EEL6667: Homework #1 (Fall 2003)

*(6 problems, distributed 9/7 due 9/23) Starred problems (**) are extra credit.*

Instructions:

You may use any mathematical package (e.g. Mathematica, Maple, MathCad, matlab) to help you solve these problems, as long as you turn in a complete printout of your code and runtime output.

Problem 1:

- (a) A frame $\{B\}$ is located as follows: initially coincident with a frame $\{A\}$ we rotate $\{B\}$ about \hat{Z}_B by θ degrees and the we rotate the resulting frame about X_B by ϕ degrees. Give the rotation matrix which will change the description of vectors from P^P to $^P P$. [Craig, Exercise 2.3] \hat{X}_B by ϕ $P^B P$ to $P^A P$
- (b) Repeat part (a), except now, let the rotations be about the fixed coordinate axes, \hat{Z}_A and \hat{X}_A , respectively.

Problem 2:[Craig, Exercise 2.14]

Develop a general formula to obtain ${}_{R}^{2}T$, where, starting from initial coincidence, $\{B\}$ is rotated by θ about , where K passes through the point ${}^{h}P$ (not through the origin of $\{A\}$ in general). ${}^{A}_{B}T_A$, where, starting from initial coincidence, $\{B\}$ is rotated by θ \hat{K} , where \hat{K} passes through the point $\stackrel{B}{A}P$ (not through the origin of $\{A\}$)

Problem 3:[Craig, Exercise 2.15]

 ${A}$ and ${B}$ are frames differing only in orientation. ${B}$ is attained as follows: starting coincident with $\{A\}$, $\{B\}$ is rotated by θ radians about unit vector \hat{K} . That is,

$$
{}_{B}^{A}R = {}_{B}^{A}R_{\hat{K}}(\theta)
$$
 (1)

Show that

$$
{}_{B}^{A}R = e^{\kappa \theta} \tag{2}
$$

where

$$
\kappa = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}
$$
 (3)

Hints:

$$
e^A = I + \sum_{i=1}^{\infty} (1/i!)A^i
$$
 (4)

$$
\frac{de^{\kappa\theta}}{d\theta} = \kappa e^{\kappa\theta} \tag{5}
$$

Problem 4:[Craig, Exercise 2.23]

Give an algorithm to construct the definition of a frame ${}_{A}^{U}T$ from three points ${}^{U}P_1$, ${}^{U}P_2$ and ${}^{U}P_3$, where the following is known about these points: 3

- 1. ${}^{U}P_1$ is at the origin of $\{A\}$.
- 2. ${}^{U}P_2$ lies somewhere on the positive \hat{X} axis of $\{A\}$.
- 3. ${}^{U}P_3$ lies near the positive \hat{Y} axis in the XY plane of {A}.

Problem 5:

- (a) Referring to Figure 1, give the value of ${}_{B}^{A}T$. [Craig, Exercise 2.27] *B*
- (b) Referring to Figure 1, give the value of ${}_{C}^{A}T$. [Craig, Exercise 2.28] *C*
- (c) Referring to Figure 2, give the value of ${}_{C}^{B}T$. [Craig, Exercise 2.33] *C*
- (d) Referring to Figure 2, give the value of ${}_{A}^{C}T$. [Craig, Exercise 2.34] *A*

 Figure 1

 Figure 2

Problem 6:

Given two unit quaternions q and p ,

$$
q = [s_q, (x_q, y_q, z_q)]
$$
\n
$$
n = [s_q, (x_y, y_z)]
$$
\n
$$
(6)
$$

$$
P = \Gamma_p, \, (\lambda_p, \, y_p, \, z_p) \tag{1}
$$

let us define the following distance metric d :

$$
d(q, p) = \min[E(q, p), E(q, -p)] \tag{8}
$$

where,

$$
E(q, p) = \sqrt{(s_q - s_p)^2 + (x_q - x_p)^2 + (y_q - y_p)^2 + (z_q - z_p)^2}
$$
\n(9)

- (a) Show that $d(q, p) = d(p, q)$.
- (b) Show that $d(q, p) = 0$ if and only if q and p represent the same rotation. <u>Hint</u>: First show that unit quaternions q and $-q$ represent the same rotation.
- (c) Let,

$$
q = \left[\frac{1}{\sqrt{2}}, \left(0, \frac{1}{\sqrt{2}}, 0\right)\right]
$$
\n⁽¹⁰⁾

$$
q' = \frac{1}{4} [\sqrt{6} - 1, (0, \sqrt{6} + 1, \sqrt{2})]
$$
\n(11)

$$
q'' = \frac{1}{32} [9\sqrt{2} - 4\sqrt{3} - \sqrt{6} - 6,
$$

$$
(2\sqrt{3} - 2\sqrt{6} - 4, 11\sqrt{2} + 4\sqrt{3} + 6 - \sqrt{6}, 8\sqrt{6} - 2)]
$$
 (12)

denote three unit quaternions. Compute $d(q, q')$, $d(q', q'')$ and $d(q, q'')$. Do the results obey the triangle inequality?

Note: The triangle inequality is given by,

$$
d(a,b) + d(b,c) \ge d(a,c) \tag{13}
$$

(d) Assume that q, q' and q'' represent three different rotations Q , Q' and Q'' . Derive the equivalent angleaxis (θ, \hat{k}) representations that describe the following rotations: (1) from Q to Q'; (2) from Q' to Q"; and (3) from Q to Q'' . What relationship exists between these results and the computed distances from part (c)?

Note: The rotation between two unit quaternions q and p is given by the quaternion $p^{-1}q$.

- (e) Generalize your results from part (d) to show that the distance metric $d(p, q)$ between two quaternions depends only on the angle of rotation θ between the two quaternions, but not the axis of rotation $\hat{\bf k}$. Give an expression for $d(q, p)$ in terms of θ .
- ^{**}(f) Use your expression for $d(q, p)$ in terms of θ to show that the triangle inequality in equation (13) holds in general, thus proving that $d(q, p)$ is indeed a *metric*, which must have these properties:
	- $d(q, p) = d(p, q)$ [part (a)] (14)
	- $d(q, p) = 0$ if and only if q and p represent equivalent rotations [part (b)] (15)

$$
d(a,b) + d(b,c) \ge d(a,c) \tag{16}
$$