Neural network applications

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: (scaled) conjugate gradient
- Adaptive architectures: cascade NN w/NDEKF

Today:

- Neural network applications

ALVINN (Pomerleau, mid 1990s)

Autonomous Land Vehicle in Neural Network

ALVINN: input representation

Typical hi-res camera image: $500 \times 500=250,000$

- Too many inputs
- Solution: sub-sample image $(32 \times 30=960 —$ whew! $)$
- Color/intensity normalization - reduce lighting variability

Questions: Why choose 32×30 ?

ALVINN: input image example \#1

ALVINN: output representation

Output representation: two choices

- Single linear output
- Multiple outputs: Gaussian fit

Questions:

- Why choose particular output representation?

ALVINN: input image example \#2

Gaussian output representation example

Tried everything from one to 70 hidden units
Four to five hidden units worked best

Questions:

- Why no direct input/output connections?
- Why did larger networks not do better?

ALVINN: training data

Problem: Person drives too well!

- Neural network does not learn error recovery

Solution: create synthetic data from real data

ALVINN: spurrious features

Examples of problem data:

- Oil slicks, shadows
- Other cars

Removing spurrious features

Solution \#1: Add Gaussian noise to image (problems?)
Solution \#2: Model spurrious features (problems?)

Solution \#3: Use neural network's internal model

- "Structured noise"
- Learns to ignore peripheral features

ALVINN: conclusions

- ALVINN represented a huge step forward in autonomous driving (mid 1990s)
- Probably most well-known NN application
- Extensively tested at high speeds in real traffic
- Next step: learning from ALVINN

ALVINN: other issues

- Balance data (left/right/straight samples) (why?)
- Training on-line (vs. batch)
- Hidden unit weights: a closer look

RALPH: learning from ALVINN

Rapid Lateral Position Handler:

- Understanding ALVINN let to RALPH
- Took several years of analysis
- Easy to understand technique

Question:

- Which is better approach?

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Hypothesize a road curvature
- Horizontally shift pixels to correspond to curvature hypothesis
- Vertically add pixel intensities
- Compute measure of curvature hypothesis correctness

Trapezoidal subsampling

Key insight: don't look at whole image

- Function of speed
- Camera orientation w/respect to road (perspective)
- No spurrious feature problem

Trapezoidal subsampling: example \#2

Note how key features line up to indicate curvature...

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Curvature hypothesis
- Horizontally shift pixels to correspond to curvature hypothesis
- Vertically add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Hypothesize a road curvature
- Horizontally shift pixels to correspond to curvature hypothesis
- Vertically add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH: curvature hypothesis

- Curvature hypothesis
- Horizontally shift pixels to correspond to curvature hypothesis

RALPH: curvature hypothesis evaluation

- Vertically add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH performance

"No Hands across America"

- Washington, D.C. to San Diego (2,850 miles)
- 98.1% autonomous (2,796 miles)
- 70 mph top speed (officially)
- 110 mph top speed (unofficially)

Lines are useful, but RALPH doesn't need them...
Failure modes...

ALVINN vs. RALPH

Which is better?

Neural network applications

Road following

- ALVINN: Road following
- RALPH: learning from neural networks

Face detection
Robot control

Face detection (Kanade, late 1990s)

Basics:

- Map 20×20 image to ± 1 (face/non-face)

Performance:

- Face detection results: $85 \%-90 \%$, few false detects
- $1.5 \mathrm{~Hz}-3.5 \mathrm{~Hz}$ on PII/450 (320×240)

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Image preprocessing

Specialized neural network architecture

Face detection

Outline:

- Which part of image to look at?

NN training data: face examples

- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Generating non-face examples

NN training data: nonface examples

Basic NN detection results

Type	System	$\begin{gathered} \text { Missed } \\ \text { faces } \end{gathered}$	Detect	False detects
Single network, no heuristics	1) Network 1 (2 copies of hidden units (52 total), 2905 connections)	45	91.1\%	945
	2) Network 2 (3 copies of hidden units (78 total), 4357 connections)	38	92.5\%	862
	3) Network 3 (2 copies of hidden units (52 total), 2905 connections)	46	90.9\%	738
	4) Network 4 (3 copies of hidden units (78 total), 4357 connections)	40	92.1\%	819

Overlap detection

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

NN results w/overlap detection

	System	Missed faces	Detect rate	False detects
Single network, no heuristics	1) Network 1 (2 copies of hidden units (52 total), 2905 connections)	2) Network 2 (3 copies of hidden units (78 total), 4357 connections)	91.1%	945
	3) Network 3 (2 copies of hidden units (52 total), 2905 connections)	46	92.5%	862
	4) Network 4 (3 copies of hidden units (78 total), 4357 connections)	40	92.1%	819
Single network, with heuristics	5) Network 1 \rightarrow threshold(2,1) \rightarrow overlap elimination	48	90.5%	570
	6) Network 2 \rightarrow threshold(2,1) \rightarrow overlap elimination	42	91.7%	506
	7) Network 3 \rightarrow threshold(2,1) \rightarrow overlap elimination	49	90.3%	440
	8) Network 4 \rightarrow threshold(2,1) \rightarrow overlap elimination	42	91.7%	484

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Committee of experts

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Sample detection results

Sample detection results

B: 9/9/1

Sample detection results

Sample detection results

Face detection: concluding thoughts

NN worked as well as anything at the time...
...since then statistical frequency modeling has surpassed accuracy (Schneiderman, 2001)

Comparison (over same test set):

- 95.8% vs. 86.0% detection
- 65 vs. 31 false detections
- slower vs. faster

Sample detection results

Neural network applications

Road following

- ALVINN: Road following
- RALPH: learning from neural networks

Face detection

Robot control

Robot control

Analytic model:

$\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)$ (why important?)

What's missing?

- Friction
- Link flexibility
- Unmodeled dynamics (inertia tensors, masses, etc.)

Bottom line: analytic model will not be $\mathbf{1 0 0 \%}$

Use NN to model robot dynamics

Is this a good idea?

Robot control

Analytic model:

$\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)$ (why important?)

What's missing?

- Friction
- Link flexibility
- Unmodeled dynamics (inertia tensors, masses, etc.)

Bottom line: analytic model will not be $\mathbf{1 0 0 \%}$

Better idea: complement analytic model

Why is this better?

Neural network applications

Road following

- ALVINN: Road following
- RALPH: learning from neural networks

Face detection

Robot control

Other applications?

Why didn't we use it for horizon tracking?

