0.75\} \)

Initially: OPEN =\{s\} CLOSED=\{\}

1st Pass: Expand s,
M=\(\Gamma(s)=\{l_1,m_1,r_1\} \)
OPEN =\{l_1,m_1,r_1\}
G=\{s, l_1, m_1, r_1\}
Pointers=\{nil, s, s, s\}
CLOSED=\{s\}
\{0.5,1,1.2\}
\therefore \text{ Expand } l_1
Admissibility of A*

2nd Pass: Expand \(l_1 \), \(M = \Gamma(l_1) = \{ l_2 \} \) CLOSED = \{ s, l_1 \}
\[G = \{ s, l_1, m_1, r_1, l_2 \} \]
Pointers = \{ nil, s, s, s, \}
OPEN = \{ l_2, m_1, r_1 \} F = \{ 1,1,1,2 \} \implies \text{Expand} \ l_2

3rd Pass: Expand \(l_2 \), \(M = \Gamma(l_2) = \{ l_3 \} \) CLOSED = \{ s, l_1, l_2 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3 \} \]
Pointers = \{ nil, s, s, s, l_1, l_2 \}
OPEN = \{ m_1, r_1, l_3 \} F = \{ 1,1,2,1,5 \} \implies \text{Expand} \ m_1

4th Pass: Expand \(m_1 \), \(M = \Gamma(m_1) = \{ m_2 \} \) CLOSED = \{ s, l_1, l_2, m_1 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2 \} \]
Pointers = \{ nil, s, s, s, l_1, l_2, m_1 \}
OPEN = \{ r_1, m_2, l_3 \} F = \{ 1,2,1,5,1,5 \} \implies \text{Expand} \ r_1

5th Pass: Expand \(r_1 \), \(M = \Gamma(r_1) = \{ r_2 \} \) CLOSED = \{ s, l_1, l_2, m_1, r_1 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2, r_2 \} \]
Pointers = \{ nil, s, s, s, s, l_1, l_2, m_1, r_1 \}
OPEN = \{ m_2, l_3, r_2 \} F = \{ 1,5,1,5,2,2 \} \implies \text{Expand} \ m_2

NOTE: At all times in OPEN there is a node \(n' \), which is a member of the optimal path \(\ast = \{ s, m_1, m_2, t \} \). Also note that the \(f \) value of the nodes in path \(\ast \) is \(f^\ast(s) = c_1 + c_2 + c_3 \)

6th Pass: Expand \(m_2 \), \(M = \Gamma(m_2) = \{ t \} \) CLOSED = \{ s, l_1, l_2, m_1, m_2 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2, r_2, t \} \]
Pointers = \{ nil, s, s, s, l_1, l_2, m_1, r_1, m_2 \}
OPEN = \{ l_3, r_2, t \} F = \{ 1,5,2,2,2,2,5 \} \implies \text{Expand} \ l_3

7th Pass: Expand \(l_3 \), \(M = \Gamma(l_3) = \{ l_4 \} \) CLOSED = \{ s, l_1, l_2, m_1, r_1, m_2, l_3 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2, r_2, t, l_4 \} \]
Pointers = \{ nil, s, s, s, s, l_1, l_2, m_1, r_1, m_2, l_3 \}
OPEN = \{ l_4, l_5, t \} F = \{ 2,2,1,5,2,2,2,5 \} \implies \text{Expand} \ l_4

8th Pass: Expand \(l_4 \), \(M = \Gamma(l_4) = \{ l_5 \} \) CLOSED = \{ s, l_1, l_2, m_1, r_1, m_2, l_3, l_4 \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2, r_2, t, l_5 \} \]
Pointers = \{ nil, s, s, s, s, l_1, l_2, m_1, r_1, m_2, l_3, l_4 \}
OPEN = \{ l_5, t \} F = \{ 2,2,2,2,2,5 \} \implies \text{Expand} \ l_5

9th Pass: Expand \(l_5 \), \(M = \Gamma(l_5) = \{ t \} \) CLOSED = \{ s, l_1, l_2, m_1, r_1, m_2, l_3, l_4, t \}
\[G = \{ s, l_1, m_1, r_1, l_2, l_3, m_2, r_2, t, l_5 \} \]
Pointers = \{ nil, s, s, s, l_1, l_2, m_1, r_1, m_2, l_3, l_4 \}
OPEN = \{ t, l_5 \} F = \{ 2,2,2,2,5 \} \implies \text{Success!} \text{ Found } t \text{ Path is } s \rightarrow m_2 \rightarrow m_1 \rightarrow t

NOTE: In step 9 above when \(n = t \) is found as a successor of \(r_2 \) step 7 of the algorithm checks and finds that \(n = t \) is already in OPEN and keeps the shortest path (the cost \(c_1 + c_2 + c_3 < b_1 + b_2 + b_3 \)) to \(n = t \) which is still through \(m_i \) and not \(r_z \).
The End!