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Iterative General Dynamic Model for Serial-Link Manipulators

1. Introduction

In this set of notes, we are going to develop a method for computing a general dynamic model for serial-link
manipulators. This dynamic model will relate the set of torques or forces T required at the joints of the manipu-
lator (torques for revolute joints, forces for prismatic joints) to achieve a particular set of joint positions, veloci-
ties and accelerations (®, @, ©):

T = h(O, 6, 0) (D

Note that in equation (1), T, ®, ® and © are all nx 1 vectors, where n is the number of joints in the manipu-
lator, and & is some nonlinear function. In order to derive such a dynamic model, we will do the following:

1. Relate linear and angular accelerations of coordinate frames with respect to one another.

2. Generalize the basic laws of motions to three dimensions and apply those laws of motion to the serial configu-
ration of manipulators.

3. Extend the concept of moments of inertia to three dimensions (inertia tensor). [This part of the discussion will
not be part of this set of notes, but will be handled elsewhere. |

2. Accelerations between coordinate frames
A. Basic definitions

The linear acceleration Vg of a point Q with respect to some coordinate frame {B} is defined as the time
derivative of the linear velocity 5 VQ :

B B
B, d B . VQ(t"'At)_ VQ(I)
Vo = E( VQ) = hmAt N 0( A7 2)
Note that this definitions is similar to that of linear velocity itself (from Chapter 5):
B B
By _ 4By 1 Q(r+Ar) —"0(1)
Vo = 2(50) = tim,, _, o LD 3

Similarly, the angular acceleration AQB of coordinate frame {A} with respect to coordinate frame {B} is
defined as the time derivative of the angular acceleration AQB :

AQ At) —4Q
(1 + A1) B(t)} @

A d A .
Qp = E( Qp) = hmAt—)O[ A

B. Notation

We define the following short-hand notation for the linear and angular accelerations of some coordinate
frame {A} with respect to a fixed universal reference frame { U} :

v, = “Vaore (similar to vy = YV, ore from Chapter 5) (5
(xiA = UQA (similar to W, = UQA from Chapter 5) (6)

C. Linear accelerations between coordinate frames

In Chapter 5, we derived the following important equation for two coordinate frames {A} and {B} with
coincident origins (i.e. no translation between {A} and {B}):

v, = 5REVY +7Qp x [R(Q)] ({A} and {B} origins coinciden). %)
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Let us rewrite equation (7) to establish an important formula for the time derivative of a rotation matrix times

a vector:

o = RV + 2y x [RCO)]

%[QR(BQ)] = ARE0) + o, x 4R %0)]
%[QR(BQ)] = ARP0) + ", x[4R(0)]

®)

(C))

(10)

Note that equation (10) gives us a general formula for the time derivative of RQ where R is some rotation

matrix and Q is some vector.

Now, let us differentiate equation (8) with respect to time:

v, = 5ROV + 2, x [R(C0)]
Ay d A, B - A, B A d A, B
Vo = ZI5R( VQ)]+AQB><[BR( Q]+ Qpx—[pRCO)]

In equation (12) we made use of the following identity for any 3-space vectors Q and P:

dP

7 =QxP+QxP.

d _do
E#QXP)_EEXP+QX

Let us now substitute equation (10) into equation (12):

A d A_ B . A B A d A_ B
Vo E[BR( VQ)]+AQB><[BR( o)1+ QBXE[BR( 0)]

A VQ

{Q?R(BV'Q) +10, [QR(BVQ)]}HQB x [5R(0)] +

Q% {;?R(BQ') +10,x [;?R(BQ)]}
In equation (15), let BQ = BVQ so that:
Yo = {gR(BVQ) +4Q,x [’;R(BVQ)]} +40p x [HR(0)1 +
40, {;?R(BVQ) +40, % [;;R(BQ)]}
Note that we can combine two cross-product terms in equation (16),
Ao = {gR(BVQ) +4Qp x [QR(BVQ)]} +40p x (4RO +
"0 {QR(BVQ> +10,x [2R(BQ)]}

o = 3RV + 210, x RV + 4 x [REQT + 0y x [0 x 3R(Q)]

(In

(12)

(13)

(14)

(15)

(16)

(7)

(18)
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o = GR(CVo) + 2"y x [ER(V )1 + 4 x [zRCO)] + " x [y x 5R(0)] (19)

Equation (19) gives the angular acceleration AVQ for a vector O defined with respect to coordinate frame
{B}, when the origins of coordinate frames {A} and {B} are coincident with one another. If the origin of
coordinate frame {B} is accelerating with respect to {A} equation (19) is easily modified to include that
additional linear acceleration:

A V'.Q

"Waore +5R(Vo) + 210y x RV +40p x RO + 0y x ['Qp x 5R(Q)] (20)

AVQ

"Waora + 5R(Vo) + 210y x RV + 0 x RO + 0y x ['Qp x pR(CO)] 21)

Equation (21) allows for the possibility that vector 2Q is moving with respect to coordinate frame {B} . Let
us now consider a more restrictive case — namely, that vector 5Q is fixed with respect to coordinate frame
{B} . In other words, we will assume that there is movement only between coordinate frames {A} and {B}
(and not within coordinate frame {B} ), so that:

Vo =0 (22)
Byo =0 (23)

This assumption simplifies equation (21) substantially:

A

Vo = “Vaorg + 5R(°Vo) + 2" x [ER(V )1 + 40 x [zRCEQ + " x [ x 5RO 24)

. . - A B A A A _ B B .
Vo = Viorg +*Qpx [RCOT + 0y x "0y x 1. v, = Prp = 0 (25)

D. Angular accelerations between coordinate frames

Now, let us consider angular accelerations between different coordinate frames. Let us begin with the rela-
tionship of angular velocities between three coordinate frames {A}, {B} and {C}:

‘o = "o+ R0 26)

Differentiating (26) and again substituting equation (10), we get:

- . d A_ B

e = g+ ZIERCQE)] 27)
. . A B A A _ B

A0c = A0+ 5R(CQe) + 7 x [GRCQ)] (28)
. . A . A A_ B

400 = A0+ 5R(PQ0) + 70, x [ERCQ] (29)

E. Summary of results

Below, we summarize our results on linear and angular accelerations:
A A A B A A B . A B A A A, B
Vo = "VBORG + gR("Vp) + 2" Qp X [pR( VQ)] +AQB X[ERO O+ QX[ QpxpR(CO)] (30)
B

. . B A_ B A A A_ B B
Wo = "VaorG + Q< [RCQ) + " x ["Qp x 3RO, PV, = Vo = 0 3D

Ade = 405+ 5R(P00) + 2, x [GR(CQ 01 (32)
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3. Basic equations of motion
A. Newton’s law

Consider Figure 1 below, which depicts a rigid body, whose center of mass is accelerating with acceleration
v under a net force F acting on the body.

(Craig, Fig. 6.3)

Figure 1: Rigid body, whose center of mass is accelerating under the action of a net force F.

Newton’s second law of motion relates F' and v.c:

F = mvg (33)
where,
F = net force acting on the body, (34)
m = mass of the body, and, 35)
vlc = acceleration of the center of mass of the body. (36)

B. Euler’s law

Consider Figure 2 below, which depicts a rigid body, which is rotating with angular velocity ® and angular
acceleration @ under a net moment N acting on the body.

N
(Craig, Fig. 6.4)

Figure 2: Rigid body, which is rotating under the action of a net moment N.
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Euler’s law of rotational motion for rigid bodies relates N and (®, ®) :

N = Cl(b+oo><clm 37
where,

N =net moment acting on the body, (38)

CI = 3 X 3 inertia tensor, written with respect to coordinate frame {C} (at center of mass), 39)

o = angular velocity of the body, and, (40)

® = angular acceleration of the body. 41

C. Dynamic modeling

Given the results of Section 2 on accelerations, and the basic laws of motion in the previous two sub-sec-
tions, we will now proceed as follows in deriving the dynamic model for a serial-link manipulator:

T = h(®,0,0) (42)

We will assume that the joint positions @ , joint velocities ® and joint accelerations ® are known, so that
we can compute the corresponding joint torques/forces T required to achieve the known joint trajectory. We
then break down the development of the dynamic model in equation (42) into three main tasks:

1. Outward propagation of velocities and acceleration from the base coordinate frame {0} to the end-effec-
tor coordinate frame { N} .

2. Newton’s and Euler’s equations of motion from the base coordinate frame {0} to the end-effector coordi-
nate frame {N}.

3. Inward propagation of force balance and moment balance equations from coordinate frame { N} to coor-

dinate frame {1} .
4. Propagation of velocities and accelerations
A. Angular velocities and accelerations

In Chapter 5, we developed the following relationship for angular velocities between consecutive links:

i+1 i+1i o i+ 1~ . ]
®, = RoO;+6;.1 Zi+1 (velocity propagation) 43)
Now, we want to develop an analogous relationship for angular accelerations:
i+1. i,
0, = g(w, ) (44)

where g( ) represents some functional mapping. To do this, we will apply the general relationship that we
developed in Section 2 for the propagation of angular accelerations:

A

Qc AQB + ?ER(BQC) (45)

Ade = A0, + 4R + 0 x [HR(Q 1. (46)

First, we will get equation (43) into the same form as equation (45). Recall that o ®,, ; and lmi are short-
hand notation, and can be written less compactly as,
i+1

U P+ U
(Di = UIR( QI) andH (O) = UR( Q‘+1)' (47)

i+1 i

i

Also note that,
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. i+l A w1 i

Oiv1 Ziy = l+[R(lQi+1)' (48)
Equation (48) requires some explanation. The right-hand side of (48) denotes the angular velocity of coordi-
nate frame {i+ 1} with respect to {i} expressed in the {i + 1} coordinate frame. Now, think about the
left-hand side of (48). The angular velocity between frames {i} and {i+ 1} is given exactly by the joint
rate 0; . oriented along the Z;+ 1 axis, and that the left-hand side of (48) is expressed in terms of the

{i+ 1} coordinate frame. Substituting (47) and (48) into equation (43),

. . . ) i+ 1A
z+]m[+1 _ l+ll~RlC0[~+9,-+]l 7 (49)
i+1,, U i+1, i, U i+1, i
I+UR( Q)= l+iR(;R( ‘Q‘i)+1+ ROQ ) (50)
i+l U i+l i, U i+l i

RO ) = RyROCQ)+ RO, ) D

Now, let i = B and i + 1 = C so that equation (51) becomes:

R0 = SRir("Qy + R0 (52)
R0 = (R(YQy + SRR (53)

Multiplying equation (53) by lC]R and letting U = A,

v,c, U v,c, U v,C, B

RORCQL) = RGR(CQp) + (RzRCQL) (54)
U U U, B

Q- = "Qu+ gR(CQ) (55)
A A A, B

Q- = "Qp+3R(CQ) (56)

Note that we have now transformed equation (43) into (45), which means that equation (46) can be used to
propagate angular accelerations from one link to the next for serial-link manipulators.

In summary,
i+ 1 i i ; i+1r A A A, B
o, = TR0, Ziv107Q0="Qp+3R(CQ) (57)
with substitutions:
i+1 i+1, U
O = RO ) (58)
o, = jR("Q) (59)
. i+1_~ i+ 1. i
Oivt Z = TRCQ D, (60)
i=B,i+1=Cand U = A. (61)

From equation (46), angular accelerations are propagated by,
. . A, B: A A B
400 = 20+ 5R(CQe) + QX [ZRCQ ] (62)

Let us now transform this relationship into link notation by reverse substitution. Firstlet B = i, C = i+ 1
and A = U, so that:

U, U - U | U U [
Qi = Qi+ ROQ D+ Qx[R(Q, DI (63)
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l+1

Multiply equation (63) by = ;R

i+1_ Upx + 1

RV = IR+ RIRC 1+ { Qx| R(QHI)]} (64)

In order to further develop equation (64), we will need the following identity: for any 3-space vectors Q, P
and rotation matrix R,

R(QXP) = (RQ)X(RP). (65)
Thus, we can modify the last term of (64) using (65):

URYQ = TRV + T RIRCQ )+ TR { Qix[‘fR(iQM)]} (66)

1+1R QH.l _ i+L1/RUQ l+1R R(Ql+1)+[1+1RUQl] [1+1R R(QH_])] (67)
Using,

i+1,U i+ 1 i+ 1 i+ 1, i

URGR =T Rand T R = "T R R, (68)
equation (67) further simplifies to:

t+1R QH.[ _ i+lllRUQ' l+lRlQl+1 [l+1R Q]X(z+1RlQl+l) (69)

TR G = TRGRYQ) + T IR+ 1T RGRUQ)IX (TR ) (70)

Finally, we make the following substitutions into equation (70):

JRYQ, = ‘o, (by definition) 1)
U -~ . 1 @ ..
JR7Q; = '@, an a’t JR(YQ; ) = "o, | (by definition) (72)
o ]iRiQ iv1 = 0; . ll N IZ +1 [previously explained in discussion following (48)] (73)
i+ 1.0 . i+ 12
R Q.1 =0,,1  Z+1 [analogous to (73) above] (74)

These substitutions result in:

RV = TTRGRYG) + IR+ 1 T RGRY Q)T (IR, L)) (75)
1 . 1 . +12 1
o =R+ N T A le)x(eHl 'Zis 1) (76)
i+1. i+1.i i+1i +12 . i+ 12

(L)I-+1 = iR(Di ( R(D)XGH_I Zi+1+9i+1 Zi+1 (77)

B. Angular velocities and accelerations: summary

Summarizing the results developed in the previous section, angular velocities and accelerations are propa-
gated from link i to link i + 1 using the following two equations (for revolute joints):
i+1

1;\
o, = Ro 4 0: 1 Zie1 [from (43)] (78)

i+1
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i+1. i+1,i i+1,i

+12 ” i+ 12
i, = R +( Rco)xe,+1 CZio140, 1" Zie [from (77)] (79)

I 1

Note that equations (78) and (79) allow us to compute the angular velocity o 1 +1 of link frame {i + 1}
in terms of the angular velocity 0) of link frame {i} and 0, 1; and the angular acceleration lcol +1 of
link frame {i + 1} in terms of the angular acceleration ' ®; and angular velocity 0) of link frame {i} and
8, , 1 . Also, note that for a prismatic joint,

éi+1 =ei+l =0 (80)
so that (78) and (79) simplify (for prismatic joints) to:
i+1 i+1

o, = "'Ro, (81)

i+1 i i

e = TR, (82)

I 1

C. Linear accelerations of link frame origins

In Section 2, we derived the following relationship for the propagation of linear accelerations:

Vo = YVaora + jR(°Vo) + 2"y x [ER(V )T + 40 x [EREQT + " x [y x 3R] (83)

We will now convert equation (83) into link-specific form as we did above for angular accelerations. First,
let us make the following substitutions:

A=U (84)

B =i (85)

O = i+ 1, ORG (for subscripts) (86)
Given these substitutions, note that BQ now denotes the origin of link frame {i + 1} in terms of link frame
{i}; in short,

BQ = iPi+ 1,0RG (87)

Thus, equation (83) becomes,

U
Viii,0rG = V, ORG + R(V+1 orRG) T2 Q x[ R( i1 or) (88)
U U, i
Q;x [ iR(lPi+l.()RG)]+ Q;x[ Qix iR([Pi+l,()RG)]

Let us now pre-multiply equation (88) by ' +[;

i+1 i+1 i+1
RV+10RG_ RV:ORG"’ RR(V+10RG)+
1 1
2" RV [ RIRCV,, 1 ore)1+ )

+1,U +1
RV < RIRCP, 1 o)1+

i+1 i+1

1
’*RQ x [ RQ RR(PHIORG)]

Note that we used vector identity (65) in distributing UR over the cross product of vectors in (89). Let us
now consider each of the terms in equation (89) one by one. The left-hand side of (89) can be written in
short-hand notation as:

RNV ore = Vi, (by definition) (90)
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Similarly for the first term on the right-hand side of equation (89):

RV, org = TIRGRV, ope) = TR, (by definition) ©1)

Equations (90) and (91) simplify equation (89) to:

i+ 1 i+ 10" '+]
= RN+ T URORCV, | ore) +

i+1

z+1R Q [t+1RUR(V+10RG)]+

92)
l+1R Q [l+1R R(Pl+10RG)]+
t+1R ,Q. [l+1R ,Q. t+1RUR(Pl+10RG)]

Let us now consider the second term on the right-hand side of equation (92). The notation iy, i+1, orG 1ndi-
cates the linear acceleration of the origin of link frame {i+ 1} with respect to (and in terms of) link frame
{i} . Thus, for a serial-link manipulator, we can write:

i+1~

i+1 i+1 .
uR R(V+10RG)— R(V+10RG)_d1+l Ziy1 (93)
Similarly,
i+1 i+1 : i+1~
oR R( Vz+] ORG) = R(V+1 orG) = div1  Ziyy (94)

Note that linear relationships in (93) and (94) are analogous to the manipulator-specific angular relationships
in (73) and (74). Equation (92) now simplifies to:

. . . . +1~
l+lvi+1_l+1RlV +dl+ll Zi+1+
1 i+1~
2" RV xd; Tz
i+ i+ 95)
z+1RUQ [z+1R R(PH_IORG)]+
l+1RUQ [1+1RUQ l+1RUR(PH_1 ORG)]
Let us now consider the angular velocity and acceleration terms in (95). From prior discussion,
z+lR .Q _ 1+1R( R Q) l+lR(1) (96)
"RV, = TIR(RYG) = TR, 97)
so that equation (95) further reduces to:
i+1° i+1 i+l
T = RV+dz+1 Zi+1+
1 +12
2(* Rm)xd Zio 1+
z+l i+1 (98)
i+1i i+1,U
R OXx[ R R(Pz+10RG)]+
R e x [ R0, x T URRCP, | ore)]
Next, let us make the following substitution in (98):
i+1 i+1 i+1
oRRCP 1 ore) = " TRCPy or) = T RCPL ) ©9)
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where lPi +1 1s simply short-hand notation for lPl. + 1. ORG - Thus, equation (98) reduces to:

~ . . . N

i+1° i+1 i+1 i+l i
Vigl = IRV +dz+i Zi 1+ 2 I'R“)')Xdil-i-l Zi+1l+l (100)
+ +
Hl.Rlo)l x[' R(Pl+1)]+l+ R'ox['" Raox""R(P, )]
Finally, note that the relationship in (65) can be rewritten as,
(RQ) X (RP) = R(QXP) (101)
so that we can rearrange and group terms in equation (100):
i+1° i+1 i+ls i+1,i +12
Vi+1:. IRV +dl+ll 'Zl'+l+2( lR(D)XdI:_I Zi+ll+ (102)
+ . + + + +
RO X [TTRCP, D1+ Rlox [T R TIRCP ]
i+1° i+1 i+lr i+1i +12
Vie1 = R‘ +dz+1 Ziv1+ 2 R(‘))del Zig1t (103)
TR0 <P, )+ R x (o, x P, )]
Thus (for a prismatic joints):
i“v'l.Jrl l+1R[(o><Pl+1+co><(w><Pl+])+ v.]+
(104)

i+1,i +12 - itlr
2( R(D)Xd1+l Zig1+digr Zig

5
Note that equation (104) allow us to compute the hnear acceleration ' ¥ 1 of link frame {i + 1} in terms
of the angular acceleration '@, , linear acceleration ' v and angular VClOClty 0) of link frame {i}, and
d; .1 and d;, ; . Also, note that for a revolute joint,

diy1 =diy1 =0 (105)
so that (104) simplifies (for revolute joints) to:

i+1°

v 1+1R[co><Pl+1+(x)><(mel+1)+v] (106)

i+1
D. Linear acceleration of a link’s center of mass

In order to apply Newton’s second law of motion in equation (33), we need to know not just the linear accel-
eration of link frame {i} but of the center of mass C; of link i as well. Once again, we will begin with the
relationship for the propagation of linear accelerations derived in Section 2:

Vo = Vaora + 5R(°Vo) + 2" x [ER(V )1 + 40 x [zR(EQ] + " x [y x 3R (O] (107)

Let us make the following substitutions:

A=U (108)
B=i (109)
O = C; (for subscripts) (110)

Given these substitutions, note that ~Q now denotes the origin of the center of mass of link frame {i + 1}
in terms of link frame {i} ; in short,

0 ="pP. (111)

- 10 -
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Thus, equation (107) becomes,

Uy, Uy, Uy, i U U, i
Ve = Viorg* l.R(lv(,’})+2 QX[ R(V)I+
’ (112)
U U, i U U U, ,i
Qi x[ l.R('PC[)]+ QX[ QX l.R(’Pq)]
In equation (112), note that for rigid links,
'VC’_ = IVC[ =0 (113)
so that (112) reduces from,
U U, U, i U U, i
Ve, = Viorg+ R(Ve)+27Q x| R(V)+
' (114)
U, U, i U U U, i
Qx| l.R(lPCi)]+ Q. x[ Q% l.R(lPCi)]
to the simplified form,
U, U, U, U, i U U U, i
Ve = Viorg+ QuxI l.R(lPCi)]+ Qx[Q,x l.R(lPCi)] (115)
Let us now pre-multiply equation (115) by UiR :
i U, i U i Upg i U, i i U i U iUy i
(R Ve =GRV, opg+ (R QX [RR(P)1+ (R QX [R™ Q% (ROR(Pe)] (116)

Note that we used vector identity (65) in distributing (}R over the cross product of vectors in (116). Similar
to earlier derivation, we now make the following substitutions:

,jRUVC[ - "V'C[ (by definition) (117
RV, ore = v, (by definition) (118)
iU~ inUps i ..

gR Q= o and ;R Q[. = O, (by definition) (119)

Equation (116) consequently reduces to:

e, = Vit o [JRLZI.R(iPCi)] +'o.x [0, X llefR(iPCi)] (120)
Noting that,

iU i i

uRRCPc) = Pe (121)

equation (120) now reduces to:

Ve = W+ 'o,x P+ oy x oy x P (122)

i

Ve = W+, x iPCi +'o. x [0, x iPCi] (123)

-11-
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5. Link-specific equations of motion
A. Manipulator-specific equations of motions

We can rewrite the basic equations of motion in (33) and (37) in more link specific notation. Specifically,

Fy = myc (124)
Cs. .
N; = Lo+ o, x Lo (125)
where,
F; =net force acting on link i, (126)
m; = mass of link 7, (127)
v.C_ = acceleration of center of mass of link i, (128)
N; = net moment acting on link 7, (129)
Cill. = inertia tensor, written in frame {C;} located at the center of mass of link 7, (130)
®, = angular velocity of link i, and, (131)
®; = angular acceleration of link i . (132)

We can now completely and succinctly write the outward propagation of velocities and net forces/moments.
In the following subsections, we do so for revolute and prismatic joints, respectively.

B. Summary of outward iteration

1. Revolute joints:

i+1 i+1 i : i+1s
W, = RO+0;,1  Zis (133)
i+1. i+1,i. i+1,i ; i+12 ~- i+12
@, = RO+ RO)X6;41 Zi+1+0;41 Zi+1 (134)
ivl: i+l i i i i i fio
Vigl = I.R[col_x P+ o,X(o,X P, )+ vl (135)
2. Prismatic joints:
i+1 i+1,i
0, = Ro; (136)
i+1. _ vl
W= RO (137)
il il 8. : . . .
TN =" Ro.x'P,,  +'o.x(o.xP,, )+v.]+
i+1 i i i+1 i i i+1 i
: . (138)
Fa il _p : i+1~ - i+1~
20 Ro)xdivy  Ziyy+divr Zigy
3. Both joint types:
i+1. _ i+l i+ 1. i+1 i+1 i+1 i
Ve Vig1+t' T 0 X P+ o X[ o, X (139)

i+1
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AR (140)

i+ i+ 1 - i
o e+ (141)

6. Force/moment balance equations
A. Introduction

Equations (133) through (141) give us the net forces/moments at a given link required to cause the desired/
known joint motion (@, ©, ®) . We now must figure out what part of those net forces/moments must be sup-
plied by the joint actuators. To do this, we will write force/moment balance equations about the center of
mass of each link.

Consider Figure 3 below, which illustrates the forces and moments acting on link i. In Figure 3 we use the
following notation:

{i+1}

fi (Craig, Fig. 6.5)

Figure 3: Forces and moments action on link i.

[f; = force exerted on link i by link i -1, (142)
fi 41 = force exerted on link i + 1 by link i, (143)
n; = moment exerted on link i by link i -1, (144)
n; .1 = moment exerted on link i + 1 by link i, (145)

and, as before,

F; = net force acting on link i, and, (146)

N; =net moment acting on link i. (147)
Also,

[Pl- + 1 = vector from the origin of frame {i} to the origin of frame {i+ 1}, (148)

V, = vector from the center of mass of link i to the origin of coordinate frame {i}, and, (149)

-13-
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V, = vector from the center of mass of link i to the origin of coordinate frame {i+1}. (150)

B. Force balance equation
Given the above notation, we can write the force balance equation for link i :
Fi=fi-fiaa (151)

We can, of course, express equation (151) with respect to any coordinate frame. Let us rewrite (151) in terms
of coordinate frame {i}:

i i i

Fp= fi=Jiv (152)
1 [+ 1

Fi=fi- G R i (153)

i i i i+1

F;= -G B fig (154)

C. Moment balance equation

Now, let us write the moment balance equation about the center of mass of link i :

Ny =n;—n; | +V; Xf;=V,X (155)

i+1

Note that V| X f; and -V, X f; | give the moments induced by forces f; and —f; , | , respectively, about the

center of mass of link {7} . Let us now write expressions for V| and V, in link-specific notation:
Vi =("Pc) (156)

'P). (157)

i
Vy=( Pii- 1
Substituting (156) and (157) into (155) and expressing with respect to frame {i} :

N, = l”i_l”i+1 +(_1PC[)lei_(lPi+l_IPC[)lei+1 (158)

14
Rearranging terms and keeping equation (152) in mind,

i i

i i i i i

Np=mp=n = PeX(fi= [ )= P X fiy (159)
i i i i i

Ny = m=n = Pe X Fi= P 1 X [y (160)
i i i i i+l

Np = mi=n = Pe X Fi= P }[G R fipy] (161)
i i i+1

Ny = n="npy = P X F= P X 0GR ] (162)

l 1

D. Inward iteration of link forces and moments

Thus the force and moment balance equations at link i are given by,

. . —
Fy = fi= (B fiyy and (163)
i i i i il

Ny = nm=n = Pe X Fi= P }[G R fiyq] (164)

S 14 -
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We can rewrite equations (163) and (164) as iterations that propagate lfl and ini from the end-effector to the
link frame {1} :

. — .
5= BT iy +F (165)

i+1

N+( R 1+’PC[_><IFI.+'PZ.+1><[(I+1) fiiql (166)

z+l

Note that equations (165) and (166) allow us to recursively compute the forces and moments that each link
exerts on its neighboring links by inwardly propagating from coordinate frame {N} to frame {1} . The last
remaining question is, once equations (165) and (166) are computed, what should be the torques/forces for
the actuators to achieve the desired joint motion? All components of the force and moment vectors f. and
n are resisted by the structure of the mechanism itself, except for the torque/force about/along the joint
ax1s Therefore the required forque for a revolute joint i is given by,

T.='n,-'Z (167)

while the required force for a prismatic joint i is given by,
v =f- 7. (168)

7. Complete formulation of the iterative Newton-Euler dynamics

This section summarizes the complete formulation of the iterative Newton-Euler dynamics model. It consists of
(1) the outward propagation of angular velocities and linear and angular accelerations, (2) the outward propaga-
tion of net moments and forces acting on the links, and (3) the inward propagation of forces and torques between
links. Collectively, equations (170) through (182) implicitly define the relationship we were looking for at the
beginning of this discussion — namely,

= h(©, 0, §) (169)
A. Outward iteration

1. Revolute joints:

. Gan ) &
o, = TR+ 0,1 Zi (170)
dasl g i+1. i, i+1,i +12 . i+12

@, = R +( Rw)><9,+1 Zi+1+0;41  Zi+1 (171)
= TR X P+ ey x (X P )+ (172)

2. Prismatic joints:

i+l(’3,‘+1 _ i+liRi‘Di (173)
o =R, (174)
i“v‘,H:’HR[me ]+mx(wxPl+1)+iﬁi]+
! (175)
i+l i+1~ 00 i+1a

2( Rm)Xdz+l Zig1+div1 Zigg
3. Both joint types:

i+1. _ i+l i+ 1. i+1 i+1 i+1 i+1
Ve, = Vigpt e X P+ o X[ e X Pe ] (176)
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i+1 i+1 -
Fiv1=miyg ch (177)
i+1 C;, i+ 1. i+1 C;, i+1
Nigr= "y T 0 gt o X T ey (178)
B. Inward iteration
1. Both joint types:
i i+l i
=GR i + F (179)
i i i\ i+1 i i i i i+1,
n = Nt R m+ Pe X it P XGRSy (180)
2. Revolute joints:
T = 'n-'Z (181)
3. Prismatic joints:
T =f- 7. (182)

C. Initialization of propagations

In order to compute equations (170) through (175), we need to know Ocoo , 06)0 and OV.O —that is, the angu-
lar velocity, and linear and angular acceleration of the base coordinate frame {0} . For a fixed-base manipu-

lator,
Oy — T 183
@) =[000)] (183)
%y = [0 00 and, (184)
O, = -%G, (185)

where 'G denotes the gravity vector. Note that (185) is equivalent to saying that the base of the robot is
accelerating upward with acceleration g, and therefore easily incorporates the effects of gravity loading on
the links without any additional effort.

. N+1 N+1 .
In order to compute equations (179) and (180), we need to know * JSy4 and * ny ., — thatis, the
forces and moments from the environment acting on the end-effector of the manipulator. When the manipu-
lator end-effector is not in contact with any object or obstacle, these are simply given by,

N+1
"yer=T[000" and, (186)

N+1”1v+1 _ [OOOJT' (187)

- 16 -
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