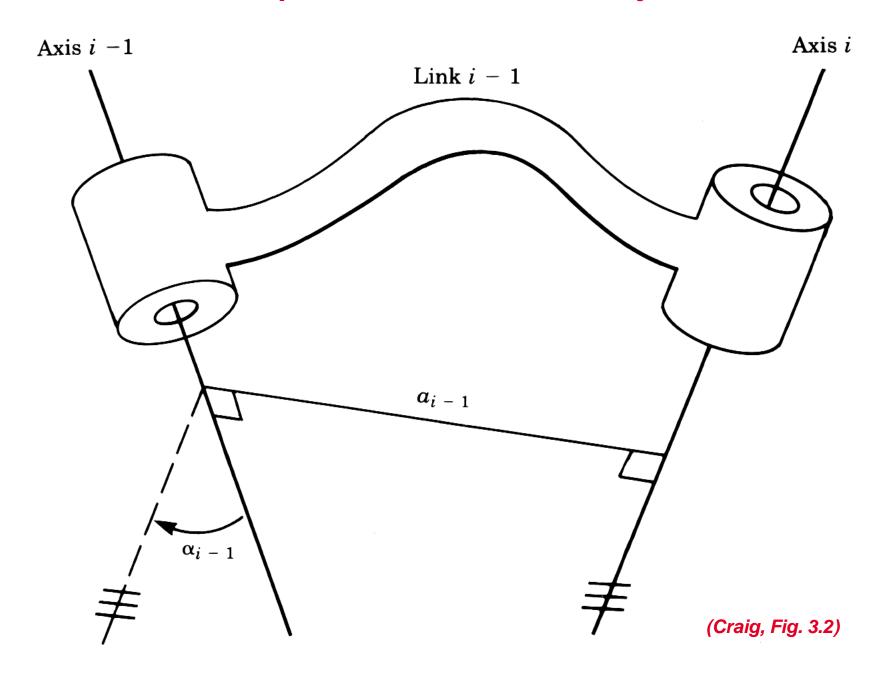
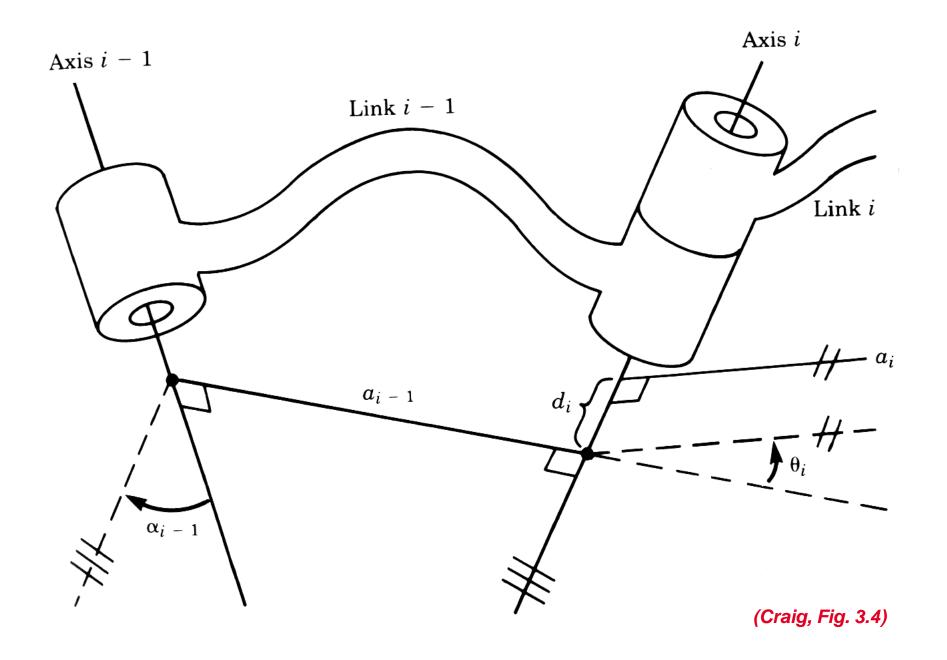
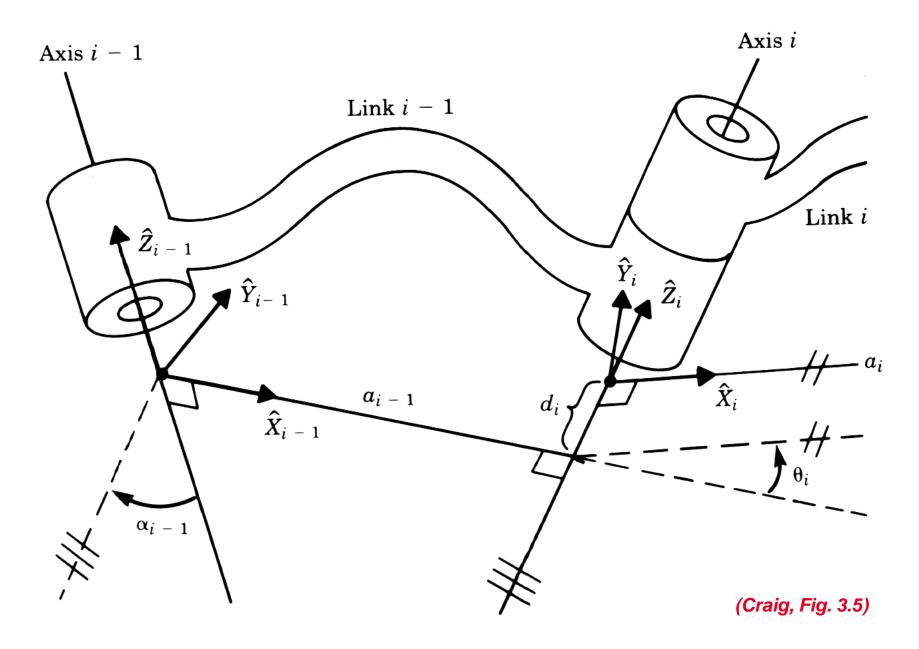
Relationship between consecutive joint axes



Relationship between consecutive links

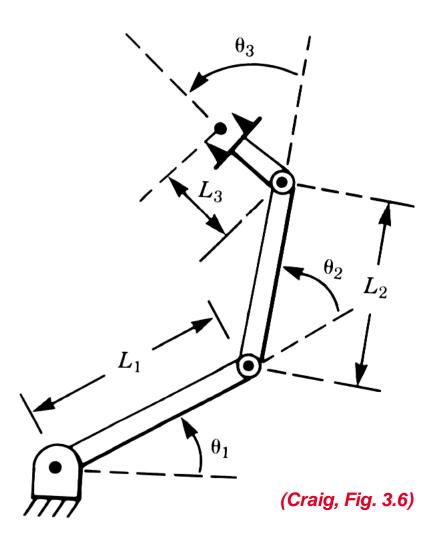


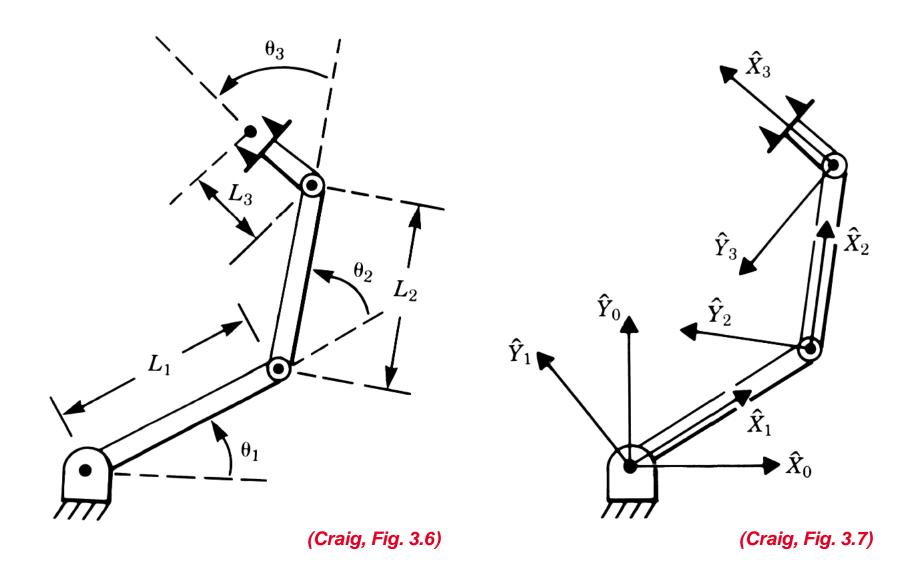
Coordinate frame assignments

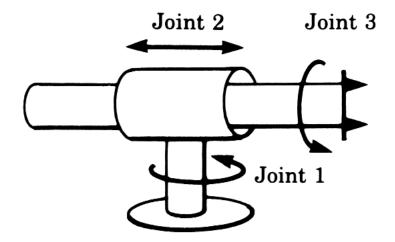


 a_i = the distance from Z_i to Z_{i+1} measured along X_i ; α_i = the angle between \hat{Z}_i and \hat{Z}_{i+1} measured about \hat{X}_i ; d_i = the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i ; and θ_i = the angle between \hat{X}_{i-1} and \hat{X}_i measured about \hat{Z}_i .

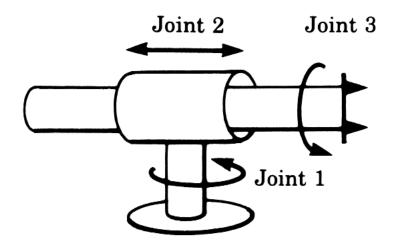
- 1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and i + 1).
- 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i*th axis, assign the link frame origin.
- 3. Assign the \hat{Z}_i axis pointing along the *i*th joint axis.
- 4. Assign the \hat{X}_i axis pointing along the common perpendicular, or if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes.
- 5. Assign the \hat{Y}_i axis to complete a right-hand coordinate system.
- 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$ choose an origin location and \hat{X}_N direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

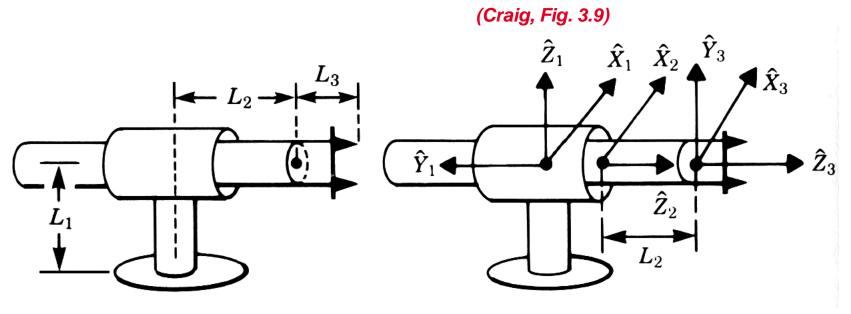






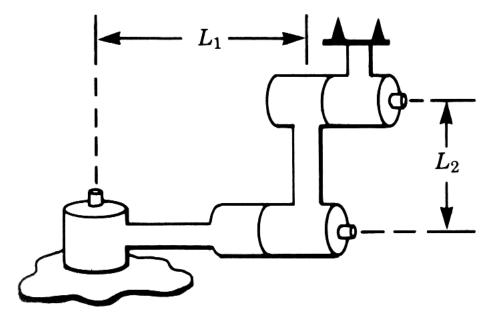
(Craig, Fig. 3.9)





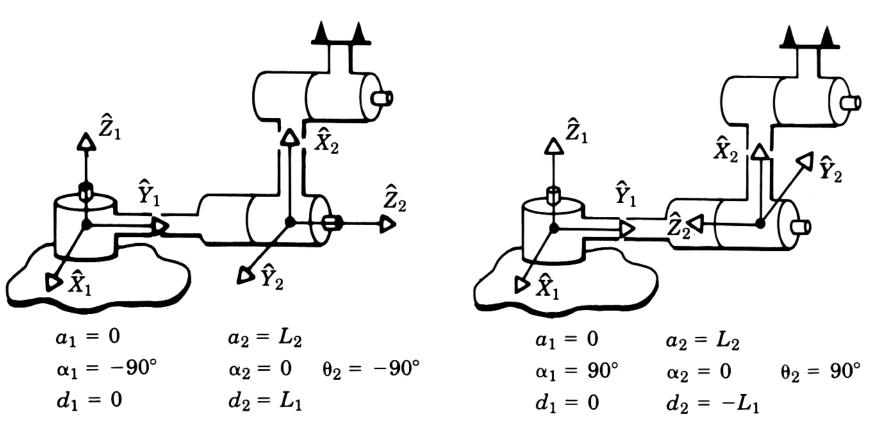
(Craig, Fig. 3.10)

Example #3: Nonuniqueness of frame assignments



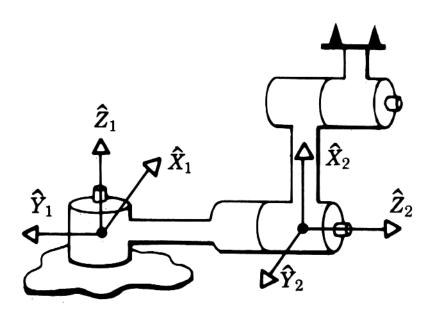
(Craig, Fig. 3.12)

Example #3: Nonuniqueness of frame assignments

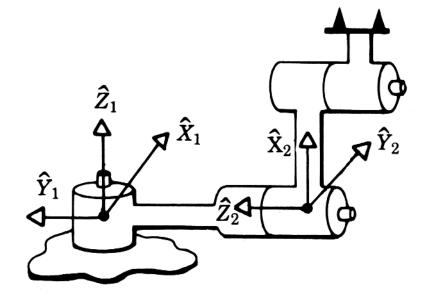


(Craig, Fig. 3.13)

Example #3: Nonuniqueness of frame assignments



$$a_1 = 0$$
 $a_2 = L_2$
 $\alpha_1 = 90^{\circ}$ $\alpha_2 = 0$ $\theta_2 = 90^{\circ}$
 $d_1 = 0$ $d_2 = L_1$



$$a_1 = 0$$
 $a_2 = L_2$ $\alpha_1 = -90^{\circ}$ $\alpha_2 = 0$ $\theta_2 = -90^{\circ}$ $d_{1=0}$ $d_2 = -L_1$

(Craig, Fig. 3.15)