Denavit-Hartenberg parameters

1. Summary of the link parameters in terms of the link frames [1]

$$a_i$$
 = the distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i . (1)

$$\alpha_i$$
 = the angle between \hat{Z}_i and \hat{Z}_{i+1} measured about \hat{X}_i . (2)

$$d_i$$
 = the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i . (3)

$$\theta_i$$
 = the angle between \hat{X}_{i-1} and \hat{X}_i measured about \hat{Z}_i . (4)

2. Summary of link frame attachment procedure [1]

- 1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and i + 1).
- 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i* th axis, assign the link frame origin.
- 3. Assign the \hat{Z}_i axis pointing along the *i* th joint axis.
- 4. Assign the \hat{X}_i axis pointing along the common perpendicular, or if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes.
- 5. Assign the \hat{Y}_i axis to complete a right-hand coordinate system.
- 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$, choose an origin location and \hat{X}_N direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

References

[1] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison-Wesley, Reading, MA, 1989.