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EEL3135: Homework #1

 

(10 problems, distributed 1/30/2002, due 2/11/2002)

 

Instructions:

 

Show/explain all work to get full credit.

 

Problem 1:

 

(a) Explain the difference between a continuous-time and discrete-time signal.

(b) Give at least one reason why the study of each type of signal (continuous-time and discrete-time) is 
important.

 

Problem 2:

 

(a) Sketch the magnitude spectrum (frequency-domain representation) for the following continuous-time signal:

(1)

Be sure to label your plot. [Note: It is not important that you indicate absolute magnitude on your plot, only 
the relative magnitude of different frequency components.]

(b) Sketch the magnitude spectrum for the following continuous-time signal:

(2)

Hint: The following trigonometric identity may be useful:

(3)

 

Problem 3:

 

For the continuous-time signal , explain how the signal would be 
changed by an ideal filter, whose frequency response is plotted below.
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Problem 4:

 

(a) Compute the output sequence , , for the difference equation  and the 
input sequence  plotted below.

(b) Repeat part (a) for the following difference equation:

(4)

and . Assume .

 

Problem 5:

 

Assume you want to sample and filter the continuous-time signal ; further assume that the 
discrete-time filter you want to apply to the sampled signal  is given by the difference equation below:

(5)

For which of the following sampling frequencies (samples/second) —1Hz, 3Hz, 5Hz and 7Hz —will the 
output  be zero for all ?

 

Problem 6:

 

Consider the continuous-time function  below, which is nonzero in the interval .

(a) Sketch the following related functions: , , , , , . 
Be sure to label all critical points on your plots.

(b) Write an analytic expression for .

(c) Write analytic expressions for each of the functions in part (a).
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Problem 7:

 

Sketch the following functions. Be sure to label all critical points on your plot.

(a)

(b)

 

Problem 8:

 

(a) Give an analytic expression for the function , which is nonzero in the interval .

(b) Give an analytic expression for the periodic square wave .

 

Problem 9:

 

For this problem, assume the sampling formula,

(6)

where  denotes the sampling frequency in Hz (samples/second),  is a discrete-time function, and 
 represents some continuous-time function.

(a) Let Hz. Plot  corresponding to the continuous-time signal  (Problem 6). In other words,

. (7)

(b) Repeat part (a) for Hz.

 

Problem 10:

 

Evaluate the following integrals for the continuous-time signals previously defined:

(8)

(9)
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