Neural network applications

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: (scaled) conjugate gradient
- Adaptive architectures: cascade NN w/NDEKF

Today:

• Neural network applications

ALVINN overview

Basics:

- Map image of road ahead to steering direction
- Training data: watch (person) and learn

Performance:

- Demonstrated for 100+ continuous miles at 70+ mph (10Hz)
- Neither rain nor sleet nor snow...
- One-lane dirt paths to interstate highways

So is that all there is to it?

ALVINN (Pomerleau, mid 1990s)

Autonomous Land Vehicle in Neural Network

ALVINN: input representation

Typical hi-res camera image: $500 \times 500 = 250,000$

- Too many inputs
- Solution: sub-sample image $(32 \times 30 = 960 \text{whew!})$
- Color/intensity normalization reduce lighting variability

Questions: Why choose 32×30 ?

ALVINN: input image example #1

ALVINN: input image example #2

ALVINN: output representation

Output representation: two choices

- Single linear output
- Multiple outputs: Gaussian fit

Questions:

• Why choose particular output representation?

Gaussian output representation example

ALVINN: neural network architecture

Tried everything from one to 70 hidden units Four to five hidden units worked best

Questions:

- Why no direct input/output connections?
- Why did larger networks not do better?

ALVINN: training data

Problem: Person drives too well!

• Neural network does not learn error recovery

Solution: create synthetic data from real data

ALVINN: synthetic images

Problem: What's the correct steering direction?

• Pure pursuit model of how people driving

ALVINN: spurrious features

Examples of problem data:

- Oil slicks, shadows
- Other cars

Removing spurrious features

Solution #1: Add Gaussian noise to image (*problems*?) Solution #2: Model spurrious features (*problems*?)

Solution #3: Use neural network's internal model

- "Structured noise"
- Learns to ignore peripheral features

ALVINN: conclusions

- ALVINN represented a huge step forward in autonomous driving (mid 1990s)
- Probably most well-known NN application
- Extensively tested at high speeds in real traffic
- Next step: learning from ALVINN

ALVINN: other issues

- Balance data (left/right/straight samples) (why?)
- Training on-line (vs. batch)
- Hidden unit weights: a closer look

RALPH: learning from ALVINN

Rapid Lateral Position Handler:

- Understanding ALVINN let to RALPH
- Took several years of analysis
- Easy to understand technique

Question:

• Which is better approach?

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Hypothesize a road curvature
- Horizontally shift pixels to correspond to curvature hypothesis
- *Vertically* add pixel intensities •
- Compute measure of curvature hypothesis correctness

Trapezoidal subsampling

Key insight: don't look at whole image

- Function of speed •
- Camera orientation w/respect to road (perspective) •
- No spurrious feature problem •

Trapezoidal subsampling: example #1

Why do trapezoidal subsampling?

Trapezoidal subsampling: example #2

Note how key features line up to indicate curvature...

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Curvature hypothesis
- *Horizontally* shift pixels to correspond to curvature hypothesis
- *Vertically* add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH: curvature hypothesis

- Curvature hypothesis
- *Horizontally* shift pixels to correspond to curvature hypothesis

RALPH: basic algorithm

For a given image:

- Trapezoidal subsampling of image
- Hypothesize a road curvature
- *Horizontally* shift pixels to correspond to curvature hypothesis
- *Vertically* add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH: curvature hypothesis evaluation

- Vertically add pixel intensities
- Compute measure of curvature hypothesis correctness

RALPH performance	ALVINN vs. RALPH
"No Hands across America"	
• Washington, D.C. to San Diego (2,850 miles)	
• 98.1% autonomous (2,796 miles)	
• 70 mph top speed (officially)	Which is better?
• 110 mph top speed (unofficially)	
Lines are useful, but RALPH doesn't need them	
Failure modes	
Neural network applications	Face detection (Kanade, late 1990s)
Road following	Basics:
ALVINN: Road following	• Map 20×20 image to ± 1 (face/non-face)
• RALPH: learning from neural networks	
Face detection	Performance:
Robot control	• Face detection results: 85%-90%, few false detects
	• 1.5Hz - 3.5Hz on PII/450 (320 × 240)

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Image preprocessing

Specialized neural network architecture

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

NN training data: face examples

Generating non-face examples

NN training data: nonface examples

Basic NN detection results

		Missed	Detect	False
Туре	System	faces	rate	detects
Single	1) Network 1 (2 copies of hidden units (52 total),	45	91.1%	945
network,	2905 connections)			
no	2) Network 2 (3 copies of hidden units (78 total),	38	92.5%	862
heuristics	4357 connections)			
	3) Network 3 (2 copies of hidden units (52 total),	46	90.9%	738
	2905 connections)			
	4) Network 4 (3 copies of hidden units (78 total),	40	92.1%	819
	4357 connections)			

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Overlap detection

NN results w/overlap detection

		Missed	Detect	False
Туре	System	faces	rate	detects
Single	1) Network 1 (2 copies of hidden units (52 total),	45	91.1%	945
network,	2905 connections)			
no	2) Network 2 (3 copies of hidden units (78 total),	38	92.5%	862
heuristics	4357 connections)			
	3) Network 3 (2 copies of hidden units (52 total),	46	90.9%	738
	2905 connections)			
	4) Network 4 (3 copies of hidden units (78 total),	40	92.1%	819
	4357 connections)			
Single	5) Network 1 \rightarrow threshold(2,1) \rightarrow overlap elimination	48	90.5%	570
network,				
with	6) Network 2 \rightarrow threshold(2,1) \rightarrow overlap elimination	42	91.7%	506
heuristics				
	7) Network $3 \rightarrow$ threshold $(2,1) \rightarrow$ overlap elimination	49	90.3%	440
	8) Network 4 \rightarrow threshold(2,1) \rightarrow overlap elimination	42	91.7%	484

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

NN results w/multiple networks

Single	5) Network 1 \rightarrow threshold(2.1) \rightarrow overlap elimination	18	00.5%	570
network	$(2,1) \rightarrow (0)$	40	90.3%	570
with	6) Network 2 \rightarrow threshold(2.1) \rightarrow overlap elimination	42	91.7%	506
heuristics	o) itetwork 2 / uneshold(2,1) / overlap eminiation	12	11.1 10	500
neuristics	7) Network $3 \rightarrow$ threshold(2,1) \rightarrow overlap elimination	49	90.3%	440
	8) Network 4 \rightarrow threshold(2,1) \rightarrow overlap elimination	42	91.7%	484
Arbitrating	9) Networks 1 and $2 \rightarrow AND(0)$	68	86.6%	79
among two				
networks	10) Networks 1 and $2 \rightarrow AND(0) \rightarrow threshold(2,3)$	112	77.9%	2
	\rightarrow overlap elimination			
	11) Networks 1 and 2 \rightarrow threshold(2,2) \rightarrow overlap	70	86.2%	23
	elimination \rightarrow AND(2)			
	12) Networks 1 and 2 \rightarrow thresh(2,2) \rightarrow overlap elim	49	90.3%	185
	\rightarrow OR(2) \rightarrow thresh(2,1) \rightarrow overlap elimination			
Arbitrating	13) Networks 1, 2, $3 \rightarrow \text{voting}(0) \rightarrow \text{overlap}$	59	88.4%	99
among	elimination			
three	14) Networks 1, 2, $3 \rightarrow$ network arbitration (5 hidden	79	84.4%	16
networks	units) \rightarrow thresh(2,1) \rightarrow overlap elimination			
	15) Networks 1, 2, $3 \rightarrow$ network arbitration (10)	83	83.6%	10
	hidden units) \rightarrow thresh(2,1) \rightarrow overlap elimination			
	16) Networks 1, 2, $3 \rightarrow$ network arbitration	84	83.4%	12
	$(perceptron) \rightarrow thresh(2,1) \rightarrow overlap elimination$			

Face detection

Outline:

- Which part of image to look at?
- Image pre-processing
- Specialized neural network architecture
- Training data
- Overlap detection
- Committee of experts: multiple neural networks
- Results

Committee of experts

Sample detection results

Sample detection results

Sample detection results

Face detection: concluding thoughts

NN_worked as well as anything at the time...

...since then statistical frequency modeling has surpassed accuracy (Schneiderman, 2001)

Comparison (over same test set):

- 95.8% vs. 86.0% detection
- 65 vs. 31 false detections
- slower vs. faster

Commercial system at Superbowl 2001 (Tampa)

Neural network applications

Road following

- ALVINN: Road following
- RALPH: learning from neural networks

Face detection

Robot control

Robot control

Analytic model:

 $\tau = M(\Theta)\ddot{\Theta} + V(\Theta, \dot{\Theta}) + G(\Theta) \text{ (why important?)}$

What's missing?

- Friction
- Link flexibility
- Unmodeled dynamics (inertia tensors, masses, etc.)

Bottom line: analytic model will not be 100%

Robot control

Analytic model:

 $\tau = M(\Theta)\ddot{\Theta} + V(\Theta, \dot{\Theta}) + G(\Theta) \text{ (why important?)}$

What's missing?

- Friction
- Link flexibility
- Unmodeled dynamics (inertia tensors, masses, etc.)

Bottom line: analytic model will not be 100%

Use NN to model robot dynamics

Is this a good idea?

Better idea: complement analytic model

Why is this better?

Neural network applications

Road following

- ALVINN: Road following
- RALPH: learning from neural networks

Face detection

Robot control

Other applications?

Why didn't we use it for horizon tracking?