
Allen 1995: Chapter 2 - An Outline of English Syntax

Allen 1995 : Natural Language Understanding
 Contents Preface Introduction

previous
chapter

Part I

Syntactic Processing

Part II

Semantic Interpretation

Part III - Context / World
Knowledge

next chapter

 Appendices Bibliography Index

 Summaries Further Readings Exercises

Chapter 2: Linguistic Background: An Outline of
English Syntax

 2.1 Words

 2.2 The Elements of Simple Noun Phrases

 2.3 Verb Phrases and Simple Sentences

 2.4 Noun Phrases Revisited

 2.5 Adjective Phrases

 2.6 Adverbial Phrases

Summary

Related Work and Further Readings

Exercises for Chapter 2

[Allen 1995: Linguistic Background: An Outline of English Syntax 23]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (1 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

This chapter provides background material on the basic structure of English syntax for those who have not
taken any linguistics courses. It reviews the major phrase categories and identifies their most important
subparts. Along the way all the basic word categories used in the book are introduced. While the only
structures discussed are those for English, much of what is said applies to nearly all other European
languages as well. The reader who has some background in linguistics can quickly skim this chapter, as it
does not address any computational issues. You will probably want to use this chapter as a reference
source as you work through the rest of the chapters in Part I.

Section 2.1 describes issues related to words and word classes. Section 2.2 describes simple noun phrases,
which are then used in Section 2.3 to describe simple verb phrases. Section 2.4 considers complex noun
phrases that include embedded sentences such as relative clauses. The remaining sections briefly cover
other types of phrases: adjective phrases in Section 2.5 and adverbial phrases in Section 2.6.

2.1 Words

At first glance the most basic unit of linguistic structure appears to be the word. The word, though, is far
from the fundamental element of study in linguistics; it is already the result of a complex set of more
primitive parts. The study of morphology concerns the construction of words from more basic components
corresponding roughly to meaning units. There are two basic ways that new words are formed, traditionally
classified as inflectional forms and derivational forms. Inflectional forms use a root form of a word and
typically add a suffix so that the word appears in the appropriate form given the sentence. Verbs are the
best examples of this in English. Each verb has a basic form that then is typically changed depending on
the subject and the tense of the sentence. For example, the verb sigh will take suffixes such as -s, -ing, and -
ed to create the verb forms sighs, sighing, and sighed, respectively. These new words are all verbs and
share the same basic meaning. Derivational morphology involves the derivation of new words from other
forms. The new words may be in completely different categories from their subparts. For example, the
noun friend is made into the adjective friendly by adding the suffix - ly. A more complex derivation would
allow you to derive the noun friendliness from the adjective form. There are many interesting issues
concerned with how words are derived and how the choice of word form is affected by the syntactic
structure of the sentence that constrains it.

Traditionally, linguists classify words into different categories based on their uses. Two related areas of
evidence are used to divide words into categories. The first area concerns the word’s contribution to the
meaning of the phrase that contains it, and the second area concerns the actual syntactic structures in which
the word may play a role. For example, you might posit the class noun as those words that can he used to
identify the basic type (If object, concept, or place being discussed, and adjective as those words that
further otialifv the ohievt

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (2 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

[Allen 1995: Linguistic Background: An Outline of English Syntax 24]

concept, or place. Thus green would be an adjective and book a noun, as shown in the phrases the green
book and green books. But things are not so simple:

green might play the role of a noun, as in That green is lighter than the other, and book might play the role
of a modifier, as in the book worm. In fact, most nouns seem to be able to be used as a modifier in some
situations. Perhaps the classes shoMld be combined, since they overlap a great deal. But other forms of
evidence exist. Consider what words could complete the sentence it’s so... You might say it’s so green, it’s
so hot, it’s so true, and so on. Note that although book can be a modifier in the book worm, you cannot say
*it’s so book about anything. Thus there are two classes of modifiers: adjective modifiers and noun
modifiers.

Consider again the case where adjectives can be used as nouns, as in the green. Not all adjectives can be
used in such a way. For example, the noun phrase the hot can be used, given a context where there are hot
and cold plates, in a sentence such as The hot are on the table. But this refers to the hot plates; it cannot
refer to hotness in the way the phrase the green refers to green. With this evidence you could subdivide
adjectives into two subclasses—those that can also be used to describe a concept or quality directly, and
those that cannot. Alter-natively, however, you can simply say that green is ambiguous between being an
adjective or a noun and, therefore, falls in both classes. Since green can behave like any other noun, the
second solution seems the most direct.

Using similar arguments, we can identify four main classes of words in English that contribute to the
meaning of sentences. These classes are nouns, adjectives, verbs, and adverbs. Sentences are built out of
phrases centered on these four word classes. Of course, there are many other classes of words that are
necessary to form sentences, such as articles, pronouns, prepositions, particles, quantifiers, conjunctions,
and so on. But these classes are fixed in the sense that new words in these classes are rarely introduced into
the language. New nouns, verbs, adjectives and adverbs, on the other hand, are regularly introduced into
the language as it evolves. As a result, these classes are called the open class words, and the others are
called the closed class words.

A word in any of the four open classes may be used to form the basis of a phrase. This word is called the
head of the phrase and indicates the type of thing, activity, or quality that the phrase describes. For
example, with noun phrases, the head word indicates the general classes of objects being described. The
phrases

the dog

the mangy dog

the mangy dog at the pound

are all noun phrases that describe an object in the class of dogs. The first describes a member from the

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (3 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

class of all dogs, the second an object from the class of mangy dogs, and the third an object from the class
of mangy dogs that are at the pound. The word dog is the head of each of these phrases.

[Allen 1995: Linguistic Background: An Outline of English Syntax 25]

Noun Phrases Verb Phrases

The president of the company looked up the chimney

His desire to succeed believed that the world was flat

Several challenges from the opposing
team

ate the pizza

Adjective Phrases Adverbial Phrases

easy to assemble rapidly like a bat

happy that he’d won the prize intermittently throughout the day

angry as a hippo inside the house

Figure 2.1 Examples of heads and complements

Similarly, the adjective phrases

hungry

very hungry

hungry as a horse

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (4 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

all describe the quality of hunger. In each case the word hungry is the head.

In some cases a phrase may consist of a single head. For example, the word sand can be a noun phrase,
hungry can be an adjective phrase, and walked can be a verb phrase. In many other cases the head requires
additional phrases following it to express the desired meaning. For example, the verb put cannot form a
verb phrase in isolation; thus the following words do not form a meaningful sentence:

*Jack put.

To be meaningful, the verb put must be followed by a noun phrase and a phrase describing a location, as in
the verb phrase put the dog in the house. The phrase or set of phrases needed to complete the meaning of
such a head is called the complement of the head. In the preceding phrase put is the head and the dog in the
house is the complement. Heads of all the major classes may require comple-ments. Figure 2.1 gives some
examples of phrases, with the head indicated by boldface and the complements by italics, in the remainder
of this chapter, we will look at these different types of phrases in more detail and see how they are
structured and how they contribute to the meaning of sentences.

>> back

2.2 The Elements of Simple Noun Phrases

Noun phrases (NPs) are used to refer to things: objects, places, concepts, events, qualities, and so on. The
simplest NP consists of a single pronoun: he, she, they, you, me, it, i, and so on. Pronouns can refer to
physical objects, as in the sentence

It hid under the rug.

[Allen 1995: Linguistic Background: An Outline of English Syntax 26]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (5 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

to events, as in the sentence

Once I opened the door, I regretted it for months.

and to qualities, as in the sentence

He was so angry, but he didn’t show it.

Pronouns do not take any modifiers except in rare forms, as in the sentence "He who hesitates is lost".

Another basic form of noun phrase consists of a name or proper noun, such as John or Rochester. These
nouns appear in capitalized form in carefully written English. Names may also consist of multiple words,
as in the New York Times and Stratford-on-Avon.

Excluding pronouns and proper names, the head of a noun phrase is usually a common noun. Nouns divide
into two main classes:

count nouns — nouns that describe specific objects or sets of objects.

mass nouns — nouns that describe composites or substances.

Count nouns acquired their name because they can be counted. There may be one dog or many dogs, one
book or several books, one crowd or several crowds. If a single count noun is used to describe a whole
class of objects, it must be in its plural form. Thus you can say Dogs are friendly but not *Dog is friendly.

Mass nouns cannot be counted. There may be some water, some wheat, or some sand. If you try to count
with a mass noun, you change the meaning. For example, some wheat refers to a portion of some quantity
of wheat, whereas one wheat is a single type of wheat rather than a single grain of wheat. A mass noun can
be used to describe a whole class of material without using a plural form. Thus you say Water is necessary
for life, not * Waters are necessary for life.

In addition to a head, a noun phrase may contain specifiers and qualifiers preceding the head. The
qualifiers further describe the general class of objects identified by the head, while the specifiers indicate
how many such objects are being described, as well as how the objects being described relate to the
speaker and hearer. Specifiers are constructed out of ordinals (such as first and second), cardinals (such as
one and two), and determiners. Determiners can be sub-divided into the following general classes:

 articles — the words the, a, and an.

 demonstratives — words such as this, that, these, and those.

 possessives — noun phrases followed by the suffix ‘s, such as
John’s and the fat man’s, as well as possessive pronouns, such
as her, my, and whose.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (6 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

 wh-determiners — words used in questions, such as which and
what.

 quantifying determiners — words such as some, every, most,
no, any, both, and half

[Allen 1995: Linguistic Background: An Outline of English Syntax 27]

Number First Person Second Person Third Person

 he (masculine)

singular I you she (feminine)

 it (neuter)

plural we you they

Figure 2.2 Pronoun system (as subject)

Number First Person Second Person Third Person
singular my your his, her, its
plural our your their

Figure 2.3 Pronoun system (possessives)

A simple noun phrase may have at most one determiner, one ordinal, and one cardinal. It is possible to
have all three, as in the first three contestants. An exception to this rule exists with a few quantifying
determiners such as many, few, several, and little. These words can be preceded by an article, yielding
noun phrases such as the few songs we knew. Using this evidence, you could subcategorize the quantifying
determiners into those that allow this and those that don’t, but the present coarse categorization is fine for
our purposes at this time.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (7 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

The qualifiers in a noun phrase occur after the specifiers (if any) and before the head. They consist of
adjectives and nouns being used as modifiers. The following are more precise definitions:

adjectives - words that attribute qualities to objects yet do not refer to the qualities themselves (for
example, angry is an adjective that attributes the quality of anger to something).

noun modifiers - mass or count nouns used to modify another noun,

as in the cook book or the ceiling paint can.

Before moving on to other structures, consider the different inflectional forms that nouns take and how
they are realized in English. Two forms of nouns - the singular and plural forms - have already been
mentioned. Pronouns take forms based on person (first, second, and third) and gender (masculine,
feminine, and neuter). Each of these distinctions reflects a systematic analysis that is almost wholly explicit
in some languages, such as Latin, while implicit in others. In French, for example, nouns are classified by
their gender. In English many of these distinctions are not explicitly marked except in a few cases. The
pronouns provide the best example of this. They distinguish number, person, gender, and case (that is,
whether they are used as possessive, subject, or object), as shown in Figures 2.2 through 2.4.

[Allen 1995: Linguistic Background: An Outline of English Syntax 28]

Number First Person Second Person Third Person
singular me you her / him / it
plural us you them

Figure 2.4 Pronoun system (as object)

Mood Example
declarative (or
assertion)

The cat is sleeping. yes/no question Is the cat sleeping?

wh-question What is sleeping? or Which cat is sleeping? imperative (or command)
Shoot the cat

Figure 2.5 Basic moods of sentences

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (8 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Form Examples Example Uses

base hit, cry, go, be Hit the ball!

I want to go.

simple present hit, cries, go, am The dog cries every day.

I am thirsty.

simple past hit, cried, went, was I was thirsty.

I went to the store.

present participle hitting, crying,
going, being

I'm going to the store.

Being the last in line aggravates me.

past participle hit, cried, gone, been I’ve been there before.

The cake was gone.

Figure 2.6 The five verb forms

>> back

2.3 Verb Phrases and Simple Sentences

While an NP is used to refer to things, a sentence (S) is used to assert, query, or command. You may assert

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (9 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

that some sentence is true, ask whether a sentence is true, or command someone to do something described
in the sentence. The way a sentence is used is called its mood. Figure 2.5 shows four basic sentence moods.

A simple declarative sentence consists of an NP, the subject, followed by a verb phrase (VP), the predicate.
A simple VP may consist of some adverbial modifiers followed by the head verb and its complements.
Every verb must appear in one of the five possible forms shown in Figure 2.6.

[Allen 1995: Linguistic Background: An Outline of English Syntax 29]

Tense The Verb Sequence Example
simple present simple present He walks to the store.
simple past simple past He walked to the store.
simple future will + infinitive He will walk to the store.
present perfect have in present

+ past participle

He has walked to the store.

future perfect will + have in infinitive

+ past participle

I will have walked to the store.

past perfect

(or pluperfect)

have in past

+ past participle

I had walked to the store.

Figure 2.7 The basic tenses

Tense Structure Example
present progressive be in present

+ present participle

He is walking.

past progressive be in past

+ present participle

He was walking.

future progressive will + be in infinitive

+ present participle

He will be walking.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (10 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

present perfect progressive have in present

+ be in past participle

+ present participle

He has been walking.

future perfect progressive will + have in present

+ be as past participle

+ present participle

He will have been walking.

past perfect progressive have in past

+ be in past participle

+ present participle

He had been walking.

Figure 2.8 The progressive tenses

Verbs can be divided into several different classes: the auxiliary verbs, such as be, do, and have; the modal
verbs, such as will, can, and could; and the main verbs, such as eat, ran, and believe. The auxiliary and
modal verbs usually take a verb phrase as a complement, which produces a sequence of verbs, each the
head of its own verb phrase. These sequences are used to form sentences with different tenses.

The tense system identifies when the proposition described in the sentence is said to be true. The tense
system is complex; only the basic forms are outlined in Figure 2.7. In addition, verbs may be in the
progressive tense. Corresponding to the tenses listed in Figure 2.7 are the progressive tenses shown in
Figure 2.8.

[Allen 1995: Linguistic Background: An Outline of English Syntax 30]

 First Second Third
Singular I am you are he is
 I walk you walk she walks
Plural we are you are they are
 we walk you walk they walk

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (11 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Figure 2.9 Person/number forms of verbs

Each progressive tense is formed by the normal tense construction of the verb be followed by a present
participle.

Verb groups also encode person and number information in the first word in the verb group. The person
and number must agree with the noun phrase that is the subject of the verb phrase. Some verbs distinguish
nearly all the possibilities, but most verbs distinguish only the third person singular (by adding an -s
suffix). Some examples are shown in Figure 2.9.

Transitivity and Passives

The last verb in a verb sequence is called the main verb, and is drawn from the open class of verbs.
Depending on the verb, a wide variety of complement struc -tures are allowed. For example, certain verbs
may stand alone with no comple -ment. These are called intransitive verbs and include examples such as
laugh (for example, Jack laughed) and run (for example, He will have been running). Another common
complement form requires a noun phrase to follow the verb. These are called transitive verbs and include
verbs such as find (for example, Jack found a key). Notice that find cannot be intransitive (for example,
*Jack found is not a reasonable sentence), whereas laugh cannot be transitive (for example, *Jack laughed
a key is not a reasonable sentence). A verb like run, on the other hand, can be transitive or intransitive, but
the meaning of the verb is different in each case (for example. Jack ran vs. Jack ran the machine).

Transitive verbs allow another form of verb group called the passive form, which is constructed using a be
auxiliary followed by the past participle. In the passive form the noun phrase that would usually be in the
object position is used in the subject position, as can be seen by the examples in Figure 2.10. Note that
tense is still carried by the initial verb in the verb group. Also, even though the first noun phrase
semantically seems to be the object of the verb in passive sentences, it is syntactically the subject. This can
be seen by checking the pronoun forms. For example, I was hit is correct, not *Me was hit. Furthermore,
the tense and number agreement is between the verb and the syntactic subject. Thus you say I was hit by
them, not *I were hit by them.

Some verbs allow two noun phrases to follow them in a sentence; for example, Jack gave Sue a book or
Jack found me a key. In such sentences the

[Allen 1995: Linguistic Background: An Outline of English Syntax 31]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (12 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Active Sentence Related Passive Sentence
Jack saw the ball. The ball was seen by Jack.
I will find the clue. The clue will be found by me.
Jack hit me. I was hit by Jack.

Figure 2.10 Active sentences with corresponding passive sentences

second NP corresponds to the object NP outlined earlier and is sometimes called the direct object. The
other NP is called the indirect object. Generally, such sentences have an equivalent sentence where the
indirect object appears with a preposition, as in Jack gave a book to Sue or Jack found a key for me.

Particles

Some verb forms are constructed from a verb and an additional word called a particle. Particles generally
overlap with the class of prepositions considered in the next section. Some examples are up, out, over, and
in. With verbs such as look, take, or put, you can construct many different verbs by combining the verb
with a particle (for example, look up, look out, look over, and so on). In some sentences the difference
between a particle and a preposition results in two different readings for the same sentence. For example,
look over the paper would mean reading the paper, if you consider over a particle (the verb is look over).
In contrast, the same sentence would mean looking at something else behind or above the paper, if you
consider over a preposition (the verb is look).

You can make a sharp distinction between particles and prepositions when the object of the verb is a
pronoun. With a verb-particle sentence, the pronoun must precede the particle, as in I looked it up. With
the prepositional reading, the pronoun follows the preposition, as in I looked up it. Particles also may
follow the object NP. Thus you can say I gave up the game to Mary or I gave the game up to Mary. This is
not allowed with prepositions; for example, you cannot say *I climbed the ladder up.

Clausal Complements

Many verbs allow clauses as complements. Clauses share most of the same prop-erties of sentences and
may have a subject, indicate tense, and occur in passivized forms. One common clause form consists of a
sentence form preceded by the complementizer that, as in that Jack ate the pizza. This clause will be
identified by the expression S[that], indicating a special subclass of S structures. This clause may appear as
the complement of the verb know, as in Sam knows that Jack ate the pizza. The passive is possible, as in
Sam knows that the pizza was eaten by Jack.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (13 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

[Allen 1995: Linguistic Background: An Outline of English Syntax 32]

Another clause type involves the infinitive form of the verb. The VP[inf] clause is simply a VP starting in
the infinitive form, as in the complement of the verb wish in Jack wishes to eat the pizza. An infinitive
sentence S[inf] form is also possible where the subject is indicated by a for phrase, as in Jack wishes for
Sam to eat the pizza.

Another important class of clauses are sentences with complementizers that are wh-words, such as who,
what, where, why, whether, and how many. These question clauses, S[WH], can be used as a complement
of verbs such as know, as in Sam knows whether we went to the party and The police know who committed
the crime.

Prepositional Phrase Complements

Many verbs require complements that involve a specific prepositional phrase (PP). The verb give takes a
complement consisting of an NP and a PP with the preposition to, as in Jack gave the book to the library.
No other preposition can be used. Consider

*Jack gave the book from the library. (OK only if from the library modifies book.)

In contrast, a verb like put can take any PP that describes a location, as in

Jack put the book in the box.

Jack put the book inside the box.

Jack put the book by the door.

To account for this, we allow complement specifications that indicate prepo-sitional phrases with particular
prepositions. Thus the verb give would have a complement of the form NP+PP[to]. Similarly the verb
decide would have a complement form NP+PP[about], and the verb blame would have a complement form
NP+PP[on], as in Jack blamed the accident on the police.

Verbs such as put, which take any phrase that can describe a location (complement NP+Location), are also
common in English. While locations are typically prepositional phrases, they also cart be noun phrases,
such as home, or particles, such as back or here. A distinction can be made between phrases that describe
locations and phrases that describe a path of motion, although many location phrases can be interpreted
either way. The distinction can be made in some cases, though. For instance, prepositional phrases
beginning with "to" generally indicate a path of motion. Thus they cannot be used with a verb such as "put"
that requires a location (for example, *I put the ball to the box). This distinction will be explored further in

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (14 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Chapter 4.

Figure 2.11 summarizes many of the verb complement structures found in English. A full list would
contain over 40 different forms. Note that while the examples typically use a different verb for each form,
most verbs will allow several different complement structures.

[Allen 1995: Linguistic Background: An Outline of English Syntax 33]

Verb Complement Structure Example

laugh Empty (intransitive) Jack laughed.

find NP (transitive) Jack found a key.

give NP+NP (bitransitive) Jack gave Sue the paper.

give NP+PP[to] Jack gave the book to the library.

reside Location phrase Jack resides in Rochester

put NP+Location phrase Jack put the book inside.

speak PP[with]+PP[about] Jack spoke with Sue about the book.

try VP[to] Jack tried to apologize.

tell NP+VP[to] Jack told the man to go.

wish S[to] Jack wished for the man to go.

keep VP[ingj Jack keeps hoping for the best.

catch NP+VP[ing] Jack caught Sam looking in his desk.

watch NP+VP[base] Jack watched Sam eat the pizza.

regret S[that] Jack regretted that he'd eaten the whole thing.

tell NP+S[that] Jack told Sue that he was sorry.

seem ADJP Jack seems unhappy in his new job.

think NP+ADJP Jack thinks Sue is happy in her job.

know S[WH] Jack knows where the money is.

Figure 2.11 Some common verb complement structures in English

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (15 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

>> back

2.4 Noun Phrases Revisited

Section 2.2 introduced simple noun phrases. This section considers more com-plex forms in which NPs
contain sentences or verb phrases as subcomponents.

All the examples in Section 2.2 had heads that took the null complement. Many nouns, however, may take
complements. Many of these fall into the class of complements that require a specific prepositional phrase.
For example, the noun love has a complement form PP[of], as in their love of France, the noun reliance
has the complement form PP[onl, as in his reliance on handouts, and the noun familiarity has the
complement form PP[with], as in a familiarity with computers.

Many nouns, such as desire, reluctance, and research, take an infinitive VP form as a complement, as in
the noun phrases his desire to release the guinea pig, a reluctance to open the case again, and the doctor’s
research to find a cure ft>’r cancer. These nouns, in fact, can also take the S[inf7l form, as in my hope for
John to open the case again.

Noun phrases can also be built out of clauses, which were introduced in the last section as the complements
for verbs. For example, a that clause (Slthatl) can be used as the subject of a sentence, as in the sentence
That George had the ring was surprising. Infinitive forms of verb phrases (VPfintl) and sentences (S(in Ii)
can also function as noun phrases, as in the sentences "To own a car would be

[Allen 1995: Linguistic Background: An Outline of English Syntax 34]

delightful" and "For us to complete a project on time would be unprecedented". In addition, the gerundive
forms (VP[ing] and S[ing]) can also function as noun phrases, as in the sentences Giving up the game was
unfortunate and John's giving up the game caused a riot.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (16 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Relative clauses involve sentence forms used as modifiers in noun phrases. These clauses are often
introduced by relative pronouns such as who, which, that, and so on, as in

The man who gave Bill the money...

The rug that George gave to Ernest...

The man whom George gave the money to ...

In each of these relative clauses, the embedded sentence is the same structure as a regular sentence except
that one noun phrase is missing. If this missing NP is filled in with the NP that the sentence modifies, the
result is a complete, sentence that captures the same meaning as what was conveyed by the relative clause.
The missing NPs in the preceding three sentences occur in the subject position, in the object position, and
as object to a preposition, respectively. Deleting the relative pronoun and filling in the missing NP in each
produces the following:

The man gave Bill the money.

George gave the rug to Ernest.

George gave the money to the man.

As was true earlier, relative clauses can be modified in the same ways as regular sentences. In particular,
passive forms of the preceding sentences would be as follows:

Bill was given the money by the man.

The rug was given to Ernest by George.

The money was given to the man by George.

Correspondingly, these sentences could have relative clauses in the passive form as follows:

The man Bill was given the money by...

The rug that was given to Ernest by George...

The man whom the money was given to by George...

Notice that some relative clauses need not be introduced by a relative pronoun. Often the relative pronoun
can be omitted, producing what is called a base relative clause, as in the NP the man George gave the
money to. Yet another form deletes the relative pronoun and an auxiliary be form, creating a reduced
relative clause, as in the NP the man given the money, which means the same as the NP the man who was

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (17 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

given the money.

>> back

[Allen 1995: Linguistic Background: An Outline of English Syntax 35]

2.5 Adjective Phrases

You have already seen simple adjective phrases (ADJPs) consisting of a single adjective in several
examples. More complex adjective phrases are also possible, as adjectives may take many of the same
complement forms that occur with verbs. This includes specific prepositional phrases, as with the adjective
pleased, which takes the complement form PP[with] (for example, Jack was pleased with the prize), or
angry with the complement form PP[atl (for example, Jack was angry at the committee). Angry also may
take an S[that] complement form, as in Jack was angry that he was left behind. Other adjectives take
infinitive forms, such as the adjective willing with the complement form VP[inf], as in Jack seemed willing
to lead the chorus.

These more complex adjective phrases are most commonly found as the complements of verbs such as be
or seem, or following the head in a noun phrase. They generally cannot be used as modifiers preceding the
heads of noun phrases (for example, consider *the angry at the committee man vs. the angry man vs. the
man angry at the committee).

Adjective phrases may also take a degree modifier preceding the head, as in the adjective phrase very
angry or somewhat fond of Mary. More complex degree modifications are possible, as in far too heavy and
much more desperate. Finally, certain constructs have degree modifiers that involve their own complement
forms, as in too stupid to come in out of the rain, so boring that everyone fell asleep, and as slow as a dead
horse.

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (18 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

2.6 Adverbial Phrases

You have already seen adverbs in use in several constructs, such as indicators of degree (for example, very,
rather, too), and in location phrases (for example, here, everywhere). Other forms of adverbs indicate the
manner in which something is done (for example, slowly, hesitantly), the time of something (for example,
now, yesterday), or the frequency of something (for example, fre-quently, rarely, never).

Adverbs may occur in several different positions in sentences: in the sentence initial position (for example,
Then, Jack will open the drawer), in the verb sequence (for. example, Jack then will open the drawer, Jack
will then open the drawer), and in the sentence final position (for example, Jack opened the drawer then).
The exact restrictions on what adverb can go where, however, is quite idiosyncratic to the particular
adverb.

In addition to these adverbs, adverbial modifiers can be constructed out of a wide range of constructs, such
as prepositional phrases indicating, among other things, location (for example, in the box) or manner (for
example, in great haste); noun phrases indicating, among other things, frequency (for example, every day):

or clauses indicating, among other things, the time (for example, when the homh exploded). Such adverbial
phrases, however, usually cannot occur except in the sentence initial or sentence final position. For
example, we can say Every day

[Allen 1995: Linguistic Background: An Outline of English Syntax 36]

John opens his drawer or John opens his drawer every day, but not *John every day opens his drawer.

Because of the wide range of forms, it generally is more useful to consider adverbial phrases (AD VPs) by
function rather than syntactic form. Thus we can consider manner, temporal, duration, location, degree,
and frequency adverbial phrases each as its own form. We considered the location and degree forms
earlier, so here we will consider some of the others.

Temporal adverbials occur in a wide range of forms: adverbial particles (for example, now), noun phrases
(for example, today, yesterday), prepositional phrases (for example, at noon, during the fight), and clauses
(for example, when the clock struck noon, before the fight started).

Frequency adverb ials also can occur in a wide range of forms: particles (for example, often), noun phrases
(for example, every day), prepositional phrases (for example, at every party), and clauses (for example,
every time that John comes for a visit).

Duration adverbials appear most commonly as prepositional phrases (for example, for three hours, about
20 feet) and clauses (for example, until the moon turns blue).

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (19 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

Manner adverbials occur in a wide range of forms, including particles (for example, slowly), noun phrases
(for example, this way), prepositional phrases (for example, in great haste), and clauses (for example, by
holding the embers at the end of a stick).

in the analyses that follow, adverbials will most commonly occur as modifiers of the action or state
described in a sentence. As such, an issue arises as to how to distinguish verb complements from
adverbials. One distinction is that adverbial phrases are always optional. Thus you should be able to delete
the adverbial and still have a sentence with approximately the same meaning (missing, obviously, the
contribution of the adverbial). Consider the sentences

Jack put the box by the door.

Jack ate the pizza by the door.

In the first sentence the prepositional phrase is clearly a complement, since deleting it to produce *Jack put
the box results in a nonsensical utterance. On the other hand, deleting the phrase from the second sentence
has only a minor effect:

Jack ate the pizza is just a less general assertion about the same situation described by Jack ate the pizza by
the door.

>> back

Summary

The major phrase structures of English have been introduced—namely, noun phrases, sentences,
prepositional phrases, adjective phrases, and adverbial phrases. These will serve as the building blocks for
the syntactic structures introduced in the following chapters.

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (20 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

[Allen 1995: Linguistic Background: An Outline of English Syntax 37]

Related Work and Further Readings

An excellent overview of English syntax is found in Baker (1989). The most comprehensive sources are
books that attempt to describe the entire structure of English, such as Huddleston (1988), Quirk et al.
(1972), and Leech and Svartvik (1975).

>> back

Exercises for Chapter 2

(easy) The text described several different example tests for distinguishing word classes. For example,
nouns can occur in sentences of the form I saw the X, whereas adjectives can occur in sentences of the
form it’s so X. Give some additional tests to distinguish these forms and to distinguish between count
nouns and mass nouns. State whether each of the following words can be used as an adjective, count noun,
or mass noun. If the word is ambiguous, give all its possible uses.

milk, house, liquid, green, group, concept, airborne

2. (easy) Identify every major phrase (noun, verb, adjective, or adverbial phrases) in the following
sentences. For each, indicate the head of the phrase and any complements of the head. Be sure to
distinguish between complements and optional modifiers.

The man played his fiddle in the street.

The people dissatisfied with the verdict left the courtroom.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (21 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

3. (easy) A very useful test for determining the syntactic role of words and phrases is the conjunction test.
Conjunctions, such as and and or, tend to join together two phrases of the same type. For instance, you can
conjoin nouns, as in the man and woman; noun phrases, as in the angry men and the large dogs; and
adjective phrases, as in the cow, angry and confused, broke the gate. In each of the following sentences,
identify the type of phrase being conjoined, and underline each phrase.

He was tired and hungrier than a herd of elephants.

We have never walked home or to the store from here.

The dog returned quickly and dropped the stick.

4. (easy) Explain in detail, using the terminology of this chapter, why each of the following sentences is ill
formed. In particular, state what rule (given in this chapter) has been violated.

a. He barked the wrong tree up.

b. She turned waters into wine.

c. Don’t take many all the cookies!

d. I feel floor today.

e. They all laughed the boy.

[Allen 1995: Linguistic Background: An Outline of English Syntax 38]

5. (easy) Classify the following verbs as being intransitive, transitive, or bitransitive (that is, it takes a two-
NP complement). If the verb can be used in more than one of these forms, give each possible classification.
Give an example sentence for each form to demonstrate your analysis.

a. cry

b. sing

c. donate

d. put

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (22 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 2 - An Outline of English Syntax

6. (easy) Using the verb to be, give example sentences that use the six basic tenses listed in Figure 2.7 and
the six progressive tenses listed in Figure 2.8.

7. (easy) Using the verb donate, give examples of the passive form for each of the six basic tenses listed in
Figure 2.7.

8. (easy) Classify the following verbs by specifying what different comple-ment structures they allow,
using the forms defined in Figure 2.11.

give, know, assume, insert

Give an example of an additional complement structure that is allowed by one of these verbs but not listed
in the figure.

9. (easy) Find five verbs not discussed in this chapter that take an indirect object and, for each one, give a
paraphrase of the same sentence using a prepositional phrase instead of the indirect object. Try for as wide
a range as possible. Can you find one that cannot be paraphrased using either the preposition to or for?

10. (medium) Wh-questions are questions that use a class of words that includes what, where, who, when,
whose, which, and how. For each of these words, give the syntactic categories (for example, verb, noun,
noun group, adjective, quantifier, prepositional phrase, and so on) in which the words can be used. Justify
each classification with some examples that demonstrate it. Use both positive and negative arguments as
necessary (such as ”it is one of these because ...,” or ”it can’t be one of these even though it looks like it
might, because. .

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199502.htm (23 / 23) [2002-2-26 21:16:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Allen 1995 : Natural Language Understanding
 Contents Preface Introduction

previous
chapter

Part I

Syntactic Processing

Part II

Semantic Interpretation

Part III - Context / World
Knowledge

next chapter

 Appendices Bibliography Index

 Summaries Further Readings Exercises

Chapter 3. Grammars and Parsing

 3.1 Grammars and Sentence Structure

 3.2 What Makes a Good Grammar

 3.3 A Top-Down Parser

 3.4 A Bottom-Up Chart Parser

 3.5 Transition Network Grammars

 o 3.6 Top-Down Chart Parsing

 o 3.7 Finite State Models and Morphological Processing

 o 3.8 Grammars and Logic Programming

Summary

Related Work and Further Readings

Exercises for Chapter 3

[Allen 1995: Chapter 3 - Grammars and Parsing 41]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (1 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

To examine how the syntactic structure of a sentence can be computed, you must consider two things: the
grammar, which is a formal specification of the struc-tures allowable in the language, and the parsing technique,
which is the method of analyzing a sentence to determine its structure according to the grammar. This chapter
examines different ways to specify simple grammars and considers some fundamental parsing techniques.
Chapter 4 then describes the methods for con -structing syntactic representations that are useful for later
semantic interpretation.

The discussion begins by introducing a notation for describing the structure of natural language and describing
some naive parsing techniques for that grammar. The second section describes some characteristics of a good
grammar. The third section then considers a simple parsing technique and introduces the idea of parsing as a
search process. The fourth section describes a method for building efficient parsers using a structure called a
chart. The fifth section then describes an alternative representation of grammars based on transition networks.
The remaining sections deal with optional and advanced issues. Section 3.6 describes a top-down chart parser
that combines the advantages of top-down and bottom-up approaches. Section 3.7 introduces the notion of finite
state trans-ducers and discusses their use in morphological processing. Section 3.8 shows how to encode context-
free grammars as assertions in PROLQG, introducing the notion of logic grammars.

>> back

3.1 Grammars and Sentence Structure

This section considers methods of describing the structure of sentences and explores ways of characterizing all
the legal structures in a language. The most common way of representing how a sentence is broken into its
major subparts. and how those subparts are broken up in turn, is as a tree. The tree representation for the
sentence John ate the cat is shown in Figure 3.1. This illustration can be read as follows: The sentence (5)
consists of an initial noun phrase (NP) and a verb phrase (VP). The initial noun phrase is made of the simple
NAME John. The verb phrase is composed of a verb (V) ate and an NP, which consists of an article (ART) the
and a common noun (N) cat. In list notation this same structure could be represented as

(S (NP (NAME John))

(VP (V ate)

(NP (ART the)

(N cat))))

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (2 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Since trees play such an important role throughout this book, some terminology needs to be introduced. Trees
are a special form of graph, which are structures consisting of labeled nodes (for example, the nodes are labeled
5, NP, and so on in Figure 3.1) connected by links. They are called trees because they resemble upside-down
trees, and much of the terminology is derived from this analogy with actual trees. The node at the top is called
the root of the tree, while

[Allen 1995: Chapter 3 - Grammars and Parsing 42]

Figure 3.1 A tree representation of John ate the cat

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (3 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Grammar 3.2 A simple grammar

the nodes at the bottom are called the leaves. We say a link points from a parent node to a child node. The node
labeled S in Figure 3.1 is the parent node of the nodes labeled NP and VP, and the node labeled NP is in turn the
parent node of the node labeled NAME. While every child node has a unique parent, a parent may point to
many child nodes. An ancestor of a node N is defined as N's parent, or the parent of its parent, and so on. A
node is dominated by its ancestor nodes. The root node dominates all other nodes in the tree.

To construct a tree structure for a sentence, you must know what structures are legal for English. A set of
rewrite rules describes what tree structures are allowable. These rules say that a certain symbol may be
expanded in the tree by a sequence of other symbols. A set of rules that would allow the tree structure in Figure
3.1 is shown as Grammar 3.2. Rule 1 says that an-S may consist of an NP followed by a VP. Rule 2 says that a
VP may consist of a V followed by an NP. Rules 3 and 4 say that an NP may consist of a NAME or may consist
of an ART followed by an N. Rules 5 - 8 define possible words for the categories. Grammars consisting entirely
of rules with a single symbol on the left-hand side, called the mother, are called context-free grammars (CFGs).
CFGs are a very important class of grammars for two reasons: The formalism is powerful enough to describe
most of the structure in natural languages, yet it is restricted enough so that efficient parsers can be built to
analyze sentences. Symbols that cannot be further decomposed in a grammar, namely the words in the
preceding example, are called terminal symbols. The other symbols, such as NP, VP, and 5, are called

[Allen 1995: Chapter 3 - Grammars and Parsing 43]

nonterminal symbols. The grammatical symbols such as N and V that describe word categories are called
lexical symbols. Of course, many words will be listed under multiple categories. For example, can would be
listed under V and N.

Grammars have a special symbol called the start symbol. In this book, the start symbol will always be S. A
grammar is said to derive a sentence if there is a sequence of rules that allow you to rewrite the start symbol into
the sentence. For instance, Grammar 3.2 derives the sentence John ate the cat. This can be seen by showing the
sequence of rewrites starting from the S symbol, as follows:

S

=> NP VP (rewriting S)
=> NAME VP (rewriting NP)
=> John VP (rewriting NAME)
=> John V NP (rewriting VP)
=> John ate NP (rewriting V)
=> John ate ART N (rewriting NP)

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (4 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

=> John ate the N (rewriting ART)
=> John ate the cat (rewriting N)

Two important processes are based on derivations. The first is sentence generation, which uses derivations to
construct legal sentences. A simple gener-ator could be implemented by randomly choosing rewrite rules,
starting from the S symbol, until you have a sequence of words. The preceding example shows that the sentence
John ate the cat can be generated from the grammar. The second process based on derivations is parsing, which
identifies the structure of sen-tences given a grammar. There are two basic methods of searching. A top-down
strategy starts with the S symbol and then searches through different ways to rewrite the symbols until the input
sentence is generated, or until all possibilities have been explored. The preceding example demonstrates that
John ate the cat is a legal sentence by showing the derivation that could be found by this process.

In a bottom-up strategy, you start with the words in the sentence and use the rewrite rules backward to reduce
the sequence of symbols until it consists solely of S. The left-hand side of each rule is used to rewrite the
symbol on the right-hand side. A possible bottom-up parse of the sentence John ate the cat is

=> NAME ate the cat (rewriting John)
=> NAME Vthe cat (rewriting ate)
=> NAME V ART cat (rewriting the)
=> NAME V ART N (rewriting cat)
=> NP V ART N (rewriting NAME)
=> NP V NP (rewriting ART N)
=> NP VP (rewriting V NP)
=> S (rewriting NP VP)

A tree representation, such as Figure 3.1, can be viewed as a record of the CFG rules that account for the
structure of the sentence. In other words, if you

[Allen 1995: Chapter 3 - Grammars and Parsing 44]

kept a record of the parsing process, working either top-down or bottom-up, it would be something similar to
the parse tree representation.

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (5 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

3.2 What Makes a Good Grammar

In constructing a grammar for a language, you are interested in generality, the range of sentences the grammar
analyzes correctly; selectivity, the range of non-sentences it identifies as problematic; and understandability, the
simplicity of the grammar itself.

In small grammars, such as those that describe only a few types of sentences, one structural analysis of a
sentence may appear as understandable as another, and little can be said as to why one is superior to the other.
As you attempt to extend a grammar to cover a wide range of sentences, however, you often find that one
analysis is easily extendable while the other requires complex modification. The analysis that retains its
simplicity and generality as it is extended is more desirable.

Unfortunately, here you will be working mostly with small grammars and so will have only a few opportunities
to evaluate an analysis as it is extended. You can attempt to make your solutions generalizable, however, by
keeping in mind certain properties that any solution should have. In particular, pay close attention to the way the
sentence is divided into its subparts, called constituents. Besides using your intuition, you can apply a few
specific tests, discussed here.

Anytime you decide that a group of words forms a particular constituent, try to construct a new sentence that
involves that group of words in a conjunction with another group of words classified as the same type of
constituent. This is a good test because for the most part only constituents of the same type can be conjoined.
The sentences in Figure 3.3, for example, are acceptable, but the following sentences are not:

*I ate a hamburger and on the stove.

*I ate a cold hot dog and well burned.

*I ate the hot dog slowly and a hamburger.

To summarize, if the proposed constituent doesn't conjoin in some sentence with a constituent of the same class,
it is probably incorrect.

Another test involves inserting the proposed constituent into other sen -tences that take the same category of
constituent. For example, if you say that John’s hitting of Mary is an NP in John’s hitting of Mary alarmed Sue,
then it should be usable as an NP in other sentences as well. In fact this is true—the NP can be the object of a
verb, as in I cannot explain John’s hitting of Mary as well as in the passive form of the initial sentence Sue was
alarmed by John’s hitting of Mary. Given this evidence, you can conclude that the proposed constituent appears
to behave just like other NPs.

[Allen 1995: Chapter 3 - Grammars and Parsing 45]

NP NP: I ate a hamburger and a hot dog.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (6 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

VP VP: I will eat the hamburger and throw away the hot dog.

S S: I ate a hamburger and John ate a hot dog.

PP PP: I saw a hot dog in the bag and on the stove.

ADJP ADJP: I ate a cold and well burned hot dog.
ADVP ADVP: I ate the hot dog slowly and very carefully.

N N: I ate a hamburger and hot dog.

V V: I will cook and burn a hamburger.
AUX AUX: I can and will eat the hot dog.
ADJ ADJ: I ate the very cold and burned hot dog (that is, very cold and very burned).

Figure 3.3 Various forms of conjunctions

As another example of applying these principles, consider the two sen-tences I looked up John ‘s phone number
and I looked up John ‘s chimney. Should these sentences have the identical structure? If so, you would
presumably analyze both as subject-verb-complement sentences with the complement in both cases being a PP.
That is, up John’s phone number would be a PP.

When you try the conjunction test, you should become suspicious of this analysis. Conjoining up John’s phone
number with another PP, as in *I looked up John’s phone number and in his cupboards, is certainly bizarre.
Note that I looked up John’s chimney and in his cupboards is perfectly acceptable. Thus apparently the analysis
of up John ‘s phone number as a PP is incorrect.

Further evidence against the PP analysis is that up John ‘s phone number does not seem usable as a PP in any
sentences other than ones involving a few verbs such as look or thought. Even with the verb look, an alternative
sentence such as *Up John’s phone number, I looked is quite implausible compared to Up John’s chimney, I
looked.

This type of test can be taken further by considering changing the PP in a manner that usually is allowed. In
particular, you should be able to replace the NP John’s phone number by the pronoun it. But the resulting
sentence, I looked up it, could not be used with the same meaning as I looked up John ‘s phone number. In fact,
the only way to use a pronoun and retain the original meaning is to use I looked it up, corresponding to the form
I looked John’s phone number up.

Thus a different analysis is needed for each of the two sentences. If up John’s phone number is not a PP, then
two remaining analyses may be possible. The VP could be the complex verb looked up followed by an NP, or it
could con -sist of three components: the V looked, a particle up, and an NP. Either of these is a better solution.
What types of tests might you do to decide between them?

As you develop a grammar, each constituent is used in more and more different ways. As a result, you have a
growing number of tests that can be per-formed to see if a new analysis is reasonable or not. Sometimes the
analysis of a

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (7 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

[Allen 1995: Chapter 3 - Grammars and Parsing 46]

BOX 3.1 Generative Capacity

Grammatical formalisms based on rewrite rules can be compared according to their generative capacity,
which is the range of languages that each formalism can describe. This book is concerned with natural
languages, but it turns out that no natural language can be characterized precisely enough to define
generative capac-ity. Formal languages, however, allow a precise mathematical characterization.

Consider a formal language consisting of the symbols a, b, c. and d (think of these as words). Then consider
a language LI that allows any sequence of letters in alphabetical order. For example, abd, ad, bcd, b, and
abcd are all legal sentences. To describe this language, we can write a grammar in which the right-hand
side of every rule consists of one terminal symbol possibly followed by one nonterminal. Such a grammar
is called a regular grammar. For L1 the grammar would be

 S -> aS1 S -> d S1 -> d S3 -> d

 S -> B S2 S1 -> b S2 S2 -> c S3

 S -> c S3 S1 -> c S3 S2 -> d

Consider another language, L2, that consists only of sentences that have a sequence of a’s followed by an
equal number of b’s—that is, ab, aabb, aaabbb, and so on. You cannot write a regular grammar that can
generate L2 exactly. A context-free grammar to generate L2, however, is simple:

 S -> a b S -> a S b

Some languages cannot be generated by a CFG. One example is the language that consists of a sequence of
a’s, followed by the same number of b’s, followed by the same number of c's - that is, abc, aabbcc,
aaabbbccc, and so on. Similarly, no context-free grammar can generate the language that consists of any
sequence of letters repeated in the same order twice, such as ahab, abcabc, acdabacdab, and so on. There
are more general grammatical systems that can generate such sequences, however. One important class is
the context-sensitive grammar, which consists of rules of the form

where A is a symbol, Ñ and Ò are (possibly empty) sequences of symbols, and ç is a nonempty sequence of
symbols. Even more general are the type 0 grammars, which allow arbitrary rewrite rules.

Work in formal language theory began with Chomsky (1956). Since the languages generated by regular
grammars are a subset of those generated by context-free grammars, which in turn are a subset of those

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (8 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

generated by context -sensitive grammars, which in turn are a subset of those generated by type 0
languages, they form a hierarchy of languages (called the Chomsky Hierarchy).

new form might force you to back up and modify the existing grammar. This backward step is unavoidable
given the current state of linguistic knowledge. The important point to remember, though, is that when a new
rule is proposed for a grammar, you must carefully consider its interaction with existing rules.

>> back

[Allen 1995: Chapter 3 - Grammars and Parsing 47]

1. S -> NP VP
2. NP -> ART N
3. NP -> ART ADJ N

4. VP -> V

5. VP -> V NP

Grammar 3.4

3.3 A Top-Down Parser

A parsing algorithm can be described as a procedure that searches through various ways of combining
grammatical rules to find a combination that gene -rates a tree that could be the structure of the input sentence.
To keep this initial formulation simple, we will not explicitly construct the tree. Rather, the algorithm will
simply return a yes or no answer as to whether such a tree could be built. In other words, the algorithm will say
whether a certain sentence is accepted by the grammar or not. This section considers a simple top-down pars -
ing method in some detail and then relates this to work in artificial intelligence (Al) on search procedures.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (9 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

A top-down parser starts with the S symbol and attempts to rewrite it into a sequence of terminal symbols that
matches the classes of the words in the input sentence. The state of the parse at any given time can be
represented as a list of symbols that are the result of operations applied so far, called the symbol list. For
example, the parser starts in the state (5) and after applying the rule S -> NP VP the symbol list will be (NP
VP). If it then applies the rule NP ->ART N, the symbol list will be (ART N VP), and so on.

The parser could continue in this fashion until the state consisted entirely of terminal symbols, and then it could
check the input sentence to see if it matched. But this would be quite wasteful, for a mistake made early on (say,
in choosing the rule that rewrites 5) is not discovered until much later. A better algorithm checks the input as
soon as it can. In addition, rather than having a separate rule to indicate the possible syntactic categories for
each word, a structure called the lexicon is used to efficiently store the possible categories for each word. For
now the lexicon will be very simple. A very small lexicon for use in the examples is

cried: V

dogs: N, V

the: ART

With a lexicon specified, a grammar, such as that shown as Grammar 3.4, need not contain any lexical rules.

Given these changes, a state of the parse is now defined by a pair: a symbol list similar to before and a number
indicating the current position in the sentence. Positions fall between the words, with 1 being the position before
the first word. For example, here is a sentence with its positions indicated:

[Allen 1995: Chapter 3 - Grammars and Parsing 48]

1 The 2 dogs 3 cried 4

A typical parse state would be

((N VP) 2)

indicating that the parser needs to find an N followed by a VP, starting at position two. New states are generated
from old states depending on whether the first symbol is a lexical symbol or not. If it is a lexical symbol, like N
in the preceding example, and if the next word can belong to that lexical category, then you can update the state
by removing the first symbol and updating the position counter. In this case, since the word dogs is listed as an
N in the lexicon, the next parser state would be

((VP) 3)

which means it needs to find a VP starting at position 3. If the first symbol is a nonterminal, like VP, then it is

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (10 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

rewritten using a rule from the grammar. For example, using rule 4 in Grammar 3.4, the new state would be

((V) 3)

which means it needs to find a V starting at position 3. On the other hand, using rule 5, the new state would be

((V NP) 3)

A parsing algorithm that is guaranteed to find a parse if there is one must systematically explore every possible
new state. One simple technique for this is called backtracking. Using this approach, rather than generating a
single new state from the state ((VP) 3), you generate all possible new states. One of these is picked to be the
next state and the rest are saved as backup states. If you ever reach a situation where the current state cannot
lead to a solution, you simply pick a new current state from the list of backup states. Here is the algorithm in a
little more detail.

A Simple Top-Down Parsing Algorithm

The algorithm manipulates a list of possible states, called the possibilities list. The first element of this list is the
current state, which consists of a symbol list

- and a word position In the sentence, and the remaining elements of the search state are the backup states, each
indicating an alternate symbol-list—word-position pair. For example, the possibilities list

(((N) 2) ((NAME) 1) ((ADJ N) 1))

indicates that the current state consists of the symbol list (N) at position 2, and that there are two possible
backup states: one consisting of the symbol list (NAME) at position 1 and the other consisting of the symbol list
(ADJ N) at position 1.

[Allen 1995: Chapter 3 - Grammars and Parsing 49]

Step Current State Backup States Comment

1. ((S) 1) initial position

2. ((NP VP) 1) rewriting S by rule I

3. ((ART N VP) 1) rewriting NP by rules 2 & 3

 ((ART ADJN VP) I)

4. ((N VP) 2) matching ART with the

 ((ART ADJ N VP) 1)

5. ((VP) 3) matching N with dogs

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (11 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

 ((ART ADJ N VP) 1)

6. ((V) 3) rewriting VP by rules 5—8

 ((V NP) 3)

 ((ART ADJ N VP) 1)

7. the parse succeeds as V is

 matched to cried, leaving

 an empty grammatical
symbol

 list with an empty sentence

Figure 3.5 Top-down depth-first parse of 1 The 2 dogs 3 cried 4

The algorithm starts with the initial state ((S) 1) and no backup states.

1. Select the current state: Take the first state off the possibilities list and call it C. If the possibilities list is
empty, then the algorithm fails (that is, no successful parse is possible).

2. If C consists of an empty symbol list and the word position is at the end of the sentence, then the
algorithm succeeds.

3. Otherwise, generate the next possible states.

3.1. If the first symbol on the symbol list of C is a lexical symbol, and the next word in the sentence can
be in that class, then create a new state by removing the first symbol from the symbol list and updating
the word position, and add it to the possibilities list.

3.2. Otherwise, if the first symbol on the symbol list of C is a non-terminal, generate a new state for
each rule in the grammar that can rewrite that nonterminal symbol and add them all to the possibilities
list.

Consider an example. Using Grammar 3.4, Figure 3.5 shows a trace of the algorithm on the sentence The dogs
cried. First, the initial S symbol is rewritten using rule 1 to produce a new current state of ((NP VP) 1) in step 2.
The NP is then rewritten in turn, but since there are two possible rules for NP in the grammar, two possible
states are generated: The new current state involves (ART N VP) at position 1, whereas the backup state
involves (ART ADJ N VP) at position 1. In step 4 a word in category ART is found at position I of the

[Allen 1995: Chapter 3 - Grammars and Parsing 50]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (12 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

sentence, and the new current state becomes (N VP). The backup state generated in step 3 remains untouched.
The parse continues in this fashion to step 5, where two different rules can rewrite VP. The first rule generates
the new current state, while the other rule is pushed onto the stack of backup states. The parse completes
successfully in step 7, since the current state is empty and all the words in the input sentence have been
accounted for.

Consider the same algorithm and grammar operating on the sentence

1 The 2 old 3 man 4 cried 5

In this case assume that the word old is ambiguous between an ADJ and an N and that the word man is
ambiguous between an N and a V (as in the sentence The sailors man the boats). Specifically, the lexicon is

the: ART

old: ADJ, N

man: N, V

cried: V

The parse proceeds as follows (see Figure 3.6). The initial S symbol is rewritten by rule 1 to produce the new
current state of ((NP VP) 1). The NP is rewritten in turn, giving the new state of ((ART N VP) 1) with a backup
state of ((ART ADJ N VP) 1). The parse continues, finding the as an ART to produce the state ((N VP) 2) and
then old as an N to obtain the state ((VP) 3). There are now two ways to rewrite the VP, giving us a current state
of ((V) 3) and the backup states of ((V NP) 3) and ((ART ADJ N) 1) from before. The word man can be parsed
as a V. giving the state (04). Unfortunately, while the symbol list is empty, the word position is not at the end of
the sentence, so no new state can be generated and a backup state must be used. In the next cycle, step 8, ((V
NP) 3) is attempted. Again man is taken as a V and the new state ((NP) 4) generated. None of the rewrites of NP
yield a successful parse. Finally, in step 12, the last backup state, ((ART ADJ N VP) 1), is tried and leads to a
successful parse.

Parsing as a Search Procedure

You can think of parsing as a special case of a search problem as defined in Al. In particular, the top-down
parser in this section was described in terms of the following generalized search procedure. The possibilities list
is initially set to the start state of the parse. Then you repeat the following steps until you have success or
failure:

1. Select the first state from the possibilities list (and remove it from the list).

2. Generate the new states by trying every possible option from the selected state (there may be none if we
are on a bad path).

3. Add the states generated in step 2 to the possibilities list.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (13 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

[Allen 1995: Chapter 3 - Grammars and Parsing 51]

Figure 3.6 A top-down parse of 1 The2 old man 4 cried5

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (14 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

For a depth-first strategy, the possibilities list is a stack. In other words, step 1 always takes the first element off
the list, and step 3 always puts the new states on the front of the list, yielding a last-in first-out (LIFO) strategy.

In contrast, in a breadth-first strategy the possibilities list is manipulated as a queue. Step 3 adds the new
positions onto the end of the list, rather than the beginning, yielding a first-in first-out (FIR)) strategy.

[Allen 1995: Chapter 3 - Grammars and Parsing 52]

Figure 3.7 Search tree for two parse strategies (depth-first strategy on left; breadth-first on right)

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (15 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

We can compare these search strategies using a tree format, as in Figure 3.7, which shows the entire space of
parser states for the last example. Each node in the tree represents a parser state, and the sons of a node are the
possible moves from that state. The number beside each node records when the node was selected to be
processed by the algorithm. On the left side is the order produced by the depth-first strategy, and on the right
side is the order produced by the breadth-first strategy. Remember, the sentence being parsed is

1 The 2 old 3 man 4 cried 5

The main difference between depth-first and breadth-first searches in this simple example is the order in which
the two possible interpretations of the first NP are examined. With the depth-first strategy, one interpretation is
considered and expanded until it fails; only then is the second one considered. With the breadth-first strategy,
both interpretations are considered alternately, each being

[Allen 1995: Chapter 3 - Grammars and Parsing 53]

expanded one step at a time. In this example, both depth-first and breadth-first searches found the solution but
searched the space in a different order. A depth-first search often moves quickly to a solution but in other cases
may spend con-siderable time pursuing futile paths. The breadth-first strategy explores each possible solution to
a certain depth before moving on. In this particular example

-the depth-first strategy found the solution in one less step than the breadth-first. (The state in the bottom right-
hand side of Figure 3.7 was not explored by the depth-first parse.)

In certain cases it is possible to put these simple search strategies into an infinite loop. For example, consider a
left-recursive rule that could be a first account of the possessive in English (as in the NP the man ‘s coat):

NP -> NP 's N

With a naive depth-first strategy, a state starting with the nonterminal NP would be rewritten to a new state
beginning with NP s N. But this state also begins with an NP that could be rewritten in the same way. Unless an
explicit check were incorporated into the parser, it would rewrite NPs forever! The breadth-first strategy does
better with left-recursive rules, as it tries all other ways to rewrite the original NP before coming to the newly
generated state with the new NP. But with an ungrammatical sentence it would not terminate because it would
rewrite the NP forever while searching for a solution. For this reason, many systems prohibit left-recursive rules
from the grammar.

Many parsers built today use the depth-first strategy because it tends to minimize the number of backup states
needed and thus uses less memory and requires less bookkeeping.

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (16 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

3.4 A Bottom-Up Chart Parser

The main difference between top-down and bottom-up parsers is the way the grammar rules are used. For
example, consider the rule

NP -> ART ADJ N

In a top-down system you use the rule to find an NP by looking for the sequence ART ADJ N. In a bottom-up
parser you use the rule to take a sequence ART ADJ N that yOu have found and identify it as an NP. The basic
operation in bottom-up parsing then is to take a sequence of symbols and match it to the right-hand side of the
rules. You could build a bottom-up parser simply by formulating this matching process as a search process. The
state would simply consist of a symbol list, starting with the words in the sentence. Successor states could be
generated by exploring all possible ways to

● rewrite a word by its possible lexical categories
● replace a sequence of symbols that matches the right-hand side of a grammar rule by its left-hand side

symbol

[Allen 1995: Chapter 3 - Grammars and Parsing 54]

1. S -> N PVP

2. NP -> ART ADJ N

3. NP -> ART N

4. NP -> ADJ N

5. VP -> AUX VP

6. VP -> V NP

Grammar 3.8 A simple context-free grammar

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (17 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Unfortunately, such a simple implementation would be prohibitively expensive, as the parser would tend to try
the same matches again and again, thus dupli-cating much of its work unnecessarily. To avoid this problem, a
data structure called a chart is introduced that allows the parser to store the partial results of the matching it has
done so far so that the work need not be reduplicated.

Matches are always considered from the point of view of one constituent, called the key. To find rules that
match a string involving the key, look for rules that start with the key, or for rules that have already been started
by earlier keys and require the present key either to complete the rule or to extend the rule. For instance,
consider Grammar 3.8.

Assume you are parsing a sentence that starts with an ART. With this ART as the key, rules 2 and 3 are
matched because they start with ART. To record this for analyzing the next key, you need to record that rules 2
and 3 could be continued at the point after the ART. You denote this fact by writing the rule with a dot (o),
indicating what has been seen so far. Thus you record

2'. NP -> ART o ADJ N

3'. NP -> ART o N

If the next input key is an ADJ, then rule 4 may be started, and the modi-fied rule 2 may be extended to give

2''. NP -> ART ADJ o N

The chart maintains the record of all the constituents derived from the sentence so far in the parse. It also
maintains the record of rules that have matched partially but are not complete. These are called the active arcs.
For example, after seeing an initial ART followed by an ADS in the preceding example, you would have the
chart shown in Figure 3.9. You should interpret this figure as follows. There are two completed constituents on
the chart: ART1 from position 1 to 2 and ADJ1 from position 2 to 3. There are four active arcs indi-cating
possible constituents. These are indicated by the arrows and are interpreted as follows (from top to bottom).
There is a potential NP starting at position 1, which needs an ADJ starting at position 2. There is another
potential NP starting at position 1, which needs an N starting at position 2. There is a potential NP

[Allen 1995: Chapter 3 - Grammars and Parsing 55]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (18 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.9 The chart after seeing an ADJ in position 2

Figure 3.10 The arc extension algorithm

starting at position 2 with an ADS, which needs an N starting at position 3. Finally, there is a potential NP
starting at position 1 with an ART and then an ADJ, which needs an N starting at position 3.

The basic operation of a chart-based parser involves combining an active arc with a completed constituent. The
result is either a new completed constituent or a new active arc that is an extension of the original active arc.
New completed constituents are maintained on a list called the agenda until they themselves are added to the
chart. This process is defined more precisely by the arc extension algorithm shown in Figure 3.10. Given this
algorithm, the bottom-up chart parsing algorithni is specified in Figure 3.11.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (19 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

As with the top-down parsers, you may use a depth-first or breadth-first search strategy, depending on whether
the agenda is implemented as a stack or a queue. Also, for a full breadth-first strategy, you would need to read
in the entire input and add the interpretations of the words onto the agenda before starting the algorithm. Let us
assume a depth-first search strategy for the following example.

Consider using the algorithm on the sentence The large can can hold the water using Grammar 3.8 with the
following lexicon:

[Allen 1995: Chapter 3 - Grammars and Parsing 56]

Do until there is no input left:

1. If the agenda is empty, look up the interpretations for the next word in the input and add them to the
agenda.

2. Select a constituent from the agenda (let’s call it constituent C from position p1 to p2).

3. For each rule in the grammar of form X -> C X1 ... Xn, add an active arc of form X -> C o C
o X1 Xn from position p1 to p2.

4. Add C to the chart using the arc extension algorithm above.

Figure 3.11 A bottom-up chart parsing algorithm

the: ART
large: ADS
can: N,AUX,V
hold: N,V
water: N, V

To best understand the example, draw the chart as it is extended at each step of the algorithm. The agenda is
initially empty, so the word the is read and a constituent ARTL placed on the agenda.

Entering ART1: (the from 1 to 2)

Adds active arc NP -> ART o ADJ N from 1 to 2

Adds active arc NP -> ART o N from 1 to 2

Both these active arcs were added by step 3 of the parsing algorithm and were derived from rules 2 and 3 in the

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (20 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

grammar, respectively. Next the word large is read and a constituent ADJ1 is created.

Entering ADJ1: (large from 2 to 3)

Adds arc NP -> ADS o N from 2 to 3

Adds arc NP -> ART ADJ o N from 1 to 3

The first arc was added in step 3 of the algorithm. The second arc added here is an extension of the first active
arc that was added when ART1 was added to the chart using the arc extension algorithm (step 4).

The chart at this point has already been shown in Figure 3.9. Notice that active arcs are never removed from the
chart. For example, when the arc NP -4 ART o ADS N from 1 to 2 was extended, producing the arc from 1 to 3,
both arcs remained on the chart. This is necessary because the arcs could be used again in a different way by
another interpretation.

For the next word, can, three constituents, Ni, AUX1, and V1 are created for its three interpretations.

[Allen 1995: Chapter 3 - Grammars and Parsing 57]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (21 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.12 After parsing the large can

Entering N1 (can from 3 to 4)

No active arcs are added in step 2, but two are completed in step 4 by the arc extension algorithm, producing
two NPs that are added to the agenda: The first, an NP from 1 to 4, is constructed from rule 2, while the second,
an NP from 2 to 4, is constructed from rule 4. These NPs are now at the top of the agenda.

Entering NP1 :an NP (the large can from 1 to 4)

Adding active arc S -> NP o VP from 1 to 4

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (22 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Entering NP2: an NP (large can from 2 to 4)

Adding arc S -> NP o VP from 2 to 4

Entering AUX1: (can from 3 to 4)

Adding arc VP -> AUX o VP from 3 to 4

Entering V1: (can from 3 to 4)

Adding arc VP —> V o NP from 3 to 4

The chart is shown in Figure 3.12, which illustrates all the completed constituents (NP2, NP1, ART1, ADJ1,
N1, AUX1, V1) and all the uncompleted active arcs entered so far. The next word is can again. and N2, AUX,
and V2 are created.

[Allen 1995: Chapter 3 - Grammars and Parsing 58]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (23 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.13 The chart after adding hold, omitting arcs generated for the first NP

Entering N2: (can from 4 to 5, the second can)

Adds no active arcs

Entering AUX2: (can from 4 to 5)

Adds arc VP -> AUX o VP from 4 to 5

Entering V2: (can from 4 to 5)

Adds arc VP -> V o NP from 4 to 5

The next word is hold, and N3 and V3 are created.

Entering N3: (hold from 5 to 6)

Adds no active arcs

Entering V3: (hold from 5 to 6)

Adds arc VP -> V o NP from 5 to 6

The chart in Figure 3.13 shows all the completed constituents built so far, together with all the active arcs,
except for those used in the first NP.

Entering ART2: (the from 6 to 7)

Adding arc NP -> ART o ADJ N from 6 to 7

Adding arc NP -> ART o N from 6 to 7

[Allen 1995: Chapter 3 - Grammars and Parsing 59]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (24 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.14 The chart after all the NPs are found, omitting all but the crucial active arcs

Entering N4: (water from 7 to 8)

No active arcs added in step 3

An NP, NP3, from 6 to 8 is pushed onto the agenda, by completing arc
NP -> ART o N from 6 to 7

Entering NP3: (the water from 6 to 8)

A VP, VP1, from 5 to 8 is pushed onto the agenda, by completing VP ->
V o NP from 5 to 6

Adds arc S -> NP o VP from 6 to 8

The chart at this stage is shown in Figure 3.14, but only the active arcs to be used in the remainder of the parse
are shown.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (25 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Entering VP1: (hold the water from 5 to 8)

A VP, VP2, from 4 to 8 is pushed onto the agenda, by completing

VP -> AUX o VP from 4 to S

Entering VP2: (can hold the water from 4 to 8)

An S, S1, is added from 1 to 8, by completing

arcS -> NP o VP from 1 to 4

A VP, VP3, is added from 3 to 8, by completing

arc VP -> AUX o VP from 3 to 4

An S, S2, is added from 2 to 8, by completing

arc S -> NP o VP from 2 to 4

Since you have derived an S covering the entire sentence, you can stop successfully. If you wanted to find all
possible interpretations for the sentence,

[Allen 1995: Chapter 3 - Grammars and Parsing 60]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (26 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.15 The final chart

you would continue parsing until the agenda became empty. The chart would then contain as many S structures
covering the entire set of positions as there were different structural interpretations. In addition, this
representation of the entire set of structures would be more efficient than a list of interpretations, because the
different S structures might share common subparts represented in the chart only once. Figure 3.15 shows the
final chart.

Efficiency Considerations

Chart-based parsers can be considerably more efficient than parsers that rely only on a search because the same
constituent is never constructed more than once. For instance, a pure top-down or bottom-up search strategy
could require up to C” operations to parse a sentence of length n, where C is a constant that depends on the
specific algorithm you use. Even if C is very small, this exponential complexity rapidly makes the algorithm
unusable. A chart-based parser, on the other hand, in the worst case would build every possible constituent
between every possible pair of positions. This allows us to show that it has a worst-case complexity of K*n3,
where n is the length of the sentence and K is a constant depending on the algorithm. Of course, a chart parser
involves more work in each step, so K will be larger than C. To contrast the two approaches, assume that C is
10 and that K is a hundred times worse, 1000. Given a sentence of 12 words, the brute force search might take
1012 operations (that is, 1,000,000,000,000), whereas the chart parser would take 1000 * 123 (that is,

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (27 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

1,728,000). Under these assumptions, the chart parser would be up to 500,000 times faster than the brute force
search on some examples!

>> back

[Allen 1995: Chapter 3 - Grammars and Parsing 61]

3.5 Transition Network Grammars

So far we have examined only one formalism for representing grammars, namely context-free rewrite rules.
Here we consider another formalism that is useful in a wide range of applications. It is based on the notion of a
transition network consisting of nodes and labeled arcs. One of the nodes is specified as the initial state, or start
state. Consider the network named NP in Grammar 3.16, with the initial state labeled NP and each arc labeled
with a word category. Starting at the initial state, you can traverse an arc if the current word in the sentence is in
the category on the arc. If the arc is followed, the current word is updated to the next word. A phrase is a legal
NP if there is a path from the node NP to a pop arc (an arc labeled pop) that accounts for every word in the
phrase. This network recog -nizes the same set of sentences as the following context-free grammar:

NP -> ART NP1

NP1 -> ADJ NP1

NP1 -> N

Consider parsing the NP a purple cow with this network. Starting at the node NP, you can follow the arc labeled
art, since the current word is an article— namely, a. From node NP1 you can follow the arc labeled adj using
the adjective purple, and finally, again from NP1, you can follow the arc labeled noun using the noun cow.
Since you have reached a pop arc, a purple cow is a legal NP.

Simple transition networks are often called finite state machines (FSMs). Finite state machines are equivalent in
expressive power to regular grammars (see Box 3.2), and thus are not powerful enough to describe all languages
that can be described by a CFG. To get the descriptive power of CFGs, you need a notion of recursion in the
network grammar. A recursive transition network (RTN) is like a simple transition network, except that it
allows arc labels to refer to other networks as well as word categories. Thus, given the NP network in Grammar
3.16, a network for simple English sentences can be expressed as shown in Grammar 3.17. Uppercase labels
refer to networks. The arc from S to Si can be followed only if the NP network can be successfully traversed to
a pop arc. Although not shown in this example, RTNs allow true recursion—that is, a network might have an
arc labeled with its own name.

Consider finding a path through the S network for the sentence The purple cow ate the grass. Starting at node 5,

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (28 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

to follow the arc labeled NP, you need to traverse the NP network. Starting at node NP, traverse the network as
before for the input the purple cow. Following the pop arc in the NP network, return to the S network and
traverse the arc to node S 1. From node S 1 you follow the arc labeled verb using the word ate. Finally, the arc
labeled NP can be followed if you can traverse the NP network again. This time the remaining input consists of
the words the grass. You follow the arc labeled art and then the arc labeled noun in the NP network; then take
the pop arc from node NP2 and then another pop from node S3. Since you have traversed the network and used
all the words in the sentence, The purple cow ate the grass is accepted as a legal sentence.

[Allen 1995: Chapter 3 - Grammars and Parsing 62]

Grammar 3.16

Grammar 3.17

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (29 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Arc Type Example Arc Type Example How Used

CAT noun succeeds only if current word is of the named category

WRD of succeeds only if current word is identical to the label

PUSH NP succeeds only if named network can be successfully
traversed

JUMP jump always succeeds

POP pop succeeds and signals the successful end of the network

Figure 3.18 The arc labels for RTNs

In practice, RTN systems incorporate some additional arc types that are useful but not formally necessary;
Figure 3.18 summarizes the arc types, together with the notation that will be used in this book to indicate these
arc types. According to this terminology, arcs that are labeled with networks are called push arcs, and arcs
labeled with word categories are called cat arcs. In addition, an arc that can always be followed is called a jump
arc.

Top-Down Parsing with Recursive Transition Networks

An algorithm for parsing with RTNs can be developed along the same lines as the algorithms for parsing CFGs.
The state of the parse at any moment can be represented by the following:

current position - a pointer to the next word to be parsed.

current node - the node at which you are located in the network.

return points - a stack of nodes in other networks where you will continue if you pop from the current
network.

[Allen 1995: Chapter 3 - Grammars and Parsing 63]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (30 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Grammar 3.19

First, consider an algorithm for searching an RTN that assumes that if you can follow an arc, it will be the
correct one in the final parse. Say you are in the middle of a parse and know the three pieces of information just
cited. You can leave the current node and traverse an arc in the following cases:

Case 1:

If arc names word category and next word in sentence is in that
category,

Then (1) update current position to start at the next word; (2)
update current node to the destination of the arc.

Case 2:

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (31 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

If arc is a push arc to a network N,

Then

(1) add the destination of the arc onto return points;

(2) update current node to the starting node in network N.

Case 3:

If arc is a pop arc and return points list is not empty,

Then (1) remove first return point and make it current node.

Case 4:

If arc is a pop arc, return points list is empty and there are no
words left,

Then (1) parse completes successfully.

Grammar 3.19 shows a network grammar. The numbers on the arcs simply indicate the order in which arcs will
be tried when more than one arc leaves a node.

[Allen 1995: Chapter 3 - Grammars and Parsing 64]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (32 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.20 A trace of a top-down parse

Figure 3.20 demonstrates that the grammar accepts the sentence

1 The 2 old 3 man 4 cried 5

by showing the sequence of parse states that can be generated by the algorithm. In the trace, each arc is
identified by the name of the node that it leaves plus the number identifier. Thus arc S/1 is the arc labeled 1
leaving the S node. If you start at node 5, the only possible arc to follow is the push arc NP. As specified in case
2 of the algorithm, the new parse state is computed by setting the current node to NP and putting node S1 on the
return points list. From node NP, arc NP/1 is followed and, as specified in case 1 of the algorithm, the input is
checked for a word in category art. Since this check succeeds, the arc is followed and the current position is
updated (step 3). The parse continues in this manner to step 5, when a pop arc is followed, causing the current
node to be reset to S1 (that is, the NP arc succeeded). The parse succeeds after finding a verb in step 6 and
following the pop arc from the S network in step 7.

In this example the parse succeeded because the first arc that succeeded was ultimately the correct one in every
case. However, with a sentence like The green faded, where green can be an adjective or a noun, this algorithm
would fail because it would initially classify green as an adjective and then not find a noun following. To be
able to recover from such failures, we save all possible backup states as we go along, just as we did with the
CFG top-down parsing algorithm.

Consider this technique in operation on the following sentence:

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (33 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

1 One 2 saw 3 the 4 man 5

The parser initially attempts to parse the sentence as beginning with the NP one saw, but after failing to find a
verb, it backtracks and finds a successful parse starting with the NP one. The trace of the parse is shown in
Figure 3.21, where at

[Allen 1995: Chapter 3 - Grammars and Parsing 65]

 Step Current State Arc to be Followed Backup
States

 1. (S, 1, NIL) S/1 NIL

 2. (NP, 1, (S1)) NP/2 (& NP/3 for
backup)

NIL

 3. (NP1, 2, (S1)) NPl/2 (NP2, 2,
(S1))

 4. (NP2, 3, (S1)) NP2/l (NP2, 2,
(S1))

 5. (S1, 3, NIL) no arc can be
followed

(NP2, 2,
(S1))

 6. (NP2, 2, (S1)) NP2/l NIL

 7. (S1, 2, NIL) S1/l NIL

 8. (S2, 3, NIL) S2/2 NIL

 9. (NP, 3, (S2)) NP/1 NIL

 10. (N7PI, 4, (S2)) NP1/2 NIL

 11. (NP2, 5, (S2)) NP2/1 NIL

 12. (S2, 5, NIL) S2/1 NIL

 13. parse succeeds NIL

Figure 3.21 A top-down RTN parse with backtracking

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (34 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

each stage the current parse state is shown in the form of a triple (current node, current position, return points),
together with possible states for backtracking. The figure also shows the arcs used to generate the new state and
backup states.

This trace behaves identically to the previous example except in two places. In step 2, two arcs leaving node NP
could accept the word one. Arc NP/2 classifies one as a number and produces the next current state. Arc NP/3
classifies it as a pronoun and produces a backup state. This backup state is actually used later in step 6 when it is
found that none of the arcs leaving node S 1 can accept the input word the.

Of course, in general, many more backup states are generated than in this simple example. In these cases there
will be a list of possible backup states. Depending on how this list is organized, you can produce different
orderings on when the states are examined.

An RTN parser can be constructed to use a chart-like structure to gain the advantages of chart parsing. In RTN
systems, the chart is often called the well-formed substring table (WFST). Each time a pop is followed, the
constituent is placed on the WFST, and every time a push is found, the WFST is checked before the subnetwork
is invoked. If the chart contains constituent(s) of the type being pushed for, these are used and the subnetwork is
not reinvoked. An RTN using a WFST has the same complexity as the chart parser described in the last section:
K*n3, where n is the length of the sentence.

>> back

o 3.6 Top-Down Chart Parsing

So far, you have seen a simple top-down method and a bottom-up chart-based method for parsing context-free
grammars. Each of the approaches has its advan -tages and disadvantages. In this section a new parsing method
is presented that

[Allen 1995: Chapter 3 - Grammars and Parsing 66]

actually captures the advantages of both. But first, consider the pluses and minuses of the approaches.

Top-down methods have the advantage of being highly predictive. A word might be ambiguous in isolation, but
if some of those possible categories cannot be used in a legal sentence, then these categories may never even be

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (35 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

considered. For example, consider Grammar 3.8 in a top-down parse of the sentence The can holds the water,
where can may be an AUX, V. or N, as before.

The top-down parser would rewrite (5) to (NP VP) and then rewrite the NP to produce three possibilities, (ART
ADJ N VP), (ART N VP), and (ADJ N VP). Taking the first, the parser checks if the first word, the, can be an
ART, and then if the next word, can, can be an ADJ, which fails. Trying the next possibility, the parser checks
the again, and then checks if can can be an N, which succeeds. The interpretations of can as an auxiliary and a
main verb are never considered because no syntactic tree generated by the grammar would ever predict an AUX
or V in this position. In contrast, the bottom-up parser would have considered all three interpretations of can
from the start—that is, all three would be added to the chart and would combine with active arcs. Given this
argument, the top-down approach seems more efficient.

On the other hand, consider the top-down parser in the example above needed to check that the word the was an
ART twice, once for each rule. This reduplication of effort is very common in pure top-down approaches and
becomes a serious problem, and large constituents may be rebuilt again and again as they are used in different
rules. In contrast, the bottom-up parser only checks the input once, and only builds each constituent exactly
once. So by this argument, the bottom-up approach appears more efficient.

You can gain the advantages of both by combining the methods. A small variation in the bottom-up chart
algorithm yields a technique that is predictive like the top-down approaches yet avoids any reduplication of
work as in the bottom-up approaches.

As before, the algorithm is driven by an agenda of completed constituents and the arc extension algorithm,
which combines active arcs with constituents when they are added to the chart. While both use the technique of
extending arcs with constituents, the difference is in how new arcs are generated from the grammar. In the
bottom-up approach, new active arcs are generated whenever a completed constituent is added that could be the
first constituent of the right-hand side of a rule. With the top-down approach, new active arcs are generated
whenever a new active arc is added to the chart, as described in the top-down arc introduction algorithm shown
in Figure 3.22. The parsing algorithm is then easily stated, as is also shown in Figure 3.22.

Consider this new algorithm operating with the same grammar on the same sentence as in Section 3.4, namely
The large can can hold the water. In the initialization stage, an arc labeled S -> o NP VP is added. Then, active
arcs for each rule that can derive an NP are added: NP -> o ART ADJ N, NP -> o ART N,

[Allen 1995: Chapter 3 - Grammars and Parsing 67]

Top-Down Arc Introduction Algorithm

To add an arc S -> C1 ... o C1 ... Cn ending at position j, do the following:

For each rule in the grammar of form Ci -> X1 ... Xk, recursively add the new arc Ci -> o X1 ... Xk from
position j to j.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (36 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Top-Down Chart Parsing Algorithm

Initialization: For every rule in the grammar of form S -> X1 ... Xk, add an arc labeled S -> o X1 ... Xk
using the arc introduction algorithm.

Parsing: Do until there is no input left:

1. If the agenda is empty, look up the interpretations of the next word and add them to the agenda.

2. Select a constituent from the agenda (call it constituent C).

3. Using the arc extension algorithm, combine C with every active arc on the chart. Any new
constituents are added to the agenda.

4. For any active arcs created in step 3, add them to the chart using the top-down arc introduction
algorithm.

Figure 3.22 The top-down arc introduction and chart parsing algorithms

Figure 3.23 The initial chart

and NP -> o ADJ N are all added from position 1 to 1. Thus the initialized chart is as shown in Figure 3.23. The
trace of the parse is as follows:

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (37 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Entering ART1 (the) from 1 to 2

Two arcs can be extended by the arc extension algorithm

NP -> ART o N from 1 to 2

NP -> ART o ADJ N from 1 to 2

Entering ADJ1 (large) from 2 to 3

One arc can be extended

NP -> ART ADJ o N from 1 to 3

Entering AUX1 (can) from 3 to4

No activity, constituent is ignored

Entering V1 (can) from 3 to4

No activity, constituent is ignored

[Allen 1995: Chapter 3 - Grammars and Parsing 68]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (38 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.24 The chart after building the first NP

Entering N1 (can) from 3 to 4

One arc extended and completed yielding

NP1 from 1 to 4(the large can)

Entering NP1 from 1 to 4

One arc can be extended

S -> NP o VP from 1 to 4

Using the top-down rule (step 4), new active arcs are added for VP

VP -> o AUX VP from 4 to 4

VP -> o V NP from 4 to 4

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (39 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

At this stage, the chart is as shown in Figure 3.24. Compare this with Figure 3.10. It contains fewer completed
constituents since only those that are allowed by the top-down filtering have been constructed.

The algorithm continues, adding the three interpretations of can as an AUX, V, and N. The AUX reading
extends the VP -> C AUX VP arc at position 4 and adds active arcs for a new VP starting at position 5. The V
reading extends the VP 0 V NP arc and adds active arcs for an NP starting at position 5. The N reading does not
extend any arc and so is ignored. After the two readings of hold (as an N and V) are added, the chart is as shown
in Figure 3.25. Again, compare with the corresponding chart for the bottom-up parser in Figure 3.13. The rest of
the sentence is parsed similarly, and the final chart is shown in Figure 3.26. In comparing this to the final chart
produced by the bottom-up parser (Figure 3.15), you see that the number of constituents generated has dropped
from 21 to 13.

[Allen 1995: Chapter 3 - Grammars and Parsing 69]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (40 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Figure 3.25 The chart after adding hold, omitting arcs generated for the first NP

Figure 3.26 The final chart for the top-down filtering algorithm

While it is not a big difference here with such a simple grammar, the difference can be dramatic with a sizable
grammar.

It turns out in the worst-case analysis that the top-down chart parser is not more efficient that the pure bottom-
up chart parser. Both have a worst-case complexity of K*n3 for a sentence of length n. In practice, however, the
top-down method is considerably more efficient for any reasonable grammar.

BOX 3.2 Generative Capacity of Transition Networks

Transition network systems can be classified by the types of languages they can describe. In fact, you can
draw correspondences between various network systems and rewrite-rule systems. For instance, simple
transition networks (that is, finite state machines) with no push arcs are expressively equivalent to regular
grammars—that is, every language that can be described by a simple transition network can be described by

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (41 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

a regular grammar, and vice versa. An FSM for the first language described in Box 3.1 is

Recursive transition networks, on the other hand, are expressively equivalent to context-free grammars.
Thus an RTN can be converted into a CFG and vice versa. A recursive transition network for the language
consisting of a number of a’s followed by an equal number of b’s is

>> back

o 3.7 Finite State Models and Morphological Processing

Although in simple examples and small systems you can list all the words allowed by the system, large

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (42 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

vocabulary systems face a serious problem in repre -senting the lexicon. Not only are there a large number of
words, but each word may combine with affixes to produce additional related words. One way to address this
problem is to preprocess the input sentence into a sequence of mor-phemes. A word may consist of single
morpheme, but often a word consists of a root form plus an affix. For instance, the word eaten consists of the
root form eat and the suffix -en, which indicates the past participle form. Without any pre-processing, a lexicon
would have to list all the forms of eat, including eats, eating, ate, and eaten. With preprocessing, there would be
one morpheme eat that may combine with suffixes such as -ing, -s, and -en, and one entry for the irregular form
ate. Thus the lexicon would only need to store two entries (eat and

[Allen 1995: Chapter 3 - Grammars and Parsing 71]

Figure 3.27 A simple FST for the forms of happy

ate) rather than four. Likewise the word happiest breaks down into the root form happy and the suffix -est, and
thus does not need a separate entry in the lexicon. Of course, not all forms are allowed; for example, the word
seed cannot be decomposed into a root form se (or see) and a suffix -ed. The lexicon would have to encode what
forms are allowed with each root.

One of the most popular models is based on finite state transducers (FSTs), which are like finite state machines
except that they produce an output given an input. An arc in an FST is labeled with a pair of symbols. For
example, an arc labeled i:y could only be followed if the current input is the letter I and the output is the letter y.
FSTs can be used to concisely represent the lexicon and to transform the surface form of words into a sequence
of morphemes. Figure 3.27 shows a simple FST that defines the forms of the word happy and its derived forms.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (43 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

It transforms the word happier into the sequence happy +er and happiest into the sequence happy +est.

Arcs labeled by a single letter have that letter as both the input and the output. Nodes that are double circles
indicate success states, that is, acceptable words. Consider processing the input word happier starting from state
1. The upper network accepts the first four letters, happ, and copies them to the output. From state 5 you could
accept a y and have a complete word, or you could jump to state 6 to consider affixes. (The dashed link,
indicating a jump, is not formally necessary but is useful for showing the break between the processing of the
root form and the processing of the suffix.) For the word happier, you must jump to state 6. The next letter must
be an i, which is transformed into a y. This is followed by a transition that uses no input (the empty symbol r)
and outputs a plus sign. From state 8, the input must be an e, and the output is also e. This must be followed by
an r to get to state 10, which is encoded as a double circle indicating a possible end of word (that is, a success
state for the FST). Thus this FST accepts the appropriate forms and outputs the desired sequence of morphemes.

The entire lexicon can be encoded as an FST that encodes all the legal input words and transforms them into
morphemic sequences. The FSTs for the

[Allen 1995: Chapter 3 - Grammars and Parsing 72]

Figure 3.28 A fragment of an FST defining some nouns (singular and plural)

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (44 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

different suffixes need only be defined once, and all root forms that allow that suffix can point to the same node.
Words that share a common prefix (such as torch, toss, and a,) also can share the same nodes, greatly reducing
the size of the network. The FST in Figure 3.28 accepts the following words, which all start with t: tie (state 4),
ties (10), trap (7), traps (10), try (11), tries (15), to (16), torch (19), torches (15), toss (21), and tosses (15). In
addition, it outputs the appro-priate sequence of morphemes.

Note that you may pass through acceptable states along the way when processing a word. For instance, with the
input toss you would pass through state 15, indicating that to is a word. This analysis is not useful, however,
because if to was accepted then the letters sr would not be accounted for.

Using such an FST, an input sentence can be processed into a sequence of morphemes. Occasionally, a word
will be ambiguous and have multiple different decompositions into morphemes. This is rare enough, however,
that we will ignore this minor complication throughout the book.

>> back

o 3.8 Grammars and Logic Programming

Another popular method of building a parser for CFGs is to encode the rules of the grammar directly in a logic
programming language such as PROLOG. It turns out that the standard PROLOG interpretation algorithm uses
exactly the same search strategy as the depth-first top-down parsing algorithm, so all that is needed is a way to
reformulate context-free grammar rules as clauses in PROLOG. Consider the following CFG rule:

S -> NP VP

[Allen 1995: Chapter 3 - Grammars and Parsing 73]

This rule can be reformulated as an axiom that says, "A sequence of words is a legal S if it begins with a legal
NP that is followed by a legal VP." If you number each word in a sentence by its position, you can restate this
rule as: "There is an S between position p1 and p3, if there is a position p2 such that there is an NP between p1
and p2 and a VP between p2 and p3." In PROLOG this would be the following axiom, where variables are
indicated as atoms with an initial capitalized letter:

s(P1, P3) np(P1, P2), vp(P2, P3)

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (45 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

To set up the process, add axioms listing the words in the sentence by their position. For example, the sentence
John ate the cat is described by

 word(John, 1, 2)

 word(ate, 2, 3)

 word(the, 3, 4)

 word(cat, 4, 5)

The lexicon is defined by a set of predicates such as the following:

 isart(the)

 isname(john)

 isverb(ate)

 isnoun(cat)

Ambiguous words would produce multiple assertions—one for each syntactic category to which they belong.

For each syntactic category, you can define a predicate that is true only if the word between the two specified
positions is of that category, as follows:

 n(I, O):— word(Word, I, O), isnoun(Word)

 art(I, O):— word(Word, 1, O), isart(Word)

 v(I, O):— word(Word, 1, O), isverb(Word)

 name(I, O) :— word(Word, I, O), isname(Word)

Using the axioms in Figure 3.29, you can prove that John ate the cat is a legal sentence by proving s(1, 5), as in
Figure 3.30. In Figure 3.30, when there is a possibility of confusing different variables that have the same name,
a prime (‘) is appended to the variable name to make it unique. This proof trace is in the same format as the
trace for the top-down CFG parser, as follows. The state of the proof at any time is the list of subgoals yet to be
proven. Since the word positions are included in the goal description, no separate position column need be
traced. The backup states are also lists of subgoals, maintained automatically by a system like PROLOG to
implement backtracking. A typical trace of a proof in such a system shows only the current state at any time.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (46 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

Because the standard PROLOG search strategy is the same as the depth-first top-down paring strategy, a parser
built from PROLOG will have the same com-putational complexity, Ci’, that is, the number of steps can be
exponential in the

[Allen 1995: Chapter 3 - Grammars and Parsing 74]

 1. s(P1, P3) :— np(P1, P2), vp(P2, P3)

 2. np(P1, P3) :— art(P1, P2), n(P2, P3)

 3. np(P1, P3) :— name(P1, P3)

 4. pp(P1, P3) :— p(P1, P2), np(P2, P3)

 5. vp(P1, P2) :— v(P1, P2)

 6. vp(P1, P3) :— v(P1, P2), np(P2, P3)

 7. vp(P1, P3) :— v(P1, P2), pp(P2, P3)

Figure 3.29 A PROLOG-based representation of Grammar 3.4

Step Current State Backup States Comments

1. s(1,5)

2. np(1, P2) vp(P2, 5)

3. art(1, P2’) n(P2’, P2)
vp(P2, 5)

name(1, P2) vp(P2, 5) fails as no
ART at
position 1

4. name(1, P2) vp(P2, 5)

5. vp(2, 5) name(1, 2)
proven

6. v(2, 5) v(2, P2) np(P2, 5) fails as no
verb spans

 v(2, P2) pp(P2, 5) positions 2
to 5

7. v(2, P2) np(P2, 5) v(2, P2) pp(P2, 5)

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (47 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

8. np(3, 5) v(2, P2) pp(P2, 5) v(2, 3)
proven

9. art(3, P2) n(P2, 5) name(3, 5)

 v(2, P2) pp(P2, 5)

10. n(4, 5) name(3, 5) art(3, 4)
proven

 v(2, P2) pp(P2, 5)

11. ˆ proof succeeds name(3, 5) n(4, 5)
proven

 v(2, P2) pp(P2, 5)

Figure 3.34 A trace of a PROLOG-based parse of John ate the cat

length of the input. Even with this worst-case analysis, PROLOG-based grammars can be quite efficient in
practice. It is also possible to insert chart-like mechanisms to improve the efficiency of a grammar, although
then the simple correspondence between context-free rules and PROLOG rules is lost. Some of these issues will
be discussed in the next chapter.

It is worthwhile to try some simple grammars written in PROLOG to better understand top-down, depth-first
search. By turning on the tracing facility, you can obtain a trace similar in content to that shown in Figure 3.30.

>> back

[Allen 1995: Chapter 3 - Grammars and Parsing 75]

Summary

The two basic grammatical formalisms are context-free grammars (CFGs) and recursive transition networks
(RTNs). A variety of parsing algorithms can be used for each. For instance, a simple top-down backtracking
algorithm can be used for both formalisms and, in fact, the same algorithm can be used in the standard logic-

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (48 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

programming-based grammars as well. The most efficient parsers use a chart-like structure to record every
constituent built during a parse. By reusing this information later in the search, considerable work can be saved.

>> back

Related Work and Further Readings

There is a vast literature on syntactic formalisms and parsing algorithms. The notion of context-free grammars
was introduced by Chomsky (1956) and has been studied extensively since in linguistics and in computer
science. Some of this work will be discussed in detail later, as it is more relevant to the material in the following
chapters.

Most of the parsing algorithms were developed in the mid-1960s in computer science, usually with the goal of
analyzing programming languages rather than natural language. A classic reference for work in this area is Aho,
Sethi, and Ullman (1986), or Aho and Ullman (1972), if the former is not available. The notion of a chart is
described in Kay (1973; 1980) and has been adapted by many parsing systems since. The bottom-up chart
parser described in this chapter is similar to the left-corner parsing algorithm in Aho and Ullman (1972), while
the top-down chart parser is similar to that described by Earley (1970) and hence called the Earley algorithm.

Transition network grammars and parsers are described in Woods (1970; 1973) and parsers based on logic
programming are described and compared with transition network systems in Pereira and Warren (1980).
Winograd (1983) discusses most of the approaches described here from a slightly different perspective, which
could be useful if a specific technique is difficult to understand. Gazdar and Mellish (1989a; 1989b) give
detailed descriptions of implementations of parsers in LISP and in PROLOG. In addition, descriptions of
transition network parsers can be found in many introductory Al texts, such as Rich and Knight (1992), Winston
(1992), and Charniak and McDermott (1985). These books also contain descriptions of the search techniques
underlying many of the parsing algorithms. Norvig (1992) is an excellent source on AI programming
techniques.

The best sources for work on computational morphology are two books:

Sproat (1992) and Ritchie et al. (1992). Much of the recent work on finite state models has been based on the
KIMMO system (Koskenniemi, 1983). Rather than requiring the construction of a huge network, KIMMO uses
a set of FSTs which are run in parallel; that is, all of them must simultaneously accept the input and agree on the
output. Typically, these FSTs are expressed using an abstract

[Allen 1995: Chapter 3 - Grammars and Parsing 76]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (49 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

language that allows general morphological rules to be expressed concisely. A compiler can then be used to
generate the appropriate networks for the system.

Finite state models are useful for a wide range of processing tasks besides morphological analysis. Blank
(1989), for instance, is developing a grammar for English using only finite state methods. Finite state grammars
are also used extensively in speech recognition systems.

>> back

Exercises for Chapter 3
1. (easy)

a. Express the following tree in the list notation in Section 3.1.

b. Is there a tree structure that could not be expressed as a list structure? How about a list structure that could
not be expressed as a tree?

2. (easy) Given the CFG in Grammar 3.4, define an appropriate lexicon and show a trace in the format of Figure
3.5 of a top-down CFG parse of the sentence The man walked the old dog.

3. (easy) Given the RTN in Grammar 3.19 and a lexicon in which green can be an adjective or a noun, show a
trace in the format of Figure 3.21 of a top-down RTN parse of the sentence The green faded.

4. (easy) Given the PROLOG-based grammar defined in Figure 3.29, show a trace in the format of Figure 3.30
of the proof that the following is a legal sentence: The cat ate John.

5. (medium) Map the following context-free grammar into an equivalent recursive transition network that uses
only three networks—an S. NP. and PP network. Make your networks as small as possible.

[Allen 1995: Chapter 3 - Grammars and Parsing 77]

 S -> NP VP NP2 -> ADJ NP2

 VP -> V NP2 -> NP3 PREPS

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (50 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

 VP -> V NP NP3 -> N

 VP -> V PP PREPS -> PP

 NP -> ART NP2 PREPS -> PP PREPS

 NP -> NP2 PP -> NP

 NP2 -> N

6. (medium) Given the CFG in Exercise 5 and the following lexicon, con-struct a trace of a pure top-down parse
and a pure bottom-up parse of the sentence The herons fly in groups. Make your traces as clear as possible,
select the rules in the order given in Exercise 5, and indicate all parts of the search. The lexicon entries for each
word are

the: ART heroin: N

fly: NVADJ

In: P

groups: NV

7. (medium) Consider the following grammar:

S -> ADJS N

S -> N

ADJS -> ADJS ADJ

ADJS -> ADJ

Lexicon: ADJ: red, N: house

a. What happens to the top-down depth-first parser operating on this grammar trying to parse the input red
red? In particUlar, state whether the parser succeeds, fails, or never stops.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (51 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

b. How about a top-down breadth-first parser operating on the same input red red?

c. How about a top-down breadth-first parser operating on the input red house?

d. How about a bottom-up depth-first parser on red house?

e. For the cases where the parser fails to stop, give a grammar that is equivalent to the one shown in this
exercise and that is parsed correctly. (Correct behavior includes failing on unacceptable phrases as well as
succeeding on acceptable ones.)

f. With the new grammar in part (e), do all the preceding parsers now operate correctly on the two phrases
red red and red house?

[Allen 1995: Chapter 3 - Grammars and Parsing 78]

8. (medium) Consider the following CFG:

S -> NP V

S -> NP AUX V

NP -> ART N

Trace one of the chart parsers in processing the sentence

1 The 2 man 3 is 4 laughing 5

with the lexicon entries:

the: ART

man: N

is: AUX

laughing: V

Show every step of the parse, giving the parse stack, and drawing the chart each time a nonterniinal constituent
is added to the chart.

9. (medium) Consider the following CFG that generates sequences of letters:

s -> a x c

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (52 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

s -> b x c

s -> b x d

s -> b x e

s -> c x e

x -> f x

x -> g

a. If you had to write a parser for this grammar, would it be better to use a pure top-down or a pure bottom-
up approach? Why?

b. Trace the parser of your choice operating on the input bffge.

10. (medium) Consider the following CFG and RTN:

[Allen 1995: Chapter 3 - Grammars and Parsing 79]

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (53 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

NP -> ART NP1

NP1 -> ADJ N PPS

PPS -> PP

PPS -> PP PPS

PP -> P NP

a. State two ways in which the languages described by these two gram-mars differ. For each, give a sample
sentence that is recognized by one grammar but not the other and that demonstrates the difference.

b. Write a new CFG equivalent to the RTN shown here.

c. Write a new RTN equivalent to the CFG shown here.

11. (hard) Consider the following sentences:

 ListA ListB

 i. Joe is reading the book. i. *Joe has reading the book.

 ii. Joe had won a letter. ii. *Joe had win.

 iii. Joe has to win. iii. *Joe winning.

 iv. Joe will have the letter. iv. *Joe will had the letter.

 v. The letter in the book was read. v. *The book was win by Joe.

 vi. The letter must have been in the
book by Joe.

vi. *Joe will can be mad.

 vii. The man could have had one. vii. *The man can have having one.

a. Write a context-free grammar that accepts all the sentences in list A while rejecting the sentences in list
B. You may find it useful to make reference to the grammatical forms of verbs discussed in Chapter 2.

b. Implement one of the chart-based parsing strategies and, using the grammar specified in part (a),
demonstrate that your parser correctly accepts all the sentences in A and rejects those in B. You should
maintain enough information in each entry on the chart so that you can reconstruct the parse tree for each
possible interpretation. Make sure your method of recording the structure is well documented and clearly
demonstrated.

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (54 / 55) [2002-2-26 21:20:11]

Allen 1995: Chapter 3 - Grammars and Parsing

c. List three (distinct) grammatical forms that would not be recognized by a parser implementing the
grammar in part (a). Provide an example of your own for each of these grammatical forms.

>> back

http://www.uni-giessen.de/~g91062/Seminare/gk-cl/Allen95/al199503.htm (55 / 55) [2002-2-26 21:20:11]

	JAllen_Ch2
	JAllen_Ch3

