EEL6667: Homework #1 (Fall 2003)

(6 problems, distributed 9/7 due 9/23) Starred problems (**) are extra credit.

Instructions:

You may use any mathematical package (e.g. Mathematica, Maple, MathCad, matlab) to help you solve these problems, as long as you turn in a complete printout of your code and runtime output.

Problem 1:

- (a) A frame $\{B\}$ is located as follows: initially coincident with a frame $\{A\}$ we rotate $\{B\}$ about \hat{Z}_B by θ degrees and the we rotate the resulting frame about \hat{X}_B by ϕ degrees. Give the rotation matrix which will change the description of vectors from ${}^{B}P$ to ${}^{A}P$. [Craig, Exercise 2.3]
- (b) Repeat part (a), except now, let the rotations be about the fixed coordinate axes, \hat{Z}_A and \hat{X}_A , respectively.

Problem 2:[Craig, Exercise 2.14]

Develop a general formula to obtain ${}^{A}_{B}T$, where, starting from initial coincidence, $\{B\}$ is rotated by θ about \hat{K} , where \hat{K} passes through the point ${}^{A}P$ (not through the origin of $\{A\}$ in general).

Problem 3:[Craig, Exercise 2.15]

{A} and {B} are frames differing only in orientation. {B} is attained as follows: starting coincident with {A}, {B} is rotated by θ radians about unit vector \hat{K} . That is,

$${}^{A}_{B}R = {}^{A}_{B}R_{\hat{K}}(\theta) \tag{1}$$

Show that

$${}^{A}_{B}R = e^{\kappa\theta}$$
⁽²⁾

where

$$\boldsymbol{\kappa} = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$$
(3)

Hints:

$$e^{A} = I + \sum_{i=1}^{\infty} (1/i!)A^{i}$$
(4)

$$\frac{de^{\kappa\theta}}{d\theta} = \kappa e^{\kappa\theta} \tag{5}$$

Problem 4:[Craig, Exercise 2.23]

Give an algorithm to construct the definition of a frame ${}_{A}^{U}T$ from three points ${}^{U}P_{1}$, ${}^{U}P_{2}$ and ${}^{U}P_{3}$, where the following is known about these points:

- 1. ${}^{U}P_{1}$ is at the origin of $\{A\}$.
- 2. ${}^{U}P_{2}$ lies somewhere on the positive \hat{X} axis of $\{A\}$.
- 3. ${}^{U}P_{3}$ lies near the positive \hat{Y} axis in the XY plane of $\{A\}$.

Problem 5:

- (a) Referring to Figure 1, give the value of ${}^{A}_{B}T$. [Craig, Exercise 2.27]
- (b) Referring to Figure 1, give the value of ${}^{A}_{C}T$. [Craig, Exercise 2.28]
- (c) Referring to Figure 2, give the value of ${}^{B}_{C}T$. [Craig, Exercise 2.33]
- (d) Referring to Figure 2, give the value of ${}^{C}_{A}T$. [Craig, Exercise 2.34]

Figure 1

Problem 6:

Given two unit quaternions q and p,

$$q = [s_q, (x_q, y_q, z_q)]$$
(6)
$$p = [s_q, (x_q, y_q, z_q)]$$
(7)

$$p = [s_p, (x_p, y_p, z_p)]$$
 (7)

let us define the following distance metric d:

$$d(q, p) \equiv \min[E(q, p), E(q, -p)] \tag{8}$$

where,

$$E(q,p) \equiv \sqrt{(s_q - s_p)^2 + (x_q - x_p)^2 + (y_q - y_p)^2 + (z_q - z_p)^2}$$
(9)

- (a) Show that d(q, p) = d(p, q).
- (b) Show that d(q, p) = 0 if and only if q and p represent the same rotation. <u>Hint</u>: First show that unit quaternions q and -q represent the same rotation.
- (c) Let,

$$q = \left[\frac{1}{\sqrt{2}}, \left(0, \frac{1}{\sqrt{2}}, 0\right)\right] \tag{10}$$

$$q' = \frac{1}{4} [\sqrt{6} - 1, (0, \sqrt{6} + 1, \sqrt{2})]$$
(11)

$$q'' = \frac{1}{32} [9\sqrt{2} - 4\sqrt{3} - \sqrt{6} - 6,$$

$$(12)$$

$$(2\sqrt{3} - 2\sqrt{6} - 4, 11\sqrt{2} + 4\sqrt{3} + 6 - \sqrt{6}, 8\sqrt{6} - 2)]$$

denote three unit quaternions. Compute d(q, q'), d(q', q'') and d(q, q''). Do the results obey the triangle inequality?

Note: The triangle inequality is given by,

$$d(a,b) + d(b,c) \ge d(a,c) \tag{13}$$

(d) Assume that q, q' and q" represent three different rotations Q, Q' and Q". Derive the equivalent angle-axis (θ, k) representations that describe the following rotations: (1) from Q to Q'; (2) from Q' to Q"; and (3) from Q to Q". What relationship exists between these results and the computed distances from part (c)?

<u>Note</u>: The rotation between two unit quaternions q and p is given by the quaternion $p^{-1}q$.

- (e) Generalize your results from part (d) to show that the distance metric d(p, q) between two quaternions depends only on the angle of rotation θ between the two quaternions, but not the axis of rotation $\hat{\mathbf{k}}$. Give an expression for d(q, p) in terms of θ .
- **(f) Use your expression for d(q, p) in terms of θ to show that the triangle inequality in equation (13) holds in general, thus proving that d(q, p) is indeed a *metric*, which must have these properties:
 - d(q, p) = d(p, q) [part (a)](14)
 - d(q, p) = 0 if and only if q and p represent equivalent rotations [part (b)] (15)

$$d(a,b) + d(b,c) \ge d(a,c) \tag{16}$$