General coordinate frame assignments a_i = the distance from Z_i to Z_{i+1} measured along X_i ; α_i = the angle between \hat{Z}_i and \hat{Z}_{i+1} measured about \hat{X}_i ; d_i = the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i ; and θ_i = the angle between \hat{X}_{i-1} and \hat{X}_i measured about \hat{Z}_i . - 1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and i + 1). - 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the *i*th axis, assign the link frame origin. - 3. Assign the \hat{Z}_i axis pointing along the *i*th joint axis. - 4. Assign the \hat{X}_i axis pointing along the common perpendicular, or if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes. - 5. Assign the \hat{Y}_i axis to complete a right-hand coordinate system. - 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$ choose an origin location and \hat{X}_N direction freely, but generally so as to cause as many linkage parameters as possible to become zero. # **Derivation of homogeneous transform** ### **Planar manipulator** (Craig, Fig. 3.20)