1. Introduction to Natural Language Understanding

- 1.1 The Study of Language
- 1.2 Applications of Natural Language Understanding
- 1.3 Evaluating Language Understanding Systems
- 1.4 The Different Levels of Language Analysis
- 1.5 Representations and Understanding
- 1.6 The Organization of Natural Language Understanding Systems

Summary

Related Work and Further Readings

Exercises for Chapter 1
This chapter describes the field of natural language understanding and introduces some basic distinctions. Section 1.1 discusses how natural language understanding research fits into the study of language in general. Section 1.2 discusses some applications of natural language understanding systems and considers what it means for a system to understand language. Section 1.3 describes how you might evaluate whether a system understands language. Section 1.4 introduces a few basic distinctions that are made when studying language, and Section 1.5 discusses how computational systems often realize these distinctions. Finally, Section 1.6 discusses how natural language systems are generally organized, and introduces the particular organization assumed throughout this book.

1.1 The Study of Language

Language is one of the fundamental aspects of human behavior and is a crucial component of our lives. In written form it serves as a long-term record of knowledge from one generation to the next. In spoken form it serves as our primary means of coordinating our day-to-day behavior with others. This book describes research about how language comprehension and production work. The goal of this research is to create computational models of language in enough detail that you could write computer programs to perform various tasks involving natural language. The ultimate goal is to be able to specify models that approach human performance in the linguistic tasks of reading, writing, hearing, and speaking. This book, however, is not concerned with problems related to the specific medium used, whether handwriting, keyboard input, or speech. Rather, it is concerned with the processes of comprehending and using language once the words are recognized. Computational models are useful both for scientific purposes — for exploring the nature of linguistic communication — and for practical purposes — for enabling effective human-machine communication.

Language is studied in several different academic disciplines. Each discipline defines its own set of problems and has its own methods for addressing them. The linguist, for instance, studies the structure of language itself, considering questions such as why certain combinations of words form sentences but others do not, and why a sentence can have some meanings but not others. The psycholinguist, on the other hand, studies the processes of human language production and comprehension, considering questions such as how people identify the appropriate structure of a sentence and when they decide on the appropriate meaning for words. The philosopher considers how words can mean anything at all and how they identify objects in the world. Philosophers also consider what it means to have beliefs, goals, and intentions, and how these cognitive capabilities relate to language. The goal of the computational linguist is to develop a computational theory of language, using the notions of algorithms and data structures from computer science. Of course, to build a computational model, you must take advantage of what is known from all the other disciplines. Figure 1.1 summarizes these different approaches to studying language.
As previously mentioned, there are two motivations for developing computational models. The scientific motivation is to obtain a better understanding of how language works. It recognizes that any one of the other traditional disciplines does not have the tools to completely address the problem of how language comprehension and production work. Even if you combine all the approaches, a comprehensive theory would be too complex to be studied using traditional methods. But we may be able to realize such complex theories as computer programs and then test them by observing how well they perform. By seeing where they fail, we can incrementally improve them. Computational models may provide very specific predictions about human behavior that can then be explored by the psycholinguist. By continuing in this process, we may eventually acquire a deep understanding of how human language processing occurs. To realize such a dream will take the combined efforts of linguists, psycholinguists, philosophers, and computer scientists. This common goal has motivated a new area of interdisciplinary research often called cognitive science.

The practical, or technological, motivation is that natural language processing capabilities would
revolutionize the way computers are used. Since most of human knowledge is recorded in linguistic form, computers that could understand natural language could access all this information. In addition, natural language interfaces to computers would allow complex systems to be accessible to everyone. Such systems would be considerably more flexible and intelligent than is possible with current computer technology. For technological purposes it does not matter if the model used reflects the way humans process language. It only matters that it works.

This book takes a middle ground between the scientific and technological goals. On the one hand, this reflects a belief that natural language is so complex that an ad hoc approach without a well-specified underlying theory will not be successful. Thus the technological goal cannot be realized without using sophisticated underlying theories on the level of those being developed by linguists, psycholinguists, and philosophers. On the other hand, the present state of knowledge about natural language processing is so preliminary that attempting to build a cognitively correct model is not feasible. Rather, we are still attempting to construct any model that appears to work.

The goal of this book is to describe work that aims to produce linguistically motivated computational models of language understanding and production that can be shown to perform well in specific example domains. While the book focuses on computational aspects of language processing, considerable space is spent introducing the relevant background knowledge from the other disciplines that motivates and justifies the computational approaches taken. It assumes only a basic knowledge of programming, although the student with some background in linguistics, artificial intelligence (AI), and logic will appreciate additional subtleties in the development.
1.2 Applications of Natural Language Understanding

A good way to define natural language research is to consider the different applications that researchers work on. As you consider these examples. It will also be a good opportunity to consider what it would mean to say that a computer system understands natural language. The applications can be divided into two major classes: text-based applications and dialogue-based applications.

Text-based applications involve the processing of written text, such as books, newspapers, reports, manuals, e-mail messages, and so on. These are all reading-based tasks. Text-based natural language research is ongoing in applications such as

- finding appropriate documents on certain topics from a data-base of texts (for example, finding relevant books in a library)
- extracting information from messages or articles on certain topics (for example, building a database of all stock transactions described in the news on a given day)
- translating documents from one language to another (for example, producing automobile repair manuals in many different languages)
- summarizing texts for certain purposes (for example, producing a 3-page summary of a 1000-page government report)

Not all systems that perform such tasks must be using natural language understanding techniques in the way we mean in this book. For example, consider the task of finding newspaper articles on a certain topic in a large database. Many, techniques have been developed that classify documents by the presence of certain keywords in the text. You can then retrieve articles on a certain topic by looking for articles that contain the keywords associated with that topic. Articles on law, for instance, might contain the words "lawyer", "court", "sue", "affidavit", and so on, while articles on stock transactions might contain words such as "stocks", "takeover", "leveraged buyout", "options", and so on. Such a system could retrieve articles on any
topic that has been predefined by a set of keywords. Clearly, we would not say that this system is understanding the text; rather, it is using a simple matching technique. While such techniques may produce useful applications, they are inherently limited. It is very unlikely, for example, that they could be extended to handle complex retrieval tasks that are easily expressed in natural language, such as the query "Find me all articles on leveraged buyouts involving more than 100 million dollars that were attempted but failed during 1986 and 1990". To handle such queries, the system would have to be able to extract enough information from each article in the database to determine whether the article meets the criteria defined by the query; that is, it would have to build a representation of the information in the articles and then use the representation to do the retrievals. This identifies a crucial characteristic of an understanding system: it must compute some representation of the information that can be used for later inference.

Consider another example. Some machine translation systems have been built that are based on pattern matching; that is, a sequence of words in one language is associated with a sequence of words in another language. The translation is accomplished by finding the best set of patterns that match the input and producing the associated output in the other language. This technique can produce reasonable results in some cases but sometimes produces completely wrong translations because of its inability to use an understanding of content to disambiguate word senses and sentence meanings appropriately. In contrast, other machine translation systems operate by producing a representation of the meaning of each sentence in one language, and then producing a sentence in the other language that realizes the same meaning. This latter approach, because it involves the computation of a representation of meaning, is using natural language understanding techniques.

One very attractive domain for text-based research is story understanding. In this task the system processes a story and then must answer questions about it. This is similar to the type of reading comprehension tests used in schools and provides a very rich method for evaluating the depth of understanding the system is able to achieve.

Dialogue-based applications involve human-machine communication. Most naturally this involves spoken language, but it also includes interaction using keyboards. Typical potential applications include

- question-answering systems, where natural language is used to query a database (for example, a query system to a personnel database)
- automated customer service over the telephone (for example, to perform banking transactions or order items from a catalogue)
- tutoring systems, where the machine interacts with a student (for example, an automated mathematics tutoring system)
- spoken language control of a machine (for example, voice control of a VCR or computer)
- general cooperative problem-solving systems (for example, a system that helps a person plan and schedule freight shipments)
Some of the problems faced by dialogue systems are quite different than in text-based systems. First, the language used is very different, and the system needs to participate actively in order to maintain a natural, smooth-flowing dialogue. Dialogue requires the use of acknowledgments to verify that things are understood, and an ability to both recognize and generate clarification sub-dialogues when something is not clearly understood. Even with these differences, however, the basic processing techniques are fundamentally the same.

It is important to distinguish the problems of speech recognition from the problems of language understanding. A speech recognition system need not involve any language understanding. For instance, voice-controlled computers and VCRs are entering the market now. These do not involve natural language understanding in any general way. Rather, the words recognized are used as commands, much like the commands you send to a VCR using a remote control. Speech recognition is concerned only with identifying the words spoken from a given speech signal, not with understanding how words are used to communicate. To be an understanding system, the speech recognizer would need to feed its input to a natural language understanding system, producing what is often called a spoken language understanding system.

With few exceptions, all the techniques discussed in this book are equally relevant for text-based and dialogue-based language understanding, and apply equally well whether the input is text, keyboard, or speech. The key characteristic of any understanding system is that it represents the meaning of sentences in some representation language that can be used later for further processing.

1.3 Evaluating Language Understanding Systems

As you can see, what counts as understanding might vary from application to application. If this is so, how can you tell if a system works? One obvious way to evaluate a system is to run the program and see how well it performs the task it was designed to do. If the program is meant to answer questions about a database
of facts, you might ask it questions to see how good it is at producing the correct answers. If the system is designed to participate in simple conversations on a certain topic, you might try conversing with it. This is called black box evaluation because it evaluates system performance without looking inside to see how it works. While ultimately this method of evaluation may be the best test of a system’s capabilities, it is problematic in the early stages of research because early evaluation results can be misleading. Sometimes the techniques that produce the best results in the short term will not lead to the best results in the long term. For instance, if the overall performance of all known systems in a given application is uniformly low, few conclusions can be drawn. The fact that one system was correct 50 percent of the time while another was correct only 40 percent of the time says nothing about the long-term viability of either approach. Only when the success rates become high, making a practical application feasible, can much significance be given to overall system performance measures.

An alternative method of evaluation is to identify various subcomponents of a system and then evaluate each one with appropriate tests. This is called glass box evaluation because you look inside at the structure of the system. The problem with glass box evaluation is that it requires some consensus on what the various components of a natural language system should be. Achieving such a consensus is an area of considerable activity at the present.

Despite the difficulties, evaluations are of crucial importance to the field, as very little can be concluded from examining a few examples that a particular system can handle. If you cannot interact freely with the program yourself but must depend on transcripts of others’ interactions, you can easily be mislead into overestimating a program’s abilities. It is very hard for people not to attribute much more intelligence to the program than is actually present.

Consider a concrete example — the ELIZA program that was developed in the mid-1960s at MIT. This program must be one of the most popular AI

<table>
<thead>
<tr>
<th>USER</th>
<th>ELIZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men are all alike.</td>
<td>In what way?</td>
</tr>
<tr>
<td>They’re always bugging us about something or other.</td>
<td>Can you think of a specific example?</td>
</tr>
<tr>
<td>Well, my boyfriend made me come here.</td>
<td>Your boyfriend made you come here.</td>
</tr>
<tr>
<td>He says I’m depressed much of the time.</td>
<td>I am sorry to hear you are depressed.</td>
</tr>
<tr>
<td>It’s true, I am unhappy.</td>
<td>Do you think coming here will help you not to be unhappy?</td>
</tr>
</tbody>
</table>
I need some help; that much seems certain. | What would it mean to you if you got some help?
---|---
Perhaps I could learn to get along with my mother. | Tell me more about your family.
My mother takes care of me. | Who else in your family takes care of you?
My father. | Your father.
You are like my father in some ways. | What resemblance do you see?

Figure 1.2 A dialogue with ELIZA

programs at all time, and versions of it exist for most machines, including most personal computers. ELIZA was never claimed to embody a theory of language comprehension and production, but it serves as an excellent example as its behavior initially seems impressive. The system plays the role of a therapist and, to obtain the best results, the user should correspondingly play the role of a patient. Figure 1.2 presents a transcript of this system in operation. Given this transcript, or even playing with the system yourself for a few minutes, ELIZA's performance certainly seems impressive.

Here is a simple description of how ELIZA works. There is a database of particular words that are called keywords. For each keyword, the system stores an integer, a pattern to match against the input, and a specification of the output. The algorithm is as follows: Given a sentence S, find a keyword in S whose pattern matches S. If there is more than one keyword, pick the one with the highest integer value. Use the output specification that is associated with this keyword to generate the next sentence. If there are no keywords, generate an innocuous continuation statement, such as "Tell me more" or "Go on".

Figure 1.3 shows a fragment of a database of keywords. In this database a pattern consists of words and variables. The prefix ? before a letter indicates a variable, which can match any sequence of words. For example, the pattern

?X are you ?Y

would match the sentence "Why are you looking at me?", where the variable ?X matches "Why" and ?Y"
matches "looking at me". The output specification may also use the same variables. In this case, ELIZA inserts the words that match the variables in the input into the output after making some minor changes in the

<table>
<thead>
<tr>
<th>Word</th>
<th>Rank</th>
<th>Pattern</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>alike</td>
<td>10</td>
<td>?X</td>
<td>In what way?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>What resemblance do you see?</td>
</tr>
<tr>
<td>are</td>
<td>3</td>
<td>?X are ?Y</td>
<td>Would you prefer it if I weren't ?Y</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>?X are ?Y</td>
<td>What if they were not ?Y?</td>
</tr>
<tr>
<td>always</td>
<td>5</td>
<td>?X</td>
<td>Can you think of a specific example?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Really, always?</td>
</tr>
<tr>
<td>what</td>
<td>2</td>
<td>?X</td>
<td>Why do you ask?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Does that interest you?</td>
</tr>
</tbody>
</table>

Figure 1.3 Sample data from ELIZA

pronouns (for example, replacing "me" with "you"). Thus, for the pattern above, if the output specification is

Would you prefer it if I weren’t ?Y?
the rule would generate a response "Would you prefer it if I weren’t looking at you?" When the database lists multiple output specifications for a given pattern, ELIZA selects a different one each time a keyword rule is used, thereby preventing unnatural repetition in the conversation. Using these rules, you can see how ELIZA produced the first two exchanges in the conversation in Figure 1.2. ELIZA generated the first response from the first output of the keyword "alike" and the second response from the first output of the keyword "always".

This description covers all of the essential points of the program. You will probably agree that the program does not understand the conversation it is participating in. Rather, it is a collection of tricks. Why then does ELIZA appear to function so well? There are several reasons. Perhaps the most important reason is that, when people hear or read a sequence of words that they understand as a sentence, they attribute meaning to the sentence and assume that the person (or machine) that produced the sentence actually intended that meaning. People are extremely good at distinguishing word meanings and interpreting sentences to fit the context. Thus ELIZA appears to be intelligent because you use your own intelligence to make sense of what it says.

Other crucial characteristics of the conversational setting also aid in sustaining the illusion of intelligence. For instance, the system does not need any world knowledge because it never has to make a claim, support an argument, or answer a question. Rather, it simply asks a series of questions. Except in a patient-therapist situation, this would be unacceptable. ELIZA evades all direct questions by responding with another question, such as "Why do you ask?" There is no way to force the program to say something concrete about any topic.

Even in such a restricted situation, however, it is relatively easy to demonstrate that the program does not understand. It sometimes produces completely off-the-wall responses. For instance, if you say "Necessity is the mother of invention", it might respond with "Tell me more about your family", based on its pattern for the word "mother". In addition, since ELIZA has no knowledge about the structure of language, it accepts gibberish just as readily as valid sentences. If you enter "Green the adzabak are the a ran four", ELIZA will respond with something like "What if they were not the a ran four?" Also, as a conversation progresses, it becomes obvious that the program does not retain any of the content in the conversation. It begins to ask questions that are inappropriate in light of earlier exchanges, and its responses in general begin to show a lack of focus. Of course, if you are not able to play with the program and must depend only on transcripts of conversations by others, you would have no way of detecting these flaws, unless they are explicitly mentioned.

Suppose you need to build a natural language program for a certain application in only six months. If you start to construct a general model of language understanding, it will not be completed in that time frame and so will perform miserably on the tests. An ELIZA-like system, however, could easily produce behavior like that previously discussed with less than a few months of programming and will appear to far outperform the other system in testing. The differences will be especially marked if the test data only includes typical
domain interactions that are not designed to test the limits of the system. Thus, if we take short-term performance as our only criteria of progress, everyone will build and fine-tune ELIZA-style systems, and the field will not progress past the limitations of the simple approach.

To avoid this problem, either we have to accept certain theoretical assumptions about the architecture of natural language systems and develop specific evaluation measures for different components, or we have to discount overall evaluation results until some reasonably high level of performance is obtained. Only then will cross-system comparisons begin to reflect the potential for long-term success in the field.

1.4 The Different Levels of Language Analysis

A natural language-system must use considerable knowledge about the structure of the language itself, including what the words are, how words combine to form sentences, what the words mean, how word meanings contribute to sentence meanings, and so on. However, we cannot completely account for linguistic behavior without also taking into account another aspect of what makes humans intelligent — their general world knowledge and their reasoning abilities. For example, to answer questions or to participate in a conversation, a person not only must know a lot about the structure of the language being used, but also must know about the world in general and the conversational setting in particular.

The following are some of the different forms of knowledge relevant for natural language understanding:

Phonetic and phonological knowledge - concerns how words are related to the sounds that realize them. Such knowledge is crucial for speech-based systems and is discussed in more detail in Appendix C.

Morphological knowledge - concerns how words are constructed from more basic meaning units called morphemes. A morpheme is the primitive unit of meaning in a language (for example, the meaning of the word "friendly" is derivable from the meaning of the noun "friend" and the suffix "-ly", which transforms a noun into an adjective).
Syntactic knowledge - concerns how words can be put together to form correct sentences and determines what structural role each word plays in the sentence and what phrases are subparts of what other phrases.

Semantic knowledge - concerns what words mean and how these meanings combine in sentences to form sentence meanings. This is the study of context-independent meaning - the meaning a sentence has regardless of the context in which it is used.

Pragmatic knowledge - concerns how sentences are used in different situations and how use affects the interpretation of the sentence.

Discourse knowledge - concerns how the immediately preceding sentences affect the interpretation of the next sentence. This information is especially important for interpreting pronouns and for interpreting the temporal aspects of the information conveyed.

World knowledge - includes the general knowledge about the structure of the world that language users must have in order to, for example, maintain a conversation. It includes what each language user must know about the other user’s beliefs and goals.

These definitions are imprecise and are more characteristics of knowledge than actual distinct classes of knowledge. Any particular fact might include aspects from several different levels, and an algorithm might need to draw from several different levels simultaneously. For teaching purposes, however, this book is organized into three parts, each describing a set of techniques that naturally cluster together. Part I focuses on syntactic and morphological processing, Part II focuses on semantic processing, and Part III focuses on contextual effects in general, including pragmatics, discourse, and world knowledge.

BOX 1.2 Syntax, Semantics, and Pragmatics

The following examples may help you understand the distinction between syntax, semantics, and pragmatics. Consider each example as a candidate for the initial sentence of this book, which you know discusses natural language processing:

1. Language is one of the fundamental aspects of human behavior and is a crucial component of our lives.
2. Green frogs have large noses.
3. Green ideas have large noses.
4. Large have green ideas nose.

Sentence 1 appears to be a reasonable start (I hope!). It agrees with all that is known about syntax,
semantics, and pragmatics. Each of the other sentences violates one or more of these levels. Sentence 2 is well-formed syntactically and semantically, but not pragmatically. It fares poorly as the first sentence of the book because the reader would find no reason for using it. But however bad sentence 2 would be as a start, sentence 3 is much worse. Not only is it obviously pragmatically ill-formed, it is also semantically ill-formed. To see this, consider that you and I could argue about whether sentence 2 is true or not, but we cannot do so with sentence 3. I cannot affirm or deny sentence 3 in coherent conversation. However, the sentence does have some structure, for we can discuss what is wrong with it: Ideas cannot be green and, even if they could, they certainly cannot have large noses. Sentence 4 is even worse. In fact, it is unintelligible, even though it contains the same words as sentence 3. It does not even have enough structure to allow you to say what is wrong with it. Thus it is syntactically ill-formed. Incidentally, there are cases in which a sentence may be pragmatically well-formed but not syntactically well-formed. For example, if I ask you where you are going and you reply "I go store", the response would be understandable even though it is syntactically ill-formed. Thus it is at least pragmatically well-formed and may even be semantically well-formed.

1.5 Representations and Understanding

As previously stated, a crucial component of understanding involves computing a representation of the meaning of sentences and texts. Without defining the notion of representation, however, this assertion has little content. For instance, why not simply use the sentence itself as a representation of its meaning? One reason is that most words have multiple meanings, which we will call senses. The word "cook", for example, has a sense as a verb and a sense as a noun; "dish" has multiple senses as a noun as well as a sense as a verb; and "still" has senses as a noun, verb, adjective, and adverb. This ambiguity would inhibit the system from making the appropriate inferences needed to model understanding. The disambiguation problem appears much easier than it actually is because people do not generally notice ambiguity. While a person does not seem to consider each of the possible senses of a word when understanding a sentence, a program must explicitly consider them one by one.

To represent meaning, we must have a more precise language. The tools to do this come from mathematics and logic and involve the use of formally specified representation languages. Formal languages are specified
from very simple building blocks. The most fundamental is the notion of an atomic symbol which is
distinguishable from any other atomic symbol simply based on how it is written. Useful representation
languages have the following two properties:

- The representation must be precise and unambiguous. You should be able to express every distinct
 reading of a sentence as a distinct formula in the representation.
- The representation should capture the intuitive structure of the natural language sentences that it
 represents. For example, sentences that appear to be structurally similar should have similar structural
 representations, and the meanings of two sentences that are paraphrases of each other should be
 closely related to each other.

Several different representations will be used that correspond to some of the levels of analysis discussed in
the last section. In particular, we will develop formal languages for expressing syntactic structure, for
context-independent word and sentence meanings, and for expressing general world knowledge.

Syntax: Representing Sentence Structure

The syntactic structure of a sentence indicates the way that words in the sentence are related to each other.
This structure indicates how the words are grouped together into phrases, what words modify what other
words, and what words are of central importance in the sentence. In addition, this structure may identify the
types of relationships that exist between phrases and can store other information about the particular
sentence structure that may be needed for later processing. For example, consider the following sentences:

1. John sold the book to Mary.

2. The book was sold to Mary by John.

These sentences share certain structural properties. In each, the noun phrases are "John", "Mary", and "the
book", and the act described is some selling action. In other respects, these sentences are significantly
different. For instance, even though both sentences are always either true or false in the exact same
situations, you could only give sentence 1 as an answer to the question "What did John do for Mary?"
Sentence 2 is a much better continuation of a sentence beginning with the phrase "After it fell in the river",
as sentences 3 and 4 show. Following the standard convention in linguistics, this book will use an asterisk
(*) before any example of an ill-formed or questionable sentence.
Figure 1.4 Two structural representations of *Rice flies like sand*.

Figure 1.4 Two structural representations of "Rice flies like sand".

3. *After it fell in the river, John sold Mary the book.

4. After it fell in the river, the book was sold to Mary by John.

Many other structural properties can be revealed by considering sentences that are not well-formed. Sentence 5 is ill-formed because the subject and the verb do not agree in number (the subject is singular and the verb is plural), while 6 is ill-formed because the verb *put* requires some modifier that describes where John put the object.

5. *John are in the corner.

Making judgments on grammaticality is not a goal in natural language understanding. In fact, a robust system should be able to understand ill-formed sentences whenever possible. This might suggest that agreement checks can be ignored, but this is not so. Agreement checks are essential for eliminating potential ambiguities. Consider sentences 7 and 8, which are identical except for the number feature of the main verb, yet represent two quite distinct interpretations.

7. flying planes are dangerous.
8. flying planes is dangerous.

If you did not check subject-verb agreement, these two sentences would be indistinguishable and ambiguous. You could find similar examples for every syntactic feature that this book introduces and uses.

Most syntactic representations of language are based on the notion of context-free grammars, which represent sentence structure in terms of what phrases are subparts of other phrases. This information is often presented in a tree form, such as the one shown in Figure 1.4, which shows two different structures for the sentence "Rice flies like sand". In the first reading, the sentence is formed from a noun phrase (NP) describing a type of fly, rice flies, and a verb phrase (VP) that asserts that these flies like sand. In the second structure, the sentence is formed from a noun phrase describing a type of substance, rice, and a verb phrase stating that this substance flies like sand (say, if you throw it). The two structures also give further details on the structure of the noun phrase and verb phrase and identify the part of speech for each word. In particular, the word "like" is a verb (V) in the first reading and a preposition (P) in the second.

The Logical Form

The structure of a sentence doesn’t reflect its meaning, however. For example, the NP "the catch" can have different meanings depending on whether the speaker is talking about a baseball game or a fishing expedition. Both these interpretations have the same syntactic structure, and the different meanings arise from an ambiguity concerning the sense of the word "catch". Once the correct sense is identified, say the fishing sense, there still is a problem in determining what fish are being referred to. The intended meaning of a sentence depends on the situation in which the sentence is produced. Rather than combining all these
problems, this book will consider each one separately. The division is between context-independent meaning and context-dependent meaning. The fact that "catch" may refer to a baseball move or the results of a fishing expedition is knowledge about English and is independent of the situation in which the word is used. On the other hand, the fact that a particular noun phrase "the catch" refers to what Jack caught when fishing yesterday is contextually dependent. The representation of the context-independent meaning of a sentence is called its logical form.

The logical form encodes possible word senses and identifies the semantic relationships between the words and phrases. Many of these relationships are often captured using an abstract set of semantic relationships between the verb and its NPs. In particular, in both sentences 1 and 2 previously given, the action described is a selling event, where "John" is the seller, "the book" is the object being sold, and "Mary" is the buyer. These roles are instances of the abstract semantic roles AGENT, THEME, and TO-POSS (for final possessor), respectively.

Once the semantic relationships are determined, some word senses may be impossible and thus eliminated from consideration. Consider the sentence

9. Jack invited Mary to the Halloween ball.

The word "ball", which by itself is ambiguous between the plaything that bounces and the formal dance event, can only take the latter sense in sentence 9, because the verb "invite" only makes sense with this interpretation. One of the key tasks in semantic interpretation is to consider what combinations of the individual word meanings can combine to create coherent sentence meanings. Exploiting such interconnections between word meanings can greatly reduce the number of possible word senses for each word in a given sentence.

The Final Meaning Representation

The final representation needed is a general knowledge representation (KR), which the system uses to represent and reason about its application domain. This is the language in which all the specific knowledge based on the application is represented. The goal of contextual interpretation is to take a representation of the structure of a sentence and its logical form, and to map this into some expression in the KR that allows the system to perform the appropriate task in the domain. In a question-answering application, a question might map to a database query, in a story-understanding application, a sentence might map into a set of expressions that represent the situation that the sentence describes.

For the most part, we will assume that the first-order predicate calculus (FOPC) is the final representation language because it is relatively well known, well studied, and is precisely defined. While some
1.6 The Organization of Natural Language Understanding Systems

This book is organized around the three levels of representation just discussed: syntactic structure, logical form, and the final meaning representation. Separating the problems in this way will allow you to study each problem in depth without worrying about other complications. Actual systems are usually organized slightly differently, however. In particular, Figure 1.5 shows the organization that this book assumes.

As you can see, there are interpretation processes that map from one representation to the other. For instance, the process that maps a sentence to its syntactic structure and logical form is called the parser. It uses knowledge about word and word meanings (the lexicon) and a set of rules defining the legal structures (the grammar) in order to assign a syntactic structure and a logical form to an input sentence. An alternative organization could perform syntactic processing first and then perform semantic interpretation on the resulting structures. Combining the two, however, has considerable advantages because it leads to a reduction in the number of possible interpretations, since every proposed interpretation must simultaneously be syntactically and semantically well formed. For example, consider the following two sentences:

10. Visiting relatives can be trying.

11. Visiting museums can be trying.

These two sentences have identical syntactic structure, so both are syntactically ambiguous. In sentence 10, the subject might be relatives who are visiting you or
the event of you visiting relatives. Both of these alternatives are semantically valid, and you would need to determine the appropriate sense by using the contextual mechanism. However, sentence 11 has only one possible semantic interpretation, since museums are not objects that can visit other people; rather they must be visited. In a system with separate syntactic and semantic processing, there would be two syntactic interpretations of sentence 11, one of which the semantic interpreter would eliminate later. If syntactic and semantic processing are combined, however, the system will be able to detect the semantic anomaly as soon as it interprets the phrase "visiting museums", and thus will never build the incorrect syntactic structure in the first place. While the savings here seem small, in a realistic application a reasonable sentence may have hundreds of possible syntactic structures, many of which are semantically anomalous.
Continuing through Figure 1.5, the process that transforms the syntactic structure and logical form into a final meaning representation is called contextual processing. This process includes issues such as identifying the objects referred to by noun phrases such as definite descriptions (for example, "the man") and pronouns, the analysis of the temporal aspects of the new information conveyed by the sentence, the identification of the speaker’s intention (for example, whether "Can you lift that rock" is a yes/no question or a request), as well as all the inferential processing required to interpret the sentence appropriately within the application domain. It uses knowledge of the discourse context (determined by the sentences that preceded the current one) and knowledge of the application to produce a final representation.

The system would then perform whatever reasoning tasks are appropriate for the application. When this requires a response to the user, the meaning that must be expressed is passed to the generation component of the system. It uses knowledge of the discourse context, plus information on the grammar and lexicon, to plan the form of an utterance, which then is mapped into words by a realization process. Of course, if this were a spoken language application, the words would not be the final input and output, but rather would be the output of a speech recognizer and the input to a speech synthesizer, as appropriate.

While this text focuses primarily on language understanding, notice that the same levels of knowledge are also used for the generation task as well. For instance, knowledge of syntactic structure is encoded in the grammar. This grammar can be used either to identify the structure of a given sentence or to realize a structure as a sequence of words. A grammar that supports both processes is called a bidirectional grammar. While most researchers agree that bidirectional grammars are the preferred model, in actual practice grammars are often tailored for the understanding task or the generation task. This occurs because different issues are important for each task, and generally any given researcher focuses just on the problems related to their specific task. But even when the actual grammars differ between understanding and generation, the grammatical formalisms used remain the same.

>> back

Summary
This book describes computational theories of natural language understanding. The principal characteristic of understanding systems is that they compute representations of the meanings of sentences and use these representations in reasoning tasks. Three principal levels of representation were introduced that correspond to the three main subparts of this book. Syntactic processing is concerned with the structural properties of sentences; semantic processing computes a logical form that represents the context-independent meaning of the sentence; and contextual processing connects language to the application domain.

Related Work and Further Readings

A good idea of work in the field can be obtained by reading two articles in Shapiro (1992), under the headings "Computational Linguistics" and "Natural Language Understanding". There are also articles on specialized subareas such as machine translation, natural language interfaces, natural language generation, and so on. Longer surveys on certain areas are also available. Slocum (1985) gives a survey of machine translation, and Perrault and Grosz (1986) give a survey of natural language interfaces.

You can find a description of the ELIZA program that includes the tran-script of the dialogue in Figure 1.2 in Weizenbaum (1966). The basic technique of using template matching was developed further in the PARRY system, as described in the paper by Colby in Schank and Colby (1973). That same book also contains descriptions of early natural language systems, including those by Winograd and by Schank. Another important early system is the LUNAR system, an overview of which can be found in Woods (1977). For another perspective on the AI approach to natural language, refer to the introduction in Winograd (1983).
Exercises for Chapter 1

1. (easy) Define a set of data rules for ELIZA that would generate the first seven exchanges in the conversation in Figure 1.2.

2. (easy) Discover all of the possible meanings of the following sentences by giving a paraphrase of each interpretation. For each sentence, identify whether the different meanings arise from structural ambiguity, semantic ambiguity, or pragmatic ambiguity.

 a. Time flies like an arrow.

 b. He drew one card.

 c. Mr. Spook was charged with illegal alien recruitment.

 d. He crushed the key to my heart.

3. (easy) Classify these sentences along each of the following dimensions, given that the person uttering the sentence is responding to a complaint that the car is too cold: (i) syntactically correct or not; (ii) semantically correct or not; (iii) pragmatically correct or not.

 a. The heater are on.

 b. The tires are brand new.

 c. Too many windows eat the stew.

4. (medium) Implement an ELIZA program that can use the rules that you developed in Exercise 1 and run it for that dialogue. Without adding any more rules, what does your program do on the next few utterances in the conversation in Figure 1.2? How does the program do if you run it in a different context - say, a casual conversation at a bar?

[Allen 1995 : Chapter 1 - Introduction / 19]
As discussed in the introduction, this book divides the task of understanding sentences into three stages. Part I of the book discusses the first stage, syntactic processing. The goal of syntactic processing is to determine the structural components of sentences. It determines, for instance, how a sentence is broken down into phrases, how those phrases are broken down into sub-phrases, and so on, all the way down to the actual structure of the words used. These structural relationships are crucial for determining the meaning of sentences using the techniques described in Parts II and III.

There are two major issues discussed in Part I. The first issue concerns the formalism that is used to specify what sentences are possible in a language. This information is specified by a set of rules called a grammar. We will be concerned both with the general issue of what constitutes good formalisms for writing grammars for natural languages, and with the specific issue of what grammatical rules provide a good account of English syntax. The second issue concerns how to determine the structure of a given sentence once you know the grammar for the language. This process is called parsing. There are many different algorithms for parsing, and this book will consider a sampling of the techniques that are most influential in the field.

Chapter 2 provides a basic background to English syntax for the reader who has not studied linguistics. It introduces the key concepts and distinctions that are common to virtually all syntactic theories. Chapter 3 introduces several formalisms that are in common use for specifying grammars and describes the basic parsing algorithms in detail. Chapter 4 introduces the idea of features, which extend the basic grammatical formalisms and allow many aspects of natural languages to be captured concisely. Chapter 5 then describes some of the more difficult aspects of natural languages, especially the treatment of questions, relative clauses, and other forms of movement phenomena. It shows how the feature systems can be extended so that they can handle these complex sentences. Chapter 6 discusses issues relating to ambiguity resolution. Some techniques are aimed at developing more efficient representations for storing multiple interpretations, while others are aimed at using local information to choose between alternative interpretations while the parsing is in progress. Finally, Chapter 7 discusses a relatively new area of research that uses statistical information derived from analyzing large databases of sentences. This information can be used to identify the most likely classes for ambiguous words and the most likely structural analyses for structurally ambiguous sentences.