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Iterative General Dynamic Model for Serial-Link Manipulators

1. Introduction
In this set of notes, we are going to develop a method for computing a general dynamic model for serial-link
manipulators. This dynamic model will relate the set of torques or forces  required at the joints of the manipu-
lator (torques for revolute joints, forces for prismatic joints) to achieve a particular set of joint positions, veloci-
ties and accelerations :

(1)

Note that in equation (1), , ,  and  are all  vectors, where  is the number of joints in the manipu-
lator, and  is some nonlinear function. In order to derive such a dynamic model, we will do the following:

1. Relate linear and angular accelerations of coordinate frames with respect to one another.

2. Generalize the basic laws of motions to three dimensions and apply those laws of motion to the serial configu-
ration of manipulators.

3. Extend the concept of moments of inertia to three dimensions (inertia tensor). [This part of the discussion will 
not be part of this set of notes, but will be handled elsewhere.]

2. Accelerations between coordinate frames

A. Basic definitions

The linear acceleration  of a point  with respect to some coordinate frame  is defined as the time
derivative of the linear velocity :

(2)

Note that this definitions is similar to that of linear velocity itself (from Chapter 5):

(3)

Similarly, the angular acceleration  of coordinate frame  with respect to coordinate frame  is
defined as the time derivative of the angular acceleration :

(4)

B. Notation

We define the following short-hand notation for the linear and angular accelerations of some coordinate
frame  with respect to a fixed universal reference frame :

 (similar to  from Chapter 5) (5)

 (similar to  from Chapter 5) (6)

C. Linear accelerations between coordinate frames

In Chapter 5, we derived the following important equation for two coordinate frames  and  with
coincident origins (i.e. no translation between  and ):

 (  and  origins coincident). (7)

τ
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Let us rewrite equation (7) to establish an important formula for the time derivative of a rotation matrix times
a vector:

(8)

(9)

(10)

Note that equation (10) gives us a general formula for the time derivative of  where  is some rotation
matrix and  is some vector.

Now, let us differentiate equation (8) with respect to time:

(11)

(12)

In equation (12) we made use of the following identity for any 3-space vectors  and :

. (13)

Let us now substitute equation (10) into equation (12):

(14)

(15)

In equation (15), let  so that:

(16)

Note that we can combine two cross-product terms in equation (16),

(17)

(18)
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(19)

Equation (19) gives the angular acceleration  for a vector  defined with respect to coordinate frame
, when the origins of coordinate frames  and  are coincident with one another. If the origin of

coordinate frame  is accelerating with respect to  equation (19) is easily modified to include that
additional linear acceleration:

(20)

(21)

Equation (21) allows for the possibility that vector  is moving with respect to coordinate frame . Let
us now consider a more restrictive case — namely, that vector  is fixed with respect to coordinate frame

. In other words, we will assume that there is movement only between coordinate frames  and 
(and not within coordinate frame ), so that:

(22)

(23)

This assumption simplifies equation (21) substantially:

(24)

, (25)

D. Angular accelerations between coordinate frames

Now, let us consider angular accelerations between different coordinate frames. Let us begin with the rela-
tionship of angular velocities between three coordinate frames ,  and :

(26)

Differentiating (26) and again substituting equation (10), we get:

(27)

(28)

(29)

E. Summary of results

Below, we summarize our results on linear and angular accelerations:

(30)

, (31)

(32)

V̇A
Q RA

B V̇B
Q( ) 2 ΩA

B RA
B VB

Q( )[ ]× Ω̇A
B+ RA

B QB( )[ ]× ΩA
B ΩA

B RA
B QB( )×[ ]×+ +=

V̇A
Q Q

B{ } A{ } B{ }
B{ } A{ }

V̇A
Q V̇BORG

A RA
B V̇B

Q( ) 2 ΩA
B RA

B VB
Q( )[ ]× Ω̇A

B+ RA
B QB( )[ ]× ΩA

B ΩA
B RA

B QB( )×[ ]×+ + +=

V̇A
Q V̇BORG

A RA
B V̇B

Q( ) 2 ΩA
B RA

B VB
Q( )[ ]× Ω̇A

B+ RA
B QB( )[ ]× ΩA

B ΩA
B RA

B QB( )×[ ]×+ + +=

QB B{ }
QB

B{ } A{ } B{ }
B{ }

VB
Q 0=

V̇B
Q 0=

V̇A
Q V̇BORG

A RA
B V̇B

Q( ) 2 ΩA
B RA

B VB
Q( )[ ]× Ω̇A

B+ RA
B QB( )[ ]× ΩA

B ΩA
B RA

B QB( )×[ ]×+ + +=

V̇A
Q V̇BORG

A Ω̇A
B RA

B QB( )[ ]× ΩA
B ΩA

B RA
B QB( )×[ ]×+ += VB

Q V̇B
Q 0= =

A{ } B{ } C{ }

ΩA
C ΩA

B RA
B ΩB

C( )+=

Ω̇A
C Ω̇A

B td
d RA

B ΩB
C( )[ ]+=

Ω̇A
C Ω̇A

B RA
B Ω̇B

C( ) ΩA
B RA

B ΩB
C( )[ ]×+ +=

Ω̇A
C Ω̇A

B RA
B Ω̇B

C( ) ΩA
B RA

B ΩB
C( )[ ]×+ +=

V̇A
Q V̇BORG

A RA
B V̇B

Q( ) 2 ΩA
B RA

B VB
Q( )[ ]× Ω̇A

B+ RA
B QB( )[ ]× ΩA

B ΩA
B RA

B QB( )×[ ]×+ + +=

V̇A
Q V̇BORG

A Ω̇A
B RA

B QB( )[ ]× ΩA
B ΩA

B RA
B QB( )×[ ]×+ += VB

Q V̇B
Q 0= =

Ω̇A
C Ω̇A

B RA
B Ω̇B

C( ) ΩA
B RA

B ΩB
C( )[ ]×+ +=
- 3 -



 

EEL6667: Kinematics, Dynamics and Control of Robot Manipulators Lecture Notes

                                 
3. Basic equations of motion

A. Newton’s law

Consider Figure 1 below, which depicts a rigid body, whose center of mass is accelerating with acceleration
 under a net force  acting on the body.

Newton’s second law of motion relates  and :

(33)

where,

 = net force acting on the body, (34)

 = mass of the body, and, (35)

 = acceleration of the center of mass of the body. (36)

B. Euler’s law

Consider Figure 2 below, which depicts a rigid body, which is rotating with angular velocity  and angular
acceleration  under a net moment  acting on the body.

vC
˙ F

Figure 1: Rigid body, whose center of mass is accelerating under the action of a net force F.

(Craig, Fig. 6.3)

F vC
˙

F mvC
˙=

F

m

vC
˙

ω
ω̇ N

Figure 2: Rigid body, which is rotating under the action of a net moment N.

(Craig, Fig. 6.4)
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Euler’s law of rotational motion for rigid bodies relates  and :

(37)

where,

 = net moment acting on the body, (38)

 =  inertia tensor, written with respect to coordinate frame  (at center of mass), (39)

 = angular velocity of the body, and, (40)

 = angular acceleration of the body. (41)

C. Dynamic modeling

Given the results of Section 2 on accelerations, and the basic laws of motion in the previous two sub-sec-
tions, we will now proceed as follows in deriving the dynamic model for a serial-link manipulator:

(42)

We will assume that the joint positions , joint velocities  and joint accelerations  are known, so that
we can compute the corresponding joint torques/forces  required to achieve the known joint trajectory. We
then break down the development of the dynamic model in equation (42) into three main tasks:

1. Outward propagation of velocities and acceleration from the base coordinate frame  to the end-effec-
tor coordinate frame .

2. Newton’s and Euler’s equations of motion from the base coordinate frame  to the end-effector coordi-
nate frame .

3. Inward propagation of force balance and moment balance equations from coordinate frame  to coor-
dinate frame .

4. Propagation of velocities and accelerations

A. Angular velocities and accelerations

In Chapter 5, we developed the following relationship for angular velocities between consecutive links:

 (velocity propagation) (43)

Now, we want to develop an analogous relationship for angular accelerations:

(44)

where  represents some functional mapping. To do this, we will apply the general relationship that we
developed in Section 2 for the propagation of angular accelerations:

(45)

. (46)

First, we will get equation (43) into the same form as equation (45). Recall that  and  are short-
hand notation, and can be written less compactly as,

 and . (47)

Also note that,
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N
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. (48)

Equation (48) requires some explanation. The right-hand side of (48) denotes the angular velocity of coordi-
nate frame  with respect to  expressed in the  coordinate frame. Now, think about the
left-hand side of (48). The angular velocity between frames  and  is given exactly by the joint
rate  oriented along the  axis, and that the left-hand side of (48) is expressed in terms of the

 coordinate frame. Substituting (47) and (48) into equation (43),

(49)

(50)

(51)

Now, let  and  so that equation (51) becomes:

(52)

(53)

Multiplying equation (53) by  and letting ,

(54)

(55)

(56)

Note that we have now transformed equation (43) into (45), which means that equation (46) can be used to
propagate angular accelerations from one link to the next for serial-link manipulators.

In summary,

(57)

with substitutions:

(58)

(59)

, (60)

,  and . (61)

From equation (46), angular accelerations are propagated by,

(62)

Let us now transform this relationship into link notation by reverse substitution. First let , 
and , so that:

. (63)
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Multiply equation (63) by :

(64)

In order to further develop equation (64), we will need the following identity: for any 3-space vectors , 
and rotation matrix ,

. (65)

Thus, we can modify the last term of (64) using (65):

(66)

(67)

Using,

 and , (68)

equation (67) further simplifies to:

(69)

(70)

Finally, we make the following substitutions into equation (70):

 (by definition) (71)

 and  (by definition) (72)

 [previously explained in discussion following (48)] (73)

 [analogous to (73) above] (74)

These substitutions result in:

(75)

(76)

(77)

B. Angular velocities and accelerations: summary

Summarizing the results developed in the previous section, angular velocities and accelerations are propa-
gated from link  to link  using the following two equations (for revolute joints):

 [from (43)] (78)
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 [from (77)] (79)

Note that equations (78) and (79) allow us to compute the angular velocity  of link frame 
in terms of the angular velocity  of link frame  and ; and the angular acceleration  of
link frame  in terms of the angular acceleration  and angular velocity  of link frame  and

. Also, note that for a prismatic joint,

(80)

so that (78) and (79) simplify (for prismatic joints) to:

(81)

(82)

C. Linear accelerations of link frame origins

In Section 2, we derived the following relationship for the propagation of linear accelerations:

(83)

We will now convert equation (83) into link-specific form as we did above for angular accelerations. First,
let us make the following substitutions:

(84)

(85)

 (for subscripts) (86)

Given these substitutions, note that  now denotes the origin of link frame  in terms of link frame
; in short,

(87)

Thus, equation (83) becomes,

(88)

Let us now pre-multiply equation (88) by :

(89)

Note that we used vector identity (65) in distributing  over the cross product of vectors in (89). Let us
now consider each of the terms in equation (89) one by one. The left-hand side of (89) can be written in
short-hand notation as:

 (by definition) (90)

ω̇i 1+
i 1+ Ri 1+

i ω̇i i Ri 1+
i ωi i( ) θ̇i 1+ Ẑ

i 1+
i 1+× θ̇̇i 1+ Ẑ
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i 1+
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ω̇i 1+
i 1+ Ri 1+
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A U=

B i=

Q i 1 ORG,+=
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V̇U
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i RU
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Ω̇U
i RU
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i+ ΩU

i RU
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U

Ri 1+
U V̇U

i 1 ORG,+ Ri 1+
U V̇i ORG,
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U ΩU
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i Vi i 1+ ORG,( )[ ]×  +
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U Ω̇U

i Ri 1+
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Ri 1+
U ΩU

i Ri 1+
U ΩU
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U
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U V̇U
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Similarly for the first term on the right-hand side of equation (89):

 (by definition) (91)

Equations (90) and (91) simplify equation (89) to:

(92)

Let us now consider the second term on the right-hand side of equation (92). The notation  indi-
cates the linear acceleration of the origin of link frame  with respect to (and in terms of) link frame

. Thus, for a serial-link manipulator, we can write:

(93)

Similarly,

(94)

Note that linear relationships in (93) and (94) are analogous to the manipulator-specific angular relationships
in (73) and (74). Equation (92) now simplifies to:

(95)

Let us now consider the angular velocity and acceleration terms in (95). From prior discussion,

(96)

(97)

so that equation (95) further reduces to:

(98)

Next, let us make the following substitution in (98):

(99)

Ri 1+
U V̇U

i ORG, Ri 1+
i RiU V̇U

i ORG,( ) Ri 1+
i vi

˙i= =

v̇i 1+
i 1+ Ri 1+

i vi
˙i Ri 1+

U RU
i V̇i i 1 ORG,+( )  + +=

2 Ri 1+
U ΩU

i Ri 1+
U RU

i Vi i 1+ ORG,( )[ ]×  +

Ri 1+
U Ω̇U

i Ri 1+
U RU

i Pi i 1+ ORG,( )[ ]×  +

Ri 1+
U ΩU

i Ri 1+
U ΩU

i Ri 1+
U RU

i Pi i 1+ ORG,( )×[ ]×

V̇i i 1 ORG,+
i 1+{ }

i{ }

Ri 1+
U RU

i V̇i i 1 ORG,+( ) Ri 1+
i V̇i i 1 ORG,+( ) ḋ̇i 1+ Ẑ

i 1+
i 1+= =

Ri 1+
U RU

i Vi i 1+ ORG,( ) Ri 1+
i Vi i 1+ ORG,( ) ḋi 1+ Ẑ

i 1+
i 1+= =

v̇i 1+
i 1+ Ri 1+

i vi
˙i ḋ̇i 1+ Ẑ

i 1+
i 1+  + +=

2 Ri 1+
U ΩU

i ḋi 1+ Ẑ
i 1+

i 1+×  +

Ri 1+
U Ω̇U

i Ri 1+
U RU

i Pi i 1+ ORG,( )[ ]×  +

Ri 1+
U ΩU

i Ri 1+
U ΩU

i Ri 1+
U RU

i Pi i 1+ ORG,( )×[ ]×

Ri 1+
U ΩU

i Ri 1+
i RiU ΩU

i( ) Ri 1+
i ωi i= =

Ri 1+
U Ω̇U

i Ri 1+
i RiU Ω̇U

i( ) Ri 1+
i ω̇i i= =

v̇i 1+
i 1+ Ri 1+

i vi
˙i ḋ̇i 1+ Ẑ

i 1+
i 1+  + +=

2 Ri 1+
i ωi i( ) ḋi 1+ Ẑ

i 1+
i 1+×  +

Ri 1+
i ω̇i i Ri 1+

U RU
i Pi i 1+ ORG,( )[ ]×  +

Ri 1+
i ωi i Ri 1+

i ωi i Ri 1+
U RU

i Pi i 1+ ORG,( )×[ ]×

Ri 1+
U RU

i Pi i 1+ ORG,( ) Ri 1+
i Pi i 1+ ORG,( ) Ri 1+

i Pi i 1+( )= =
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where  is simply short-hand notation for . Thus, equation (98) reduces to:

(100)

Finally, note that the relationship in (65) can be rewritten as,

(101)

so that we can rearrange and group terms in equation (100):

(102)

(103)

Thus (for a prismatic joints):

(104)

Note that equation (104) allow us to compute the linear acceleration  of link frame  in terms
of the angular acceleration , linear acceleration  and angular velocity  of link frame , and

 and . Also, note that for a revolute joint,

(105)

so that (104) simplifies (for revolute joints) to:

. (106)

D. Linear acceleration of a link’s center of mass

In order to apply Newton’s second law of motion in equation (33), we need to know not just the linear accel-
eration of link frame  but of the center of mass  of link  as well. Once again, we will begin with the
relationship for the propagation of linear accelerations derived in Section 2:

(107)

Let us make the following substitutions:

(108)

(109)

 (for subscripts) (110)

Given these substitutions, note that  now denotes the origin of the center of mass of link frame 
in terms of link frame ; in short,

(111)

Pi i 1+ Pi i 1+ ORG,

v̇i 1+
i 1+ Ri 1+

i vi
˙i ḋ̇i 1+ Ẑ

i 1+
i 1+ 2 Ri 1+

i ωi i( ) ḋi 1+ Ẑ
i 1+

i 1+×  + + +=

Ri 1+
i ω̇i i Ri 1+

i Pi i 1+( )[ ]× Ri 1+
i ωi i Ri 1+

i ωi i Ri 1+
i Pi i 1+( )×[ ]×+

RQ( ) RP( )× R Q P×( )=

v̇i 1+
i 1+ Ri 1+

i vi
˙i ḋ̇i 1+ Ẑ

i 1+
i 1+ 2 Ri 1+

i ωi i( ) ḋi 1+ Ẑ
i 1+

i 1+×  + + +=

Ri 1+
i ω̇i i Ri 1+

i Pi i 1+( )[ ]× Ri 1+
i ωi i Ri 1+

i ωi i Ri 1+
i Pi i 1+( )×[ ]×+

v̇i 1+
i 1+ Ri 1+

i vi
˙i ḋ̇i 1+ Ẑ

i 1+
i 1+ 2 Ri 1+

i ωi i( ) ḋi 1+ Ẑ
i 1+

i 1+×  + + +=

Ri 1+
i ω̇i i Pi i 1+×( ) Ri 1+

i ωi i ωi i Pi i 1+×( )×[ ]+

v̇i 1+
i 1+ Ri 1+

i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi
˙i+ +[ ]  +=

2 Ri 1+
i ωi i( ) ḋi 1+ Ẑ

i 1+
i 1+× ḋ̇i 1+ Ẑ

i 1+
i 1++

v̇i 1+
i 1+ i 1+{ }

ω̇i i vi
˙i ωi i i{ }

ḋi 1+ ḋ̇i 1+

ḋ̇i 1+ ḋi 1+ 0= =

v̇i 1+
i 1+ Ri 1+

i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi
˙i+ +[ ]=

i{ } Ci i

V̇A
Q V̇BORG

A RA
B V̇B

Q( ) 2 ΩA
B RA

B VB
Q( )[ ]× Ω̇A

B+ RA
B QB( )[ ]× ΩA

B ΩA
B RA

B QB( )×[ ]×+ + +=

A U=

B i=

Q Ci=

QB i 1+{ }
i{ }

QB Pi Ci
=
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Thus, equation (107) becomes,

(112)

In equation (112), note that for rigid links,

(113)

so that (112) reduces from,

(114)

to the simplified form,

(115)

Let us now pre-multiply equation (115) by :

(116)

Note that we used vector identity (65) in distributing  over the cross product of vectors in (116). Similar
to earlier derivation, we now make the following substitutions:

 (by definition) (117)

 (by definition) (118)

 and  (by definition) (119)

Equation (116) consequently reduces to:

(120)

Noting that,

(121)

equation (120) now reduces to:

(122)

(123)

V̇U
Ci

V̇i ORG,
U RU

i V̇i Ci
( ) 2 ΩU

i RU
i Vi Ci

( )[ ]×  + + +=

Ω̇U
i RU

i Pi Ci
( )[ ]× ΩU

i+ ΩU
i RU

i Pi Ci
( )×[ ]×

V̇i Ci
Vi Ci

0= =

V̇U
Ci

V̇i ORG,
U RU

i V̇i Ci
( ) 2 ΩU

i RU
i Vi Ci

( )[ ]×  + + +=

Ω̇U
i RU

i Pi Ci
( )[ ]× ΩU

i+ ΩU
i RU

i Pi Ci
( )×[ ]×

V̇U
Ci

V̇i ORG,
U Ω̇U

i RU
i Pi Ci

( )[ ]× ΩU
i+ ΩU

i RU
i Pi Ci

( )×[ ]×+=

RiU

RiU V̇U
Ci

RiU V̇i ORG,
U RiU Ω̇U

i RiU RU
i Pi Ci

( )[ ]× RiU ΩU
i RiU ΩU

i RiU RU
i Pi Ci

( )×[ ]×+ +=

RiU

RiU V̇U
Ci

v
Ci

˙i=

RiU V̇U
i ORG, vi

˙i=

RiU ΩU
i ωi i= RiU Ω̇U

i ω̇i i=

v̇i Ci
vi
˙i ω̇i i RiU RU

i Pi Ci
( )[ ]× ωi i ωi i RiU RU

i Pi Ci
( )×[ ]×+ +=

RiU RU
i Pi Ci

( ) Pi Ci
=

v̇i Ci
vi
˙i ω̇i i Pi Ci

× ωi i ωi i Pi Ci
×[ ]×+ +=

v̇i Ci
vi
˙i ω̇i i Pi Ci

× ωi i ωi i Pi Ci
×[ ]×+ +=
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5. Link-specific equations of motion

A. Manipulator-specific equations of motions

We can rewrite the basic equations of motion in (33) and (37) in more link specific notation. Specifically,

(124)

(125)

where,

 = net force acting on link , (126)

 = mass of link , (127)

 = acceleration of center of mass of link , (128)

 = net moment acting on link , (129)

 = inertia tensor, written in frame  located at the center of mass of link , (130)

 = angular velocity of link , and, (131)

 = angular acceleration of link . (132)

We can now completely and succinctly write the outward propagation of velocities and net forces/moments.
In the following subsections, we do so for revolute and prismatic joints, respectively.

B. Summary of outward iteration

1. Revolute joints:

(133)

(134)

(135)

2. Prismatic joints:

(136)

(137)

(138)

3. Both joint types:

(139)

Fi miv̇Ci
=

Ni I
Ci

iω̇i ωi I
Ci

iωi×+=

Fi i

mi i

vCi
˙ i

Ni i

I
Ci

i Ci{ } i

ωi i

ω̇i i

ωi 1+
i 1+ Ri 1+

i ωi i θ̇i 1+ Ẑ
i 1+

i 1++=

ω̇i 1+
i 1+ Ri 1+

i ω̇i i Ri 1+
i ωi i( ) θ̇i 1+ Ẑ

i 1+
i 1+× θ̇̇i 1+ Ẑ

i 1+
i 1++ +=

v̇i 1+
i 1+ Ri 1+

i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi
˙i+ +[ ]=

ωi 1+
i 1+ Ri 1+

i ωi i=

ω̇i 1+
i 1+ Ri 1+

i ω̇i i=

v̇i 1+
i 1+

Ri 1+
i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi

˙i+ +[ ]  +=

2 Ri 1+
i ωi i( ) ḋi 1+ Ẑ

i 1+
i 1+× ḋ̇i 1+ Ẑ

i 1+
i 1++

v̇Ci 1+

i 1+ v̇i 1+
i 1+ ω̇i 1+

i 1+ Pi 1+
Ci 1+

× ωi 1+
i 1+ ωi 1+

i 1+ Pi 1+
Ci 1+

×[ ]×+ +=
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(140)

(141)

6. Force/moment balance equations

A. Introduction

Equations (133) through (141) give us the net forces/moments at a given link required to cause the desired/
known joint motion . We now must figure out what part of those net forces/moments must be sup-
plied by the joint actuators. To do this, we will write force/moment balance equations about the center of
mass of each link.

Consider Figure 3 below, which illustrates the forces and moments acting on link . In Figure 3 we use the
following notation:

 = force exerted on link  by link , (142)

 = force exerted on link  by link , (143)

 = moment exerted on link  by link , (144)

 = moment exerted on link  by link , (145)

and, as before,

 = net force acting on link , and, (146)

 = net moment acting on link . (147)

Also,

 = vector from the origin of frame  to the origin of frame , (148)

 = vector from the center of mass of link  to the origin of coordinate frame , and, (149)

Fi 1+
i 1+ mi 1+ v

Ci 1+

˙i 1+=

Ni 1+
i 1+ I

Ci 1+
i 1+ ω̇i 1+

i 1+ ωi 1+
i 1+ I

Ci 1+
i 1+ ωi 1+

i 1+×+=

Θ Θ̇ Θ̇̇, ,( )

i

V1

V2

Pi i 1+

Figure 3: Forces and moments action on link i.

(Craig, Fig. 6.5)

fi i i 1–

fi 1+ i 1+ i

ni i i 1–

ni 1+ i 1+ i

Fi i

Ni i

Pi i 1+ i{ } i 1+{ }

V1 i i{ }
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 = vector from the center of mass of link  to the origin of coordinate frame . (150)

B. Force balance equation

Given the above notation, we can write the force balance equation for link :

(151)

We can, of course, express equation (151) with respect to any coordinate frame. Let us rewrite (151) in terms
of coordinate frame :

(152)

(153)

(154)

C. Moment balance equation

Now, let us write the moment balance equation about the center of mass of link :

(155)

Note that  and  give the moments induced by forces  and , respectively, about the
center of mass of link . Let us now write expressions for  and  in link-specific notation:

(156)

. (157)

Substituting (156) and (157) into (155) and expressing with respect to frame :

(158)

Rearranging terms and keeping equation (152) in mind,

(159)

(160)

(161)

(162)

D. Inward iteration of link forces and moments

Thus the force and moment balance equations at link  are given by,

 and (163)

. (164)

V2 i i 1+{ }

i

Fi fi fi 1+–=

i{ }

Fi i fi i fi i 1+–=

Fi i fi i Rii 1+( ) fi 1+
i 1+–=

Fi i fi i Rii 1+( ) fi 1+
i 1+–=

i

Ni ni ni 1+– V1 fi× V2 fi 1+×–+=

V1 fi× V2 fi 1+×– fi fi 1+–
i{ } V1 V2

V1 Pi Ci
–( )=

V2 Pi i 1+ Pi Ci
–( )=

i{ }

Ni i ni i ni i 1+– Pi Ci
–( ) fi i× Pi i 1+ Pi Ci

–( ) fi i 1+×–+=

Ni i ni i ni i 1+– Pi Ci
fi i fi i 1+–( )×– Pi i 1+ fi i 1+×–=

Ni i ni i ni i 1+– Pi Ci
Fi i×– Pi i 1+ fi i 1+×–=

Ni i ni i ni i 1+– Pi Ci
Fi i×– Pi i 1+ Rii 1+( ) fi 1+

i 1+[ ]×–=

Ni i ni i ni i 1+– Pi Ci
Fi i×– Pi i 1+ Rii 1+( ) fi 1+

i 1+[ ]×–=

i

Fi i fi i Rii 1+( ) fi 1+
i 1+–=

Ni i ni i ni i 1+– Pi Ci
Fi i×– Pi i 1+ Rii 1+( ) fi 1+

i 1+[ ]×–=
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We can rewrite equations (163) and (164) as iterations that propagate  and  from the end-effector to the
link frame :

(165)

(166)

Note that equations (165) and (166) allow us to recursively compute the forces and moments that each link
exerts on its neighboring links by inwardly propagating from coordinate frame  to frame . The last
remaining question is, once equations (165) and (166) are computed, what should be the torques/forces for
the actuators to achieve the desired joint motion? All components of the force and moment vectors  and

 are resisted by the structure of the mechanism itself, except for the torque/force about/along the joint
axis. Therefore the required torque for a revolute joint  is given by,

(167)

while the required force for a prismatic joint  is given by,

. (168)

7. Complete formulation of the iterative Newton-Euler dynamics
This section summarizes the complete formulation of the iterative Newton-Euler dynamics model. It consists of
(1) the outward propagation of angular velocities and linear and angular accelerations, (2) the outward propaga-
tion of net moments and forces acting on the links, and (3) the inward propagation of forces and torques between
links. Collectively, equations (170) through (182) implicitly define the relationship we were looking for at the
beginning of this discussion — namely,

(169)

A. Outward iteration

1. Revolute joints:

(170)

(171)

(172)

2. Prismatic joints:

(173)

(174)

(175)

3. Both joint types:

(176)

fi i ni i
1{ }

fi i Rii 1+( ) fi 1+
i 1+ Fi i+=

ni i Ni i Rii 1+( ) ni 1+
i 1+ Pi Ci

Fi i× Pi i 1+ Rii 1+( ) fi 1+
i 1+[ ]×+ + +=

N{ } 1{ }

fi i
ni i

i

τi ni i Ẑ
i

i⋅=

i

τi fi i Ẑ
i

i⋅=

τ h Θ Θ̇ Θ̇̇, ,( )=

ωi 1+
i 1+ Ri 1+

i ωi i θ̇i 1+ Ẑ
i 1+

i 1++=

ω̇i 1+
i 1+ Ri 1+

i ω̇i i Ri 1+
i ωi i( ) θ̇i 1+ Ẑ

i 1+
i 1+× θ̇̇i 1+ Ẑ

i 1+
i 1++ +=

v̇i 1+
i 1+ Ri 1+

i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi
˙i+ +[ ]=

ωi 1+
i 1+ Ri 1+

i ωi i=

ω̇i 1+
i 1+ Ri 1+

i ω̇i i=

v̇i 1+
i 1+

Ri 1+
i ω̇i i Pi i 1+× ωi i ωi i Pi i 1+×( )× vi

˙i+ +[ ]  +=

2 Ri 1+
i ωi i( ) ḋi 1+ Ẑ

i 1+
i 1+× ḋ̇i 1+ Ẑ

i 1+
i 1++

v̇Ci 1+

i 1+ v̇i 1+
i 1+ ω̇i 1+

i 1+ Pi 1+
Ci 1+

× ωi 1+
i 1+ ωi 1+

i 1+ Pi 1+
Ci 1+

×[ ]×+ +=
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(177)

(178)

B. Inward iteration

1. Both joint types:

(179)

(180)

2. Revolute joints:

(181)

3. Prismatic joints:

. (182)

C. Initialization of propagations

In order to compute equations (170) through (175), we need to know ,  and  —that is, the angu-
lar velocity, and linear and angular acceleration of the base coordinate frame . For a fixed-base manipu-
lator,

, (183)

, and, (184)

, (185)

where  denotes the gravity vector. Note that (185) is equivalent to saying that the base of the robot is
accelerating upward with acceleration , and therefore easily incorporates the effects of gravity loading on
the links without any additional effort.

In order to compute equations (179) and (180), we need to know  and  — that is, the
forces and moments from the environment acting on the end-effector of the manipulator. When the manipu-
lator end-effector is not in contact with any object or obstacle, these are simply given by,

, and, (186)

. (187)

Fi 1+
i 1+ mi 1+ v

Ci 1+

˙i 1+=

Ni 1+
i 1+ I

Ci 1+
i 1+ ω̇i 1+

i 1+ ωi 1+
i 1+ I

Ci 1+
i 1+ ωi 1+

i 1+×+=

fi i Rii 1+( ) fi 1+
i 1+ Fi i+=

ni i Ni i Rii 1+( ) ni 1+
i 1+ Pi Ci

Fi i× Pi i 1+ Rii 1+( ) fi 1+
i 1+[ ]×+ + +=

τi ni i Ẑ
i

i⋅=

τi fi i Ẑ
i

i⋅=

ω0
0 ω̇0

0 v0
˙0

0{ }

ω0
0 0 0 0

T=

ω̇0
0 0 0 0

T=

v0
˙0 G0–=

G0

g

fN 1+
N 1+ nN 1+

N 1+

fN 1+
N 1+ 0 0 0

T=

nN 1+
N 1+ 0 0 0

T=
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